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A Popov Stability Condition for Uncertain Linear Quantum Sy stems

Matthew R James, Ian R. Petersen and Valery Ugrinovskii

Abstract— This paper considers a Popov type approach to the
problem of robust stability for a class of uncertain linear quan-
tum systems subject to unknown perturbations in the system
Hamiltonian. A general stability result is given for a general
class of perturbations to the system Hamiltonian. Then, the
special case of a nominal linear quantum system is considered
with quadratic perturbations to the system Hamiltonian. In this
case, a robust stability condition is given in terms of a frequency
domain condition which is of the same form as the standard
Popov stability condition.

I. I NTRODUCTION

This paper builds on the previous papers [1]–[3] which
consider the problem of robust stability analysis for open
quantum systems subject to perturbations in either the system
Hamiltonian or coupling operator, which together define
the dynamics of the quantum system. The results of these
papers can be regarded as extensions of the classical small
gain theorem for robust stability to the case of quantum
systems. The main contribution of this paper is a result
which can be regarded as an extension of the classical Popov
criterion for absolute stability to the case of open quantum
systems. In particular, we extend the result of [2], in which
the perturbations to the system Hamiltonian are uncertain
quadratic perturbations, to obtain a corresponding Popov
robust stability result.

The small gain theorem and the Popov criterion for
absolute stability are two of the most useful tests for robust
stability and nonlinear system stability; e.g., see [4]. Both
of these stability tests consider a Lur’e system which is
the feedback interconnection between a linear time invariant
system and a sector bounded nonlinearity or uncertainty.
The key distinction between the small gain theorem and the
Popov criterion is that the small gain theorem establishes
absolute stability via the use of a fixed quadratic Lyapunov
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function whereas the Popov criterion relies on a Lyapunov
function of the Lur’e Postnikov form which involves the sum
of a quadratic term and a term dependent on the integral
of the nonlinearity itself. The small gain theorem can be
used to establish stability in the presence of time-varying
uncertainties and nonlinearities whereas the Popov criterion
only applies to static time-invariant nonlinearities. However,
the Popov criterion is less conservative than the small gain
theorem. Hence, we are motivated to obtain a quantum Popov
stability criterion in order to obtain less conservative results.

The study of quantum feedback control theory has been
the subject of increasing interest in recent years; e.g., see [5]–
[17]. In particular, the papers [14], [18] consider a framework
of quantum systems defined in terms of a triple(S,L,H)
whereS is a scattering matrix,L is a vector of coupling
operators andH is a Hamiltonian operator. The paper [18]
then introduces notions of dissipativity and stability forthis
class of quantum systems. As in the papers [1], [3], the
results of this paper build on the stability results of [18] to
obtain robust stability results for uncertain quantum systems
in which the quantum system Hamiltonian is decomposed as
H = H1 +H2 whereH1 is a known nominal Hamiltonian
andH2 is a perturbation Hamiltonian, which is contained in
a specified set of HamiltoniansW .

For this general class of uncertain quantum systems, the
paper first obtains a general abstract version of the Popov
stability criterion which requires finding a Lyapunov type
operator to satisfy an operator inequality. The paper then
considers the case in which the nominal HamiltonianH1 is
a quadratic function of annihilation and creation operators
and the coupling operator vector is a linear function of
annihilation and creation operators. This case corresponds to
a nominal linear quantum system; e.g., see [8], [9], [11], [12],
[17]. Also, it is assumed that the perturbation Hamiltonianis
quadratic but uncertain. In this special case, a robust stability
stability criterion is obtained in terms of a frequency domain
condition which takes the same form as the classical Popov
stability criterion.

The remainder of the paper proceeds as follows. In Section
II, we define the general class of uncertain quantum systems
under consideration. In this section, we also present a general
Popov type stability result for this class of quantum systems.
In Section III, we consider a class of uncertain quadratic
perturbation Hamiltonians. In Section IV, we specialize to
the case of linear nominal quantum systems and obtain a
robust stability result for this case in which the stability
condition is a frequency domain condition in the same form
as the classical Popov stability condition. In Section V we
present an illustrative example involving a quantum system
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arising from an optical parametric amplifier. In Section VI,
we present some conclusions.

II. QUANTUM SYSTEMS

We consider open quantum systems defined by parameters
(S,L,H) whereH = H1 + H2; e.g., see [14], [18]. The
corresponding generator for this quantum system is given by

G(X) = −i[X,H ] + L(X) (1)

whereL(X) = 1
2L

∗[X,L] + 1
2 [L

∗, X ]L. Here, [X,H ] =
XH −HX denotes the commutator between two operators
and the notation∗ denotes the adjoint of an operator. Also,
H1 is a self-adjoint operator on the underlying Hilbert space
referred to as the nominal Hamiltonian andH2 is a self-
adjoint operator on the underlying Hilbert space referred to
as the perturbation Hamiltonian. The triple(S,L,H), along
with the corresponding generators define the Heisenberg
evolutionX(t) of an operatorX according to a quantum
stochastic differential equation; e.g., see [18].

The problem under consideration involves establishing
robust stability properties for an uncertain open quantum
system for the case in which the perturbation Hamiltonian
is contained in a given setW1. Using the notation of [18],
the setW1 defines a set of exosystems. This situation is
illustrated in the block diagram shown in Figure 1. The main

Nominal
System

Input Field Output Field

Exosystem

Fig. 1. Block diagram representation of an open quantum system interacting
with an exosystem.

robust stability results presented in this paper will buildon
the following result from [18].

Lemma 1 (See Lemma 3.4 of [18].):Consider an open
quantum system defined by(S,L,H) and suppose there ex-
ists a non-negative self-adjoint operatorV on the underlying
Hilbert space such that

G(V ) + cV ≤ λ (2)

where c > 0 and λ are real numbers. Then for any plant
state, we have

〈V (t)〉 ≤ e−ct 〈V 〉+ λ

c
, ∀t ≥ 0.

HereV (t) denotes the Heisenberg evolution of the operator
V and 〈·〉 denotes quantum expectation; e.g., see [18].

We will also use following result, which is a slight modifi-
cation of Theorem 3.1 and Lemma 3.4 of [18].

Lemma 2:Consider an open quantum system defined by
(S,L,H) and suppose there exists non-negative self-adjoint
operatorsV andW on the underlying Hilbert space such
that the followingquantum dissipation inequalityholds

G(V ) +W ≤ λ (3)

whereλ is a real number. Then for any plant state, we have

lim sup
T→∞

1

T

∫ T

0

〈W (t)〉dt ≤ λ. (4)

HereW (t) denotes the Heisenberg evolution of the operator
W and 〈·〉 denotes quantum expectation; e.g., see [18].

Proof The proof is similar to the proof of Lemma 3.4 in
[18]. In a similar manner we obtain from (3)

Et

[

V (t+ h)− V (t) +

∫ t+h

t

W (s)ds

]

≤ λh. (5)

whereEt denotes vacuum expectation operator. Taking the
vacuum expectationE0 on both sides, and noting that
E0Et = E0 results in

〈ψ,E0[V (t+ h)]ψ〉 − 〈ψ,E0[V (t)]ψ〉

+

∫ t+h

t

〈ψ,E0[W (s)]ψ〉ds ≤ λh〈ψ, ψ〉

for any ψ in the underlying Hilbert space. Then for any
corresponding plant state (i.e., forψ such that〈ψ, ψ〉 = 1)
we have

d

dt
〈V (t)〉 + 〈W (t)〉 ≤ λ.

Then (4) follows in a standard manner. ✷

A. Commutator Decomposition

We now consider a set of self-adjoint perturbation Hamil-
toniansH2 ∈ W1. For a given set of non-negative self-
adjoint operatorsP , a set of Popov scaling parameters
Θ ⊂ [0,∞), a self-adjoint operatorH1, which is the nominal
Hamiltonian, a coupling operatorL, and for a real parameter
β ≥ 0, this setW1 is defined in terms of the commutator
decompositions

[V − θH1, H2] = [V − θH1, z
†]w − w†[z, V − θH1],

L(H2) ≤ L(z†)w + w†L(z) + β[z, L]†[z, L]

(6)

for all V ∈ P andθ ∈ Θ, wherew andz are given operator
vectors of the same dimension. Here, the notation† denotes
the adjoint transpose of a vector of operators. In addition,
the notation# denotes the vector of adjoint operators for a
given vector of operators.

Then, the setW1 will be defined in terms of the sector
bound condition

(

w − 1

γ
z

)† (

w − 1

γ
z

)

≤ 1

γ2
z†z (7)



whereγ > 0 is a given constant. That is, we define

W1 =

{

H2 ≥ 0 : ∃ w, z, such that (7)
and (6) are satisfied∀V ∈ P , θ ∈ Θ

}

. (8)

Using this definition, we obtain the following theorem.
Theorem 1:Consider a set of non-negative self-adjoint

operatorsP , an open quantum system(S,L,H) and an
observableW whereH = H1+H2 andH2 ∈ W1 defined in
(8). Suppose there exists aV ∈ P and real constantsθ ∈ Θ,
λ̃ ≥ 0 such that

−i[V,H1] + L(V )

+
1

γ
(i[z, V − θH1] + θL(z) + z)

†

× (i[z, V − θH1] + θL(z) + z)

+θβ[z, L]†[z, L] +W ≤ λ̃. (9)

Then

lim sup
T→∞

1

T

∫ T

0

〈W (t)〉dt ≤ λ̃.

HereW (t) denotes the Heisenberg evolution of the operator
W .
Proof: Let θ ∈ Θ andλ̃ ≥ 0 be given such that the conditions
of the theorem are satisfied and considerG(V +θH2) defined
in (1). Then

G(V + θH2) = −i[V + θH2, H1 +H2] + L(V + θH2)

= −i[V,H1]− iθ[H2, H1]− i[V,H2]

−iθ[H2, H2] + L(V ) + θL(H2)

= −i[V,H1]− i[V − θH1, H2] + L(V )

+θL(H2). (10)

Using the decomposition in the first equation (6), we have

G(V + θH2) = −i[V,H1] + L(V )− i[V − θH1, z
†]w

+iw†[z, V − θH1] + θL(H2). (11)

Now

[V −θH1, z
†]† = z(V −θH1)− (V −θH1)z = [z, V −θH1]

sinceV −θH1 is self-adjoint. This confirms that the operator
on the right hand side of the above identity is a self-adjoint
operator. Therefore, the following inequality follows from
the second equation (6):

G(V + θH2)

≤ −i[V,H1] + L(V )

−i[V − θH1, z
†]w + iw†[z, V − θH1]

+θ(L(z†)w + w†L(z)) + θβ[z, L]†[z, L]. (12)

Also, note that

(L(z))† =

(

1

2
L†[z, L] +

1

2
[L†, z]L

)†

=
1

2
[L†, z†]L+

1

2
L†[z†, L]

= L(z†). (13)

Furthermore,

0 ≤
(

i[z, V − θH1] + θL(z)√
γ

−√
γ (w − z/γ)

)†

×
(

i[z, V − θH1] + θL(z)√
γ

−√
γ (w − z/γ)

)

=
1

γ
(i[z, V − θH1] + θL(z) + z)

†

× (i[z, V − θH1] + θL(z) + z)

− (i[z, V − θH1] + θL(z) + z)
†
w

−w† (i[z, V − θH1] + θL(z) + z) + γw†w.

This implies that

(i[z, V − θH1] + θL(z) + z)
†
w

+w† (i[z, V − θH1] + θL(z) + z)− γw†w

≤ 1

γ
(i[z, V − θH1] + θL(z) + z)†

× (i[z, V − θH1] + θL(z) + z) .

Using this inequality and (12), we have

G(V + θH2) +
1

γ
z†z − γ

(

w − 1

γ
z

)†(

w − 1

γ
z

)

≤ −i[V,H1] + L(V )

+ (i[z, V − θH1] + θL(z) + z)
†
w

+w† (i[z, V − θH1] + θL(z) + z)

−γw†w + θβ[z, L]†[z, L]

≤ −i[V,H1] + L(V )

+
1

γ
(i[z, V − θH1] + θL(z) + z)

†

× (i[z, V − θH1] + θL(z) + z)

+θβ[z, L]†[z, L]. (14)

Then it follows from (7) and (9) that

G(V + θH2) +W ≤ λ̃.

The result of the theorem then follows from Lemma 2.✷

III. QUADRATIC PERTURBATIONS OF THEHAMILTONIAN

We consider a setW2 of quadratic perturbation Hamilto-
nians of the form

H2 =
1

2

[

ζ† ζT
]

∆

[

ζ
ζ#

]

(15)

where∆ ∈ C2m×2m is a Hermitian matrix of the form

∆ =

[

∆1 ∆2

∆#
2 ∆#

1

]

, (16)

∆1 = ∆†
1, ∆2 = ∆T

2 and ζ is a given vector of operators.
Here, in the case of complex matrices, the notation† refers
to the complex conjugate transpose of a matrix. Also, in
the case of complex matrices, the notation# refers to the
complex conjugate matrix. In addition, for this case we
assume thatΘ = [0,∞).



The matrix∆ is subject to the bounds

0 ≤ ∆ ≤ 4

γ
I. (17)

Then we define

W2 =

{

H2 of the form (15), (16) such that
condition (17) is satisfied

}

. (18)

Using this definition, we obtain the following lemma.
Lemma 3:Suppose that[z, L] is a constant vector. Then,

for any set of self-adjoint operatorsP ,

W2 ⊂ W1.

Proof: Given anyH2 ∈ W2, let z =

[

ζ
ζ#

]

andw = 1
2∆z.

Hence,H2 = w†z. Then, for anyV ∈ P and θ ≥ 0, let
Ṽ = V − θH1 and we have

[Ṽ , z†]w =
1

2

(

Ṽ z† − z†Ṽ
)

∆z

=
1

2
Ṽ z†∆z − 1

2
z†∆Ṽ z,

sinceṼ is a scalar operator and∆ is a constant matrix. Also,

w†[z, Ṽ ] =
1

2
z†∆

(

zṼ − Ṽ z
)

=
1

2
z†∆zṼ − 1

2
z†∆Ṽ z.

Hence,

[Ṽ , z†]w − w†[z, Ṽ ] =
1

2
Ṽ z†∆z − 1

2
z†∆zṼ

=
1

2
[Ṽ , z†∆z]

= [Ṽ , H2].

Similarly,

[L, z†]w − w†[z, L] = [L,H2]. (19)

In addition,

wT [z, L]#L− L[z, L]†w

=
1

2
zT∆T [z, L]#L− 1

2
L[z, L]†∆z

=
1

2
[z, L]†∆zL− 1

2
L[z, L]†∆Lz

=
1

2
[z, L]†∆[z, L]

=
1

2
[z, L]†∆[z, L] (20)

and similarly

L∗[z, L]Tw# − w†[z, L]L∗ =
1

2
[z, L]†∆[z, L].

(21)

Now using (19), (20), (21) and the assumption that[z, L] is
a constant vector, it follows that

L(H2) =
1

2
L∗[H2, L] +

1

2
[L∗, H2]L

= −1

2
L∗
(

[L, z†]w − w†[z, L]
)

−1

2

(

w†[L, z†]† − [z, L]†w
)

L

=
1

2
L∗[z†, L]w +

1

2
L∗w†[z, L]

+
1

2
w†[z†, L]†L+

1

2
[z, L]†wL

=
1

2
L∗[z†, L]w +

1

2
L∗[z, L]Tw#

+
1

2
w†[z†, L]†L+

1

2
wT [z, L]#L

=
1

2
L∗[z†, L]w +

1

2
w†[z, L]L∗

+
1

2
w†[z†, L]†L+

1

2
L[z, L]†w

+[z, L]†∆[z, L]

=
1

2
L∗[z†, L]w +

1

2
[L∗, z†]Lw

+
1

2
w†L∗[z, L] +

1

2
w†[L∗, z]L

+[z, L]†∆[z, L]

= L(z†)w + w†L(z) + [z, L]†∆[z, L].

It then follows from (17) that

L(H2) ≤ L(z†)w + w†L(z) + 4

γ
[z, L]†[z, L].

Therefore we can conclude that both of the conditions in (6)
are satisfied withβ = 4

γ
. Also, condition (17) implies

H2 = w†z =
1

2
z†∆z ≥ 0,

and
(

w − 1

γ
z

)† (

w − 1

γ
z

)

= w†w − 1

γ
z†w

− 1

γ
w†z +

1

γ2
z†z

=
1

4
z†∆∆z − 1

γ
z†∆z

+
1

γ2
z†z

≤ 1

γ2
z†z

which implies (7). Hence,H2 ∈ W1. Therefore,W2 ⊂ W1.
✷

IV. T HE L INEAR CASE

We now consider the case in which the nominal quantum
system corresponds to a linear quantum system; e.g., see [8],
[9], [11], [12], [17]. In this case, we assume thatH1 is of
the form

H1 =
1

2

[

a† aT
]

M

[

a
a#

]

(22)



whereM ∈ C
2n×2n is a Hermitian matrix of the form

M =

[

M1 M2

M#
2 M#

1

]

andM1 =M †
1 ,M2 =MT

2 . Herea is a vector of annihilation
operators on the underlying Hilbert space anda# is the
corresponding vector of creation operators. The annihilation
and creation operators are assumed to satisfy the canonical
commutation relations:
[

[

a
a#

]

,

[

a
a#

]†
]

=

[

a
a#

] [

a
a#

]†

−
(

[

a
a#

]# [
a
a#

]T
)T

= J (23)

whereJ =

[

I 0
0 −I

]

; e.g., see [10], [15], [17].

In addition, we assumeL is of the form

L =
[

N1 N2

]

[

a
a#

]

= Ñ

[

a
a#

]

(24)

whereN1 ∈ C1×n andN2 ∈ C1×n. Also, we write
[

L
L#

]

= N

[

a
a#

]

=

[

N1 N2

N#
2 N#

1

] [

a
a#

]

.

In addition, we assume thatV is of the form

V =
[

a† aT
]

P

[

a
a#

]

(25)

whereP ∈ C2n×2n is a positive-definite Hermitian matrix
of the form

P =

[

P1 P2

P#
2 P#

1

]

. (26)

Hence, we consider the set of non-negative self-adjoint
operatorsP1 defined as

P1 =

{

V of the form (25) such thatP > 0 is a
Hermitian matrix of the form (26)

}

.

(27)
In the linear case, we also letζ = E1a+E2a

# and hence
we can write

z =

[

ζ
ζ#

]

=

[

E1 E2

E#
2 E#

1

] [

a
a#

]

= E

[

a
a#

]

.

(28)
We will also consider a specific notion of robust mean

square stability.
Definition 1: An uncertain open quantum system defined

by (S,L,H) whereH = H1 + H2 with H1 of the form
(22),H2 ∈ W , andL of the form (24) is said to berobustly
mean square stableif for anyH2 ∈ W , there exist constants
c1 > 0, c2 > 0 andc3 ≥ 0 such that

〈

[

a(t)
a#(t)

]† [
a(t)
a#(t)

]

〉

≤ c1e
−c2t

〈

[

a
a#

]† [
a
a#

]

〉

+ c3 ∀t ≥ 0. (29)

Here

[

a(t)
a#(t)

]

denotes the Heisenberg evolution of the

vector of operators

[

a
a#

]

; e.g., see [18].

In order to address the issue of robust mean square
stability for the uncertain linear quantum systems under
consideration, we first require some algebraic identities.

Lemma 4:Given V ∈ P1, H1 defined as in (22) andL
defined as in (24), then

[V,H1] =
[

[

a† aT
]

P

[

a
a#

]

,
1

2

[

a† aT
]

M

[

a
a#

]]

=

[

a
a#

]†

[PJM −MJP ]

[

a
a#

]

.

Also,

L(V ) =
1

2
L†[V, L] +

1

2
[L†, V ]L

= Tr

(

PJN †

[

I 0
0 0

]

NJ

)

−1

2

[

a
a#

]†
(

N †JNJP + PJN †JN
)

[

a
a#

]

.

Proof: The proof of these identities follows via straightfor-
ward but tedious calculations using (23). ✷

Lemma 5:With the variablez defined as in (28) andL
defined as in (24), then

[z, L] =

[

E

[

a
a#

]

, Ñ

[

a
a#

]]

= EJΣÑT

which is a constant vector. Here,

Σ =

[

0 I
I 0

]

.

Proof: The proof of this result follows via straightforward
but tedious calculations using (23). ✷

Lemma 6:With the variablez defined as in (28),H1

defined in (22) andL defined as in (24), then

−i[z,H1] + L(z) = E

(

−iJM − 1

2
JN †JN

)[

a
a#

]

= EA

[

a
a#

]

where

A = −iJM − 1

2
JN †JN. (30)

Furthermore,

i[z, V ] = 2iEJP

[

a
a#

]

.

Proof: The proofs of these equations follows via straightfor-
ward but tedious calculations using (23). ✷

We will show that a sufficient condition for robust mean
square stability whenH2 ∈ W2 is the existence of a constant
θ ≥ 0, such that the following conditions are satisfied:

(i) The matrixA defined in (30) is Hurwitz.



(ii) The transfer function

G(s) = −2iE (sI −A)
−1
JE† (31)

satisfies the strict positive real (SPR) condition

γI − (1 + θiω)G(iω)− (1− θiω)G(iω)† > 0 (32)

for all ω ∈ [−∞,∞].

This leads to the following theorem.
Theorem 2:Consider an uncertain open quantum system

defined by(S,L,H) such thatH = H1 +H2 whereH1 is
of the form (22),L is of the form (24) andH2 ∈ W2.
Furthermore, assume that there exist a constantθ ≥ 0
such that the matrixA defined in (30) is Hurwitz and
the frequency domain condition (32) is satisfied. Then the
uncertain quantum system is robustly mean square stable.
Proof of Theorem 2.If the conditions of the theorem are
satisfied, then the transfer functionγ2 I − (1 + θs)G(s) is
strictly positive real. However, this transfer function has a
state space realization

γ

2
I − (1 + θs)G(s) ∼





A B

−C − θCA γ
2 I − θCB





whereA is defined as in (30),

B = −2iJE† (33)

and

C = E. (34)

It now follows using the strict positive real lemma that the
linear matrix inequality
[

PA+A†P PB + C† + θA†C†

B†P + C + θCA −γI + θ(CB +B†C†)

]

< 0

(35)
will have a solutionP > 0 of the form (26); e.g., see [4].
This matrixP defines a corresponding operatorV ∈ P1 as in
(25). Furthermore, it is straightforward to verify thatCB +
B†C† = 0. Hence, using Schur complements, it follows from
(35) that

PA+A†P

+
1

γ

(

PB + C† + θA†C†
) (

B†P + C + θCA
)

< 0.

(36)

Now using Lemma 6 we have

i[z, V − θH1] + θL(z) + z

= i[z, V ] + θ (−i[z,H1] + L(z)) + z

= (2iEJP + θEA+ E)

[

a
a#

]

= E (2iJP + θA+ I)

[

a
a#

]

.

Hence using Lemma 4, we obtain

−i[V,H1] + L(V )

+
1

γ
(i[z, V − θH1] + θL(z) + z)†

× (i[z, V − θH1] + θL(z) + z)

+
4θ

γ
[z, L]†[z, L]

=

[

a
a#

]†

M̃

[

a
a#

]

+Tr

(

PJN †

[

I 0
0 0

]

NJ

)

+
4θ

γ
Ñ#ΣJE†EJΣÑT (37)

where

M̃ =

PA+A†P +
1

γ
(2iJP + θA+ I)

†
E†E (2iJP + θA+ I)

= PA+A†P

+
1

γ

(

PB + C† + θA†C†
) (

B†P + C + θCA
)

,

A is defined in (30),B is defined in (33) andC is defined in
(34). From this, it follows using Lemma 5, Lemma 3, (36),
and a similar argument to the proof of Theorem 1 that

G(V + θH2) ≤
[

a
a#

]†

M̃

[

a
a#

]

+ λ

where

λ = Tr

(

PJN †

[

I 0
0 0

]

NJ

)

+
4θ

γ
Ñ#ΣJE†EJΣÑT

≥ 0.

It follows from (36) thatM̃ < 0. Hence using (17), it follows
that there exists a constantc > 0 such that the condition

G(V + θH2) + c (V + θH2) ≤ λ

is satisfied. Therefore, it follows from Lemma 1, Lemma 3,
(17) andP > 0 that
〈

[

a(t)
a#(t)

]† [
a(t)
a#(t)

]

〉

≤

e−ct

〈

[

a(0)
a#(0)

]† [
a(0)
a#(0)

]

〉

λmax[P + 4θ
γ
E†E]

λmin[P ]

+
λ

cλmin[P ]
∀t ≥ 0. (38)

Hence, the condition (29) is satisfied withc1 =
λmax[P+ 4θ

γ
E†E]

λmin[P ] > 0, c2 = c > 0 andc3 = λ
cλmin[P ] ≥ 0. ✷

Observation 1:A useful special case of the above result
occurs when the QSDEs describing the nominal open quan-
tum linear system depend only on annihilation operators and



not on the creation operators; e.g., see [11], [12]. This case
corresponds to the case ofM2 = 0 andN2 = 0. Also, we
assume thatE2 = 0. In this case, we calculate the matrixA
in (30) to be

A =

[

A1 0

0 A#
1

]

whereA1 = −iM1− 1
2N

†
1N1. Also, we calculate the transfer

function matrixG(s) in (31) to be

G(s) = −2

[

G1(s) 0
0 −G1(s

∗)#

]

whereG1(s) = iE1 (sI −A1)
−1E†

1 .
We now consider the case in whichG1(s) is a SISO

transfer function. In this case, the condition that the matrix
A in (30) is Hurwitz reduces to the condition that the matrix

A1 = −iM1 −
1

2
N †

1N1 (39)

is Hurwitz. Also, the the SPR condition (32) reduces to the
following conditions:

γ

4
+Re[G1(iω)]− θωIm[G1(iω)] > 0; (40)

γ

4
−Re[G1(iω)] + θωIm[G1(iω)] > 0 (41)

for all ω ∈ [−∞,∞]. The conditions (40), (41) can be
tested graphically producing a plot ofωRe[G1(iω)] versus
Im[G1(iω)] with ω ∈ [−∞,∞] as a parameter. Such a
parametric plot is referred to as the Popov plot; e.g., see
[4]. Then, the conditions (40), (41) will be satisfied if and
only if the Popov plot lies between two straight lines of slope
1
θ

and withx-axis intercepts± γ
4 ; see Figure 2.

PSfrag replacements
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Fig. 2. Allowable region for the Popov plot.

V. I LLUSTRATIVE EXAMPLE

In this section, we consider an example of an open
quantum system with

S = I, H =
1

2
i
(

(a∗)2 − a2
)

, L =
√
κa,

which corresponds an optical parametric amplifier; see [19].
This is the same example which was considered in [2]. In
order apply the theory of this paper to this example, we let

H2 =
1

2
[a∗ a]

[

1 i
−i 1

] [

a
a∗

]

≥ 0

and

H1 =
1

2
[a∗ a]

[

−1 0
0 −1

] [

a
a∗

]

so thatH1+H2 = H . This defines a linear quantum system
of the form considered in Theorem 2 withM1 = −1,
M2 = 0, N1 =

√
κ, N2 = 0, E1 = 1, E2 = 0.

Also, ∆ =

[

1 i
−i 1

]

≥ 0, which satisfies∆ ≤ 2I.

Hence, we can chooseγ = 2 to ensure that condition (17)
is satisfied and thereforeH2 ∈ W2. Also, note that this
system is a system of the form considered in Observation
1 with A1 = i − κ

2 , which is Hurwitz for all κ > 0, and
G1(s) =

i
s−i+κ

2
. We then chooseκ = 2.1 and construct the

Popov plot corresponding to the transfer functionG1(s) as
discussed in Observation 1. For a value ofθ = 0.2, this plot,
along with the corresponding allowable region, is shown in
Figure 3. From this figure it can be seen that the Popov plot
lies within the allowable region and hence, it follows from
Theorem 2 and Observation 1 that this system will be mean
square stable forκ = 2.1. However, the method of [2] could
only prove that this system was stable forκ > 4. Hence for
this example, the proposed method provides a considerable
improvement over the method of [2].
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Fig. 3. Popov plot for the optical parametric amplifier system.

VI. CONCLUSIONS

In this paper, we have considered the problem of robust
stability for uncertain linear quantum systems with uncertain
quadratic perturbations to the system Hamiltonian. The sta-
bility condition which is obtained is a quantum version of
the classical Popov stability criterion. This frequency domain
condition is less conservative than a previous stability result
obtained which takes the form of a quantum version of the
classical small gain theorem.

REFERENCES

[1] I. R. Petersen, V. Ugrinovskii, and M. R. James, “Robust stability of
uncertain quantum systems,” inProceedings of the 2012 American
Control Conference, Montreal, Canada, June 2012.



[2] ——, “Robust stability of uncertain linear quantum systems,” Philo-
sophical Transactions of the Royal Society A, 2012, to appear, Ac-
cepted 3 April 2012.

[3] ——, “Robust stability of quantum systems with a nonlinear coupling
operator,” inProceedings of the 51st IEEE Conference on Decision
and Control, Maui, December 2012, to appear, accepted 18/7/2012.

[4] H. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 2002.

[5] M. Yanagisawa and H. Kimura, “Transfer function approach to quan-
tum control-part I: Dynamics of quantum feedback systems,”IEEE
Transactions on Automatic Control, vol. 48, no. 12, pp. 2107–2120,
2003.

[6] ——, “Transfer function approach to quantum control-part II: Control
concepts and applications,”IEEE Transactions on Automatic Control,
vol. 48, no. 12, pp. 2121–2132, 2003.

[7] N. Yamamoto, “Robust observer for uncertain linear quantum sys-
tems,” Phys. Rev. A, vol. 74, pp. 032 107–1 – 032 107–10, 2006.

[8] M. R. James, H. I. Nurdin, and I. R. Petersen, “H
∞ control of

linear quantum stochastic systems,”IEEE Transactions on Automatic
Control, vol. 53, no. 8, pp. 1787–1803, 2008.

[9] H. I. Nurdin, M. R. James, and I. R. Petersen, “Coherent quantum
LQG control,” Automatica, vol. 45, no. 8, pp. 1837–1846, 2009.

[10] J. Gough, R. Gohm, and M. Yanagisawa, “Linear quantum feedback
networks,”Physical Review A, vol. 78, p. 062104, 2008.

[11] A. I. Maalouf and I. R. Petersen, “Bounded real properties for a class
of linear complex quantum systems,”IEEE Transactions on Automatic
Control, vol. 56, no. 4, pp. 786 – 801, 2011.

[12] ——, “CoherentH∞ control for a class of linear complex quantum
systems,”IEEE Transactions on Automatic Control, vol. 56, no. 2, pp.
309–319, 2011.

[13] N. Yamamoto, H. I. Nurdin, M. R. James, and I. R. Petersen, “Avoiding
entanglement sudden-death via feedback control in a quantum net-
work,” Physical Review A, vol. 78, no. 4, p. 042339, 2008.

[14] J. Gough and M. R. James, “The series product and its application to
quantum feedforward and feedback networks,”IEEE Transactions on
Automatic Control, vol. 54, no. 11, pp. 2530–2544, 2009.

[15] J. E. Gough, M. R. James, and H. I. Nurdin, “Squeezing components
in linear quantum feedback networks,”Physical Review A, vol. 81, p.
023804, 2010.

[16] H. M. Wiseman and G. J. Milburn,Quantum Measurement and
Control. Cambridge University Press, 2010.

[17] I. R. Petersen, “Quantum linear systems theory,” inProceedings of the
19th International Symposium on Mathematical Theory of Networks
and Systems, Budapest, Hungary, July 2010.

[18] M. James and J. Gough, “Quantum dissipative systems andfeedback
control design by interconnection,”IEEE Transactions on Automatic
Control, vol. 55, no. 8, pp. 1806 –1821, August 2010.

[19] C. Gardiner and P. Zoller,Quantum Noise. Berlin: Springer, 2000.


	I Introduction
	II Quantum Systems
	II-A Commutator Decomposition

	III Quadratic Perturbations of the Hamiltonian
	IV The Linear Case
	V Illustrative Example
	VI Conclusions
	References

