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Lean and Steering Motorcycle Dynamics Reconstruction : An Unknown
Input HOSMO Approach

L. Nehaoua1, D. Ichalal1, H. Arioui1, S. Mammar1 and L. Fridman2

Abstract— This paper deals with state estimation of Powered
Two Wheeled (PTW) vehicle and robust reconstruction of
related unknown inputs. For this purpose, we consider a
unknown input high order sliding mode observer (UIHOSMO).
First, a motorcycle dynamic model is derived using JourdainŠs
principle. In a second time, we consider both the observation
of the PTW dynamic states, the reconstruction of the lean
dynamics (roll angle φ(t)) and the rider’s torque applied on
the handlebar. Finlay, several simulation cases are provided to
illustrate the efficiency of the proposed observer.

I. INTRODUCTION

In recent years, the use of powered two wheeled (PTW)
vehicles is constantly growing, upsetting driving practices
and road traffic. Unfortunately, this expansion is also in-
flected by an important increase of motorcycle’s fatalities.
Recent statistics confirm this fact and consider riders as the
most vulnerable road users. Several programs are launched to
answer this issue and to find solutions for enhancing safety,
[3].

The success, of proposed safety systems, depends primar-
ily on the knowledge of: 1) the dynamics of motorcycle and
2) the evolution of its states strongly involved by the rider’s
action and / or the infrastructure geometry. Regarding the first
issue, several studies were carried out in order to understand
the motorcycle dynamics [16], [17], the stability analysis
(eigenmodes) of PTW, optimal and safe trajectories [2] and
the proposal of risk functions [5] to detect borderline cases
of loss-of-control. These research are very few sustainable
if they are not propped by a system estimating the dynamic
states of the PTW.

The direct measurement, by sensors, of all the PTW states
is not conceivable for two reasons: 1) instrumentation can be
very expensive leading inevitably to expensive new PTW, and
2) according to used technologies, the measurement noise
can seriously compromise the future safety systems. Thus,
we propose to use observation techniques to overcome previ-
ous shortcomings. Within this context, including all method-
ologies (Luenberger, Takagi-Seguno, Extended Kalman Filter
and Sliding Mode observers), very few studies exist [1],
[4]. The present work proposes a robust (UIHOSMO) [12],
helping in states observation of motorcycle model and the
reconstruction of rider’s action.
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Sliding mode based observer (SMO) for system states
estimation in the presence and/or absence of unknown inputs
has been the subject of several work from the control
community. Today, one can notice that observation theory
has matured and has succeed to deal with many tech-
nical issues where some restrictive conditions related to
the observability and the reconstruction of unknown inputs
were released even suppressed. In its simplest version, a
SMO uses the same structure as a traditional Luenberger
observer with an injection term related to the system’s output.
However, it is necessary that the system’s unknown inputs
and outputs satisfy the so-called matching condition [6]. To
overcome this limitation, system coordinates transformation
are introduced and the use of sliding mode differentiator
(SMD) for the auxiliary output generation is generalized [7],
[8]. This allows to use a powerful optimization technique,
like linear matrix inequality (LMI), to offer a systematic
design procedure of the observer gain [9]. Nevertheless, the
chattering of these observers requires filtering [10].

To avoid filtering, the discontinuous output injection is
replaced by a continuous super-twisting algorithm (STA)
[11]. In this new version, the relative degree of the system’s
outputs with respect to the unknown inputs must be equal
to the system order. This restriction is resolved by the intro-
duction of the high-order sliding mode observers (HOSMO)
[12] based on the high-order robust exact sliding mode
differentiator [13] where the notion of strong observability
and strong detectability were presented [12]. It remains at
least that the outputs relative degree must exist which brings
a novel restriction treated by the development of the concept
of weakly observable subspaces detailed in [14].

This paper is organized as follows: a succinct problem
statement is provided in section II. Sections III and IV
are dedicated respectively to motorcycle modelling and the
synthesis of the UIHOSMO. Simulation results are given is
section V. The conclusion in section VI wrap up the paper.

II. PROBLEM STATEMENT

Our study concerns the identification of all relevant inputs
and dynamic states helping in a next stage to quantify
the risk of loss-of-control when cornering. Indeed, poor
cornering is responsible for most PTW accidents (single-
vehicle motorcycle crashes).

To perform a safe cornering, riders should consider : 1)
the appropriate speed when starting the corner, 2) the road
condition (under weak friction) and 3) weather conditions do
not allow optimal visibility for driving.



Early warning systems are based generally on related work
carried out for standard cars [21]. The goal is the synthesisof
a function giving the maximum safe speed at which a vehicle
can be kept on the road while moving at a constant speed on
a circular section. This speed depends, among other factor,
on the lateral friction which its computing involves all the
dynamic states of the bike and a good modelling of the tire-
road contact. This makes the success of such warning system
strongly dependent on the availability of dynamic states of
the motorcycle. This challenge constitutes the contribution
of our ongoing work.

III. MOTORCYCLE DYNAMICS

A. Modeling Assumptions

The study of the dynamics of motorcycle vehicles high-
lights two main modes of motion: in-plane mode represent-
ing the motorcycle movements in its plane of symmetry
including the longitudinal motion and that of suspensions and
the out-of-plane mode which describes the lateral dynamics
when cornering [15], [16]. The last mode involves the roll
inclination, the yaw rotation, the steering and the lateral
motions of the bike. We consider here only the out-of-
mode dynamics of the two-wheeled vehicle. The coupling
between the two modes is materialized, when neccesery, by
considering a variable longitudinal velocity that appearsin
the lateral dynamics.
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Fig. 1. Geometrical representation of the Sharp’s motorcyclemodel

In this study, the motorcycle is represented as two linked
bodies: the rear oneGr which includes the chassis, engine
and the rear wheel and the front bodyGf which represents
the steering assembly and the front wheel. In that case, we
recover the well known two bodies Sharp’s model which
allows to simulate 4 degrees of freedom (DOF): the lateral
displacementvy, the yaw rotationψ, the roll inclination
ϕ and the handlebar steer angleδ with respect to the
rider torque inputτr applied on the motorcycle’s handlebar
(Fig.1).

B. Motorcycle Motion Equations

Let ℜv be a reference frame attached to the motorcycle at
point v in which the motion of the overall mechanical system
will be expressed. With respect to the inertial reference frame
ℜo, ℜv is referred by the velocity vector componentsvx, vy

of point v, and the yaw rotationψ around theℜo z-axis
(Fig.2).
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Fig. 2. Configuration of system axisℜv w.r.t the inertial frameℜo

In ℜv, the linear velocity vector of the two bodies are
respectively defined by:

voGr
= vov + ωoGr

× rvGr
(1)

voGf
= vov + ωoGr

× rvB + ωoGf
× rBGf

whereωoGr
andωoGf

are the angular velocity vector of
each body, expressed inℜv by:

ωoGr
= ψ̇k + ϕ̇i (2)

ωoGf
= ωoGr

+ δ̇kδ

By differentiating (1) and (2), the linear and the angular
acceleration ofGr andGf can be written fori = r, f as
following:

aoGi
=
∂voGi

∂ϑ
ϑ̇+ aR,Gi

(3)

ǫoGi
=
∂ωoGi

∂ϑ
ϑ̇+ ǫR,Gi

whereϑ = [vy, ψ̇, ϕ̇, δ̇]
T denotes the vector of general-

ized velocities. From the Jourdain’s principle of dynamics
[18], the dynamic model of the motorcycle vehicle can be
expressed by:

Mϑ̇ = Q (4)

where the mass matrixM is symmetric and positive
definite and obtained directly from the Jacobian matrices by:

M =
∑

i=r,f

{

mi

∂vT
oGi

∂ϑ

∂voGi

∂ϑ
+
∂ωT

oGi

∂ϑ
Ii

∂ωoGi

∂ϑ

}

(5)

andQ is the vector of the generalized efforts, given by:

Q = Qδ +Qg +QT +
∑

i=r,f

∂vT
oGi

∂ϑ
mi (g − aR,Gi

)−

∑

i=r,f

∂ωT
oGi

∂ϑ
(IiǫR,Gi

+ ωoGi
× IiωoGi

) (6)

In (4) and (5),Ii is the inertia tensor matrix,Qδ includes
the effect of the rider’s torque and also the handlebar
damping,Qg represents the gyroscopic effect resulting from
the tires’ spin,QT includes the effect of the tire’s sideslip
force andg is the gravity force vector.



C. Tire/Road Interaction and Wheels Gyroscopic Effect

To describe the tire motion, a new reference frame
ℜT (c, iT , jT ,kT ) is introduced at the contact pointc of each
wheel’s tire.kT is the normal vector to the road surface along
theFz force.
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Fig. 3. Tire reference frame

The linear velocity vector at point locationci is expressed
in ℜv by:

vocr = vov + ωoGr
× rvcr (7)

vocf = vov + ωoGr
× rvcf + δ̇eδ × rcηcf

From (7), the tires sideslip angles are defined by:

αr = −atan

(

jv · vocr

iv · vocr

)

(8)

αf = −atan

(

jv · vocf

iv · vocf

)

+ δ cos ǫ

The equivalent tire effort at the center of each wheel is
governed by:

F T = FyjT + FzkT (9)

whereFy = Fy(α, γ) is obtained from the sideslip angle
α and the camber angleγ computed bysin γ = jζ · kT .
Consequently, the contributionQT of the tire/road contact
forces in the vector of the generalized effortsQ is given by:

QT =
∑

i=f,r

(

∂voci

∂ϑ

)T

F T,i (10)

To compute the contribution of the gyroscopic effectQg,
let first write the spin velocity vectorωs,i equation of each
tire in ℜv reference frame:

ωosr = ωoGr
+ ξ̇rjv (11)

ωosf = ωoGr
+ δ̇kδ + ξ̇fjξ

From (3), the contribution of the gyroscopic effect in the
vector of the generalized effortsQ is :

Qg = −
∑

i=r,f

iiy
∂ωT

si

∂ϑ
ǫR,si (12)

D. Linearized Model

The motorcycle dynamic model (4) is linearized around
the straight-running trim trajectory and can be expressed by
the following state-space:

ẋv = Avxv +Bvτr (13)

Here,xv = [vy, ψ̇, ϕ̇, δ̇, ϕ, δ, Fyr, Fyf ]
T denotes the state

vector.Av is a time-varying matrix related to the forward
velocity vx while Bv is a time-invariant vector.Fyr andFyf

represent respectively the tires sideslip forces introduced in
the state space representing the tire relaxation.

IV. STATES AND UNKNOWN INPUTSESTIMATION

In this section, we aim to estimate the motorcycle states
and reconstruct both roll angleϕ and rider’s torqueτr by
using a HOSMO [12].

At first, we recall some important definitions about observ-
ability and detectability of linear systems (for proofs see[12],
[19]). Consider the following SISO system, wherex ∈ R

n

andζ ∈ R is the unknown input:

ẋ = Ax+Bu+Dζ (14)

y = Cx

Definition 4.1: In the absence of unknown input (ζ = 0),
system (14) is observable if and only if the observability
matrix P such that:

P =









C

...

CAn−1









(15)

has the full rank. Otherwise, it is detectable if the system’s
invariant zeros are stable.

Definition 4.2: The relative degree of the outputy with
respect to the unknown inputζ is the numberr such that:

CAjD = 0 j = 1, · · · , r − 2

CAr−1D 6= 0

Definition 4.3: In the presence of an unknown input,
system (14) is strongly observable if and only if the relative
degreer satisfies:r = rank(P ). Otherwise, it is strongly
detectable if and only if the relative degreer exists and (14)
is minimum phase system. In that case,r ≤ rank(P ).

As previous, consider the MIMO system of the form (14),
wherex ∈ R

n, y ∈ R
m is the output vector andζ ∈ R

m is
the unknown input vector.

Definition 4.4: In the absence of unknown inputs (ζ = 0),
system (14) is observable if and only if the observability



matrix P such that:

P =

































C1

...

C1A
n−1

...

Cm

...

CmAn−1

































(16)

has the full rank, whereCi, i = 1, · · · ,m is the i-th row
of the matrixC.

Definition 4.5: The relative degree of the outputy with
respect to the unknown inputζ is the vectorr = [r1, · · · , rm]
such that:

CiA
sDj = 0 i, j = 1, · · · ,m, s = 1, · · · , ri − 2

CiA
ri−1Dj 6= 0

and:

det









C1A
r1−1D1 · · · C1A

r1−1Dm

...
...

...

CmArm−1D1 · · · CmArm−1Dm









6= 0

Definition 4.6: In the presence of an unknown input,
system (14) is strongly observable if and only if the total
relative degreerT = r1 + · · ·+ rm satisfies:rT = rank(P ).
Otherwise, it is strongly detectable if and only if the relative
degree vectorr = [r1, · · · , rm] exists, and (14) is minimum
phase.

From definition (4.1), the motorcycle dynamics (13) is
neither observable nor detectable. Indeed, for allvx in the
allowable velocities range, the observability index is equal to
6 which is less than the system order (n = 8), in addition, the
motorcycle dynamics has one unstable invariant zero which
makes the motorcycle dynamics to be a non-minimum phase.

A. Estimation of the Roll Angle and Rider’s Torque

In order to make the system observable, the motorcycle
model (13) is rewritten such that the roll angleϕ and the
steering torqueτr are considered as unknown inputs. In
fact, the unstable invariant zero is a direct consequence of
the counter-steering phenomena generated by the motorcycle
roll. In this case, the new system equation is written as:

ẋp = Apxp +Dppζ (17)

ypp =

[

δ

ψ̇

]

= Cppxp

Dpp =
[

Dp Bp

]

ζT =
[

ϕ τr
]

where xp = [vy, ψ̇, ϕ̇, δ̇, δ, Fyr, Fyf ]
T denotes the state

vector and matricesAp, Bp andDp are given by:

Bp =



























0.016

−0.006

−0.019

0.008

0

0

0



























Dp =



























−26.176

0.826

42.796

261.877

0

5437.244vx

3849.877vx



























From definition (4.5), the outputypp in (17) has a relative
degree vectorr = [2, 1] with respect to the unknown input
vectorζ. In addition, system (17) has 3 stable invariant zeros
for all vx in the allowable velocities range. It results from
(4.6), that (17) is also strongly detectable. This definition
implies that only rT = r1 + r2 system’s states can be
estimated exactly while the observation of the remaining
states are asymptotically exact.

As before, to estimate the system’s statexp and the
unknown input vectorζ, it is necessary to separate the clean
states from those contaminated by the unknown inputs. To
achieve this, system (17) is transformed to a new coordinates
systemξp = Txp such that the closed-loop system dynamics
(Ap −CppLpp,Dpp,Cpp) is expressed by:

ξ̇11 = ξ12 (18)

ξ̇12 = a11,11ξ11 + a11,12ξ12 + a11,13ξ13 + a12,11ξ21+

· · ·+ a12,14ξ24 + d11ϕ+ d12τr

ξ̇13 = a11,21ξ11 + a11,22ξ12 + a11,23ξ13 + a12,21ξ21+

· · ·+ a12,24ξ24 + d21ϕ+ d22τr

ξ̇2 = A21ξ1 +A22ξ2

yT
pp,new =

[

ξ11 ξ13
]

where ξTp = [ξT1 , ξ
T
2 ] ∈ R

n and ξT1 = [ξ11, ξ12, ξ12] ∈

R
rT and ξT2 = [ξ21, · · · , ξ24] ∈ R

n−rT . Next, the state
observer is designed as:

ż = Apz +Lpp(ypp −Cppz) (19)

ϑ̇2 = A21ϑ1 +A22ϑ2

x̂p = z + T−1ϑ

in which x̂p is the vector of estimated states,z ∈ R
n

andϑ ∈ R
n is given by (recall thatn = 7, r = [2, 1] and

rT = 3):

ϑ =

[

ϑ1

ϑ2

]

l R
rT

l R
n−rT

=











v1,1

v1,2

v2,1

ϑ2











(20)

Once again,vi ∈ R
rM+k+1 is the nonlinear part of the

observer wherei = 1, · · · ,m and rM = max(ri). Each
unknown inputζi is bounded with|ζi| ≤ ζi,max and the
(rM −ri+k) successive derivatives ofζi are bounded by the
same constantζ ′i,max, consequently the auxiliary variablevi



Ap =

























0 −0.899vx − 0.015vx 0.033vx −0.057 −1.862 0.018 0.009

0 0.028vx 0.033vx 0.016vx + 0.374 −2.443 −0.018 0.024

0 −0.163vx −0.009vx 0.109− 0.059vx 2.949 −0.021 −0.012

0 −2.373vx 4.516vx −0.025vx − 15.611 127.454 0.035 −0.309

0 0 0 1 0 0 0

−64934.37 31155.51 0 0 0 −4.102vx 0

−45832.65 −42841.04 0 5307.421 42580.46vx 0 −4.101vx

























is a solution of the discontinuous vector differential equation
by consideringk = 1 as:

v̇i,1 = −3λ
1

4 |vi,1 − yp +Cpz|
3

4 sign(vi,1 − yp +Cpz) + vi,2

v̇i,2 = −2λ
1

3 |vi,2 − v̇i,1|
2

3 sign(vi,3 − v̇i,1) + vi,3 (21)

v̇i,3 = −1.5λ
1

2 |vi,3 − v̇2|
1

2 sign(vi,3 − v̇i,2) + vi,4

v̇i,4 = −1.1λsign(vi,4 − v̇i,3)

Finally, the reconstruction of the unknown input vector is
possible by using:

[

ϕ̂

τ̂r

]

= D̄
−1

([

v1,3

v2,2

]

−

[

a11,11 · · · a12,14

a11,21 · · · a12,24

]

ϑ

)

D̄ =

[

d11 d12

d21 d22

]

(22)

Remark 4.1:In the strong observability case, all system’s
states are exactly estimated and the coordinates transforma-
tion matrix ξ = Tx is none than the observability matrix
P . However, in the strong detectability case, onlyr system’s
states are exactly estimated wherer is the relative degree.
Consequently, it is simple to show that ther first lines of the
coordinates transformation matrixT are the same of those of
the observability matrixP . The expression of the remaining
n− r lines are explicitly described and proven in [20].

V. SIMULATION RESULTS

In this section, the unknown input high order sliding
mode observer is constructed for the presented motorcycle
model. Some simulations and discussions are provided to
illustrate the effectiveness and the ability of the UIHOSMO
in estimating simultaneously the dynamic states and both roll
angle and the applied torque by the rider on the handlebar.
The observer is designed in such a way to estimate all the
dynamic states and unknown inputs from only the knowledge
of steering angleδ(t) and the yaw ratėψ(t). The parameters
λi, i = 1, 2 of the differentiator (21) are chosen as follows
λ1 = λ2 = 10000. The Luenberger gainLpp of (25) is
computed by pole placement at:−15, −30, −45, −60, −150,

−165, −180, and the obtained matrix is:

Lpp =



























−254.15 −155, 92

99, 80 297, 89

1097, 82 1537, 85

5932, 04 7017, 05

208, 44 51, 40

2, 58× 105 9, 16× 104

1, 35× 106 6, 69× 105



























The change of coordinates matrixT is given in equation (23).
With these parameters and matrices, the UIHOSMO is im-
plemented with initial conditionŝx(0) = [0.1745 0.1745 −
0.2618 − 0.0873 50 50 0] and φ̂(0) = 0. These
initial conditions correspond to a early cornering case with
longitudinal speed atvx(t) = 15m/s.

0 2 4 6 8 10 12 14 16 18 20
−0.06

−0.04

−0.02

0

0.02
v

y
 (m/s)

0 2 4 6 8 10 12 14 16 18 20
−8
−6
−4
−2

0
2

dot ψ (deg/s)

t(s)

Fig. 4. Actual state (solid blue line) and estimated state (dashed red line)
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Fig. 5. Actual state (solid blue line) and estimated states (dashed red line)

A. Initial Conditions

A first simulation is performed with the same initial
conditionsx̂(0) = x(0). For different initial conditions, let



T =

























0 0 0 0 1 0 0

0 −51, 4 0 1 −208, 44 0 0

0 1 0 0 0 0 0

0 6, 28 −1 0, 14 −4, 08 0 0

−1 −3, 82 0 −0.08 4, 3 0 0

0 −1.14× 104 0 −275, 19 1.3× 103 1 0

0 −8, 13× 103 0 −194, 85 −4, 3× 103 0 1

























(23)
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Fig. 6. Actual state (solid blue line) and estimated states (dashed red line)
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Fig. 7. Actual state (solid blue line) and estimated states (dashed red line)

us consider the initial conditions of the system asx(0) =
[0 0 0 0 0 0 0.1] and φ(0) = 0. The simulation
results concerning the dynamics states and their estimations
are depicted in figures 5 (top), 6 and 4. The lateral forces on
each wheel (rear and front) are illustrated in figure 7. Finally,
the unknown inputs (roll angleφ(t) and rider torqueτ(t) are
shown in figures 5 (bottom) and 8. One can conclude that the
UIHOSMO provides satisfactory results. In this work, only
state and unknown input estimation is considered, but it is
possible to deal with the problem of oscillations by parameter
adjustment of the observer (λ).

B. Simulation With Uncertain Parameters

In order to illustrate the performances of the proposed
observer in the presence of modeling uncertainties, the
observer is designed by using the motorcycle nominal model
and applied to the system with20% parameters variation
with respect to nominal values. As shown in figures 9, 10
and 11 the observer provides accurate estimations for almost
the state variables. The effect of the uncertainties can be seen
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Fig. 8. Actual states (solid blue line) and estimated states (dashed red line)

only in the estimation of the lateral forces and rider torque.
Nevertheless, the obtained estimations are acceptable. As
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Fig. 9. Actual states (solid blue line) and estimated states (dashed red line)
in the presence of20% variations in the parameters

explained previously, the longitudinal velocityvx is consid-
ered constant, but in practice, it is not. The proposed observer
is subjected to a time-varyingvx ∈ [13.8, 15.3](m/s) figure
12. The estimated states in this case are illustrated in the
figure 13. Notice that the observer provides an acceptable
state estimation for almost all states, only the estimations of
φ̇(t) andτ(t) are faintly affected, in particular, in the range
time [3, 5.5](s) wherevx(t) = 13.8m/s which is far from
the nominal value of15m/s.

To end the simulation part, let us consider the abilities of
the proposed observer in noisy measurement case. A centered
random noise in the range[−0.0001, 0.0001] is added to
the measurementsδ(t) and ψ̇(t). The obtained results are
depicted in the figure 14. The states are correctly estimated
expect the steering angle ratėδ(t). This problem can be
solved by reducing the value of the parametersλi, i = 1, 2,
for example, with the valuesλ1 = λ2 = 10, the obtained
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Fig. 10. Actual states (solid blue line) and estimated states(dashed red
line) in the presence of20% variations in the parameters
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Fig. 11. Actual states (solid blue line) and estimated states(dashed red
line) in the presence of20% variations in the parameters

results in figure 15 are less affected by the measurement
noises and more accurate estimations are obtained.

VI. CONCLUSION

In this article, the problem of observer design for simul-
taneously estimating the dynamics states of a motorcycle,
an unknown inputs (rider’s action) and the lateral forces on
each wheel (front and rear) is considered. For that purpose,
an Unknown Inputs High Order Sliding Mode observer is
proposed. A motorcycle model similar to the well-known
Sharp model is derived using JourdainŠs principle. The
observability of the initial model is not guaranteed, then a
transformation of this last into a model with two inputs by
considering the unobservable stateφ(t) as an unknown input
as well as the rider torque applied on the handlebar. The
obtained model is then exploited to construct the Unknown
Inputs High Order sliding mode observer. Some simulation
results are provided in order to illustrate the efficiency ofthe
High Order Sliding Mode Observer.
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Fig. 12. Longitudinal velocity with respect to time
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Fig. 13. Actual states (blue line) and estimated states (red line) in time
varying longitudinal velocity situation
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Fig. 14. Actual states (blue line) and estimated states (red line) in noised
measurement situation
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Fig. 15. State estimation with noised measurements (λ1 = λ2 = 10)



VII. APPENDIX

motorcycle
vx, vy : longitudinal and lateral velocity
ϕ, ψ, δ: roll, yaw and steer rotations
τr : rider torque
Fyf , Fyr : lateral force
Av state matrixAv = M

−1
E

Bv input matrixBv = M
−1[0, 0, 0, 1, 0, 0, 0]T

M : motorcycle mass matrix
E: motorcycle generalized effort vector
notations
ẋ, ẍ: derivatives of a variablex w.r.t time
x̂: estimate of a variablex
xT : transpose of vector or matrixx
xf , xr denotes front and rear
motorcycle [15]
mf , mr front and rear mass30.65, 217.45 [kg]
Zf front tire normal force−1005.3 [N]
Ifx, Ifz front body inertia1.23, 0.44 [kg.m2]
Irx, Irz , Crxz rear body inertia31.18, 21.07, 1.73 [kg.m2]
ify , iry wheels spin inertia0.718, 1.051 [kg.m2]
Rf , Rr wheels radius0.304, Rr = 0.304 [m]
σf , σr tire’s relaxation [m]
a, b, h, e, f 0.948, 0.479, 0.615, 0.024, 0.028 [m]
η pneumatic trail0.116 [m]
ǫ castor angle0.4715 [rad]
Cδ handlebar damping [N.m−1.s]
g gravity force 9.81 [N]
l vehicle wheelbase [m]

M =





























a11 a12 a13 a14 0 0 0 0

a22 a23 a24 0 0 0 0

a33 a34 0 0 0 0

a44 0 0 0 0

⋆ −1 0 0 0

−1 0 0

0 σr 0

σf





























E =





























0 b12 0 0 0 0 −1 −1

0 b22 b23 b24 0 0 −b −l

0 b32 0 b34 b35 b36 0 0

0 b42 b43 Cδ b45 b46 0 η

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0





























parametersaij
a11 = mf +mr a12 = mfk a13 = mrh+mf j
a14 = mf e a22 = mfk

2 + Irz + Ifz cos
2 ǫ+ Ifx sin2 ǫ

a23 = mfkj − Crxz + (Ifz − Ifx) cos ǫ sin ǫ
a24 = mf ek + Ifz cos ǫ
a33 = mrh2 +mf j

2 + Irx + Ifx cos2 ǫ+ Ifz sin
2 ǫ

a34 = mf ej + Ifz sin ǫ a44 = mf e
2 + Ifz

parametersbij
b12 = (mf +mr)vx b22 = mfkvx
b23 = −(ify/Rf + iRy/Rr)vx b24 = −ify/Rf sin ǫvx
b32 = (mf j +mrh+ ify/Rf + iRy/Rr)vx
b34 = ify/Rf cos ǫvx
b35 = −(mf j +mrh)g b36 = Zfη −mf eg
b42 = (mf e+ ify/Rf sin ǫ)vx b43 = −ify/Rf cos ǫvx
b45 = Zfη −mf eg b46 = (Zfη −mf eg) sin ǫ
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