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Lean and Steering Motorcycle Dynamics Reconstruction : An Unkown
Input HOSMO Approach

L. Nehaoud, D. Ichalal, H. Arioui!, S. Mammat and L. Fridma#

Abstract— This paper deals with state estimation of Powered Sliding mode based observer (SMO) for system states
Two Wheeled (PTW) vehicle and robust reconstruction of estimation in the presence and/or absence of unknown inputs
related unknown inputs. For this purpose, we consider a pag peen the subject of several work from the control
unknown input high order sliding mode observer (UIHOSMO). itv. Tod tice that ob fi th
First, a motorcycle dynamic model is derived using JourdainSs community. today, one can notice that o sgrva ion theory
principle. In a second time, we consider both the observation has matured and has succeed to deal with many tech-
of the PTW dynamic states, the reconstruction of the lean nical issues where some restrictive conditions related to
dynamics (roll angle ¢(t)) and the rider's torque applied on  the observability and the reconstruction of unknown inputs
_the handlebar. l_:lr_ﬂay, several simulation cases are provided to were released even suppressed. In its simplest version, a
illustrate the efficiency of the proposed observer. "

SMO uses the same structure as a traditional Luenberger

. INTRODUCTION observer with an injection term related to the system’s autp

In recent years, the use of powered two wheeled (PTWJowever, it is necessary that the system’s unkljgwn inputs
vehicles is constantly growing, upsetting driving praetic and outputs satisfy the so-called matching condition [6]. T
and road traffic. Unfortunately, this expansion is also in@vercome this limitation, system coordinates transforonat
flected by an important increase of motorcycle’s fatalities2r® introduced and the use of sliding mode differentiator
Recent statistics confirm this fact and consider riders as tSMD) for the auxiliary output generation is generalizef] [7
most vulnerable road users. Several programs are launched8l- This allows to use a powerful optimization technique,
answer this issue and to find solutions for enhancing safelyfe_“near matrix inequality (LMI), to offer a systematic
3]. e3|gn_procedure of the observer gain [_9]. Nevertheless, th

The success, of proposed safety systems, depends prmg}attenng of these observers requires filtering [10].
ily on the knowledge of: 1) the dynamics of motorcycle and To avoid filtering, the discontinuous output injection is
2) the evolution of its states strongly involved by the risler 'éplaced by a continuous super-twisting algorithm (STA)
action and / or the infrastructure geometry. Regarding tise fi [11]. In this new version, the relative degree of the system’
issue, several studies were carried out in order to unaetstautputs with respect to the unknown inputs must be equal
the motorcycle dynamics [16], [17], the stability analysidO the system order. This restriction is resolved by theointr
(eigenmodes) of PTW, optimal and safe trajectories [2] anduction of the high-order sliding mode observers (HOSMO)
the proposal of risk functions [5] to detect borderline sasel12] based on the high-order robust exact sliding mode
of loss-of-control. These research are very few sustamnalfifferentiator [13] where the notion of strong observapili
if they are not propped by a system estimating the dynam'ﬂmd strong detectability were presented [12]. It remains at
states of the PTW. least that the outputs relative degree must exist whichgbrin

The direct measurement, by sensors, of all the PTW statdg1ovel restriction treated by the development of the cancep
is not conceivable for two reasons: 1) instrumentation aan t9f weakly observable subspaces detailed in [14].
very expensive leading inevitably to expensive new PTW, and This paper is organized as follows: a succinct problem
2) according to used technologies, the measurement nogf@tement is provided in section Il. Sections Il and IV
can seriously compromise the future safety systems. Thuie dedicated respectively to motorcycle modelling and the
we propose to use observation techniques to overcome pre§¥nthesis of the UIHOSMO. Simulation results are given is
ous shortcomings. Within this context, including all matho section V. The conclusion in section VI wrap up the paper.
ologies (Luenberger, Takagi-Seguno, Extended Kalmaarfilt
and Sliding Mode observers), very few studies exist [1], . PROBLEM STATEMENT
[4]. The present work proposes a robust (UIHOSMO) [12],

helping in states observation of motorcycle model and the Our study concerns the identification of all relevant inputs
reconstruction of rider's action. and dynamic states helping in a next stage to quantify

the risk of loss-of-control when cornering. Indeed, poor

’;'T_'his KVO”LWSS not Sugﬁﬂrtﬁdhb)f any ﬁrga:i_zat_ion i s o cornering is responsible for most PTW accidents (single-
. . enaoua, all chalal, . rooul an . ammar .

are with the IBISC Laboratory (EA-4526) of Evry Val vehicle motorcycle crashes)j ) )
d’Essonne University. 40, Rue du Pelvoux, 91020 Evry, Feanc To perform a safe cornering, riders should consider : 1)
l'anri. nehaoua@bi sc. uni v-evry. fr the appropriate speed when starting the corner, 2) the road

2L. Fridman is a Head of Sliding Mode Laboratory, I - "
National Autonomous University of Mexico (UNAM), Mexico. condition (under weak friction) and 3) weather conditions d

| fridman@er vi dor. unam nx not allow optimal visibility for driving.



Early warning systems are based generally on related wodk point v, and the yaw rotation) around theX, z-axis
carried out for standard cars [21]. The goal is the synthafsis (Fig.2).
a function giving the maximum safe speed at which a vehicle
can be kept on the road while moving at a constant speed on
a circular section. This speed depends, among other factor,
on the lateral friction which its computing involves all the
dynamic states of the bike and a good modelling of the tire-
road contact. This makes the success of such warning system --*
strongly dependent on the availability of dynamic states of
the motorcycle. This challenge constitutes the contriwuti
of our ongoing work.

I1l. MOTORCYCLE DYNAMICS
A. Modeling Assumptions

The study of the dynamics of motorcycle vehicles high- In &, the linear velocity vector of the two bodies are
lights two main modes of motion: in-plane mode representespectively defined by:
ing the motorcycle movements in its plane of symmetry
including the longitudinal motion and that of suspensioms a
the out-of-plane mode which describes the lateral dynamics VoG = Vov T Wo@, X TvB + Woi; X TBG;
when cornering [15], [16]. The last mode involves the roll
inclination, the yaw rotation, the steering and the Iaterag
motions of the bike. We consider here only the out-of-
mode dynamics of the two-wheeled vehicle. The coupling o, =k + i )
between the two modes is materialized, when neccesery, by
considering a variable longitudinal velocity that appeiars

Fig. 2. Configuration of system axi8, w.r.t the inertial frameR,

VoG, = Vov + WoG, X TG, (1)

wherew,¢, andw,q, are the angular velocity vector of
ach body, expressed i, by:

WoG; = Woi, + 0k

the lateral dynamics. By differentiating (1) and (2), the linear and the angular
acceleration ofG, and Gy can be written fori = r, f as
following:
0voq, -
aoq, = 819G1 9+ aRr.G; (3)
Ow,a, -
eOGi = aﬂGl ,'-9 + GR,Gi

where® = [v,,%, %, 9] denotes the vector of general-
ized velocities. From the Jourdain’s principle of dynamics
[18], the dynamic model of the motorcycle vehicle can be
) ; expressed by:
Fyy Uy Fyr MY =Q 4)

Fig. 1. Geometrical representation of the Sharp’s motorcyuelel where the mass matriM is symmetric and positive
definite and obtained directly from the Jacobian matrices by
In this study, the motorcycle is represented as two linked
bodies: the rear on&', which includes the chassis, engine pz — m;
and the rear wheel and the front bodyy which represents it
the steering assembly and the front wheel. In that case, we ) , .
recover the well known two bodies Sharp’s model which and@ is the vector of the generalized efforts, given by:
allows to simulate 4 degrees of freedomdB): the lateral ovT

Mig, Mog, | Iwog, ;. Oweg,
29 a9 "o Lo [ ©

oG
displacementv,, the yaw rotationy, the roll inclination Q=Q;+Q,+Qr+ Y 59 M (g —argq,)—
¢ and the handlebar steer angbe with respect to the i=r,f
rider torque inputr,. applied on the motorcycle’'s handlebar awai
(Flgl) = 90 (Ii€R7G’i + woa,; X IinGL') (6)
B. Motorcycle Motion Equations In (4) and (5),I; is the inertia tensor matrixQ; includes

Let R, be a reference frame attached to the motorcycle #he effect of the rider's torque and also the handlebar
pointv in which the motion of the overall mechanical systendamping,Q,, represents the gyroscopic effect resulting from
will be expressed. With respect to the inertial referenaene  the tires’ spin,Q, includes the effect of the tire’s sideslip
R,, R, is referred by the velocity vector components v,  force andg is the gravity force vector.



C. Tire/Road Interaction and Wheels Gyroscopic Effect

D. Linearized Model

To describe the tire motion, a new reference frame

Rr(c, i1, jp, kr) is introduced at the contact poinbf each

wheel’s tire.k 7 is the normal vector to the road surface alon

the F, force.

Fig. 3. Tire reference frame

The linear velocity vector at point locatian is expressed
in ®, by:
Voe, = Vouv + WoG, X Tyc, (7)

’UOCf = Vgy T+ Wog, X rvcf + 665 X rcncjc

From (7), the tires sideslip angles are defined by:
ap = —atan(W)
(2 'Uocr

v " Voc;
ap = —atan('j,vf) +dcose

Ty - vOCf

(8)

The equivalent tire effort at the center of each wheel is

governed by:

Fr=

ijT"i'sz:T (9)

where F,, = F,(«,7) is obtained from the sideslip angle

a and the camber anglge computed bysiny = j. - kr.
Consequently, the contributio@, of the tire/road contact
forces in the vector of the generalized effo@sis given by:

B 0V, r
Qr = Z ( 99 ) Fr,
i=f,r
To compute the contribution of the gyroscopic effézj,
let first write the spin velocity vectap; ; equation of each
tire in &, reference frame:

(10)

Wos, = Woa@, + érjv (11)

Wos; = WoG,. + (Ski(; + gf.?f

The motorcycle dynamic model (4) is linearized around
he straight-running trim trajectory and can be expressed b
he following state-space:

djv - Avmv + BvTr (13)

Here,x, = [v,,1, ,0, 9,6, F,., F,;]" denotes the state
vector. A, is a time-varying matrix related to the forward
velocity v, while B, is a time-invariant vectott,,, and £, s
represent respectively the tires sideslip forces intredun
the state space representing the tire relaxation.

IV. STATES AND UNKNOWN INPUTSESTIMATION

In this section, we aim to estimate the motorcycle states
and reconstruct both roll angle and rider’s torquer, by
using a HOSMO [12].

At first, we recall some important definitions about observ-
ability and detectability of linear systems (for proofs §£2],
[19]). Consider the following SISO system, whetec R"
and( € R is the unknown input:

= Ax + Bu+ D(
y=Czx

(14)

Definition 4.1: In the absence of unknown inpuf € 0),
system (14) is observable if and only if the observability
matrix P such that:

C
P =

: (15)
CATL—l
has the full rank. Otherwise, it is detectable if the systeem’
invariant zeros are stable.
Definition 4.2: The relative degree of the outpytwith
respect to the unknown inpgtis the number- such that:

CA’'D =0
CA"™'D+#0
Definition 4.3: In the presence of an unknown input,
system (14) is strongly observable if and only if the relativ
degreer satisfies:r = rank(P). Otherwise, it is strongly
detectable if and only if the relative degreexists and (14)
is minimum phase system. In that cases rank P).

j=1,,r—2

From (3), the contribution of the gyroscopic effect in the As previous, consider the MIMO system of the form (14),

vector of the generalized effor@ is :

. OwT
Qg = - Z ZinéeR,si

i=r,f

12)

wherex € R", y € R™ is the output vector ang € R™ is

the unknown input vector.

Definition 4.4: In the absence of unknown inputs € 0),
system (14) is observable if and only if the observability



matrix P such that:

roC, [ 0.016 —26.176
—0.006 0.826
AWl —0.019 42.796
G B,=| 0008 | D,=| 261877
P = : (16) 0 0
C,, 0 5437.244v,
. 0| | 3849.877v, |
C,, A" ! From definition (4.5), the outpuj,,, in (17) has a relative
- degree vector = [2, 1] with respect to the unknown input
has the full rank, wher€;, i = 1,--- ,m is the i-th row vector¢. In addition, system (17) has 3 stable invariant zeros
of the matrixC. for all v, in the allowable velocities range. It results from
Definition 4.5: The relative degree of the outpytwith ~ (4.6), that (17) is also strongly detectable. This definitio
respect to the unknown inpgtis the vector = [ry,--- ,r,,,] Implies that onlyry = r, 4 r, system’s states can be
such that: estimated exactly while the observation of the remaining
states are asymptotically exact.
C;A°D; =0 4,j=1,---,m, s=1,---,r;—2 As before, to estimate the system’s statg and the
CiA™"'D. 40 unknown input vectoc, it is necessary to separate the clean
’ ! states from those contaminated by the unknown inputs. To
and: achieve this, system (17) is transformed to a new coordinate
) . system¢,, = T'z,, such that the closed-loop system dynamics
C,A""'Dy -+ CiA" Dy (A, — CppLyp, Dy, Cyy) is expressed by:
det : : : #0 €11 = o (18)
CnA™'D; --- C,A"™ 'D, &12 = a11,11&11 + a11,12812 + a11,13813 + a12,11821+

Definition 4.6: In the presence of an unknown input,

' ! ) d dyaTs
system (14) is strongly observable if and only if the total T a1z182e + dup + diom

relative degree'r =y + - - - + 1y, satisfiesry = rank P). §13 = a11,21§11 + @11,22§12 + @11,23§13 + @12,21§21+
Otherwise, it is strongly detectable if and only if the reat s 4 a12,24804 4 do1 + doa Ty
degree vector = [rq,- - ,r;,] exists, and (14) is minimum 52 = Ap€, + At
phase. T -~
From definition (4.1), the motorcycle dynamics (13) is = Jrpinew = [&u & ]
neither observable nor detectable. Indeed, forvallin the Wheregg — 67.¢7) € R™ and €7 = [€11, 610, 610] €

allowable velocities range, the observability index isada
6 which is less than the system order=€ 8), in addition, the
motorcycle dynamics has one unstable invariant zero whi
makes the motorcycle dynamics to be a non-minimum phase. 2=Apz+ Lpp(ypp — Cpp2) (19)

192 = A1V + A,
&, =2z+T "9

R'" and €5 = [£21,---,&u] € R*™ T, Next, the state
C%bserver is designed as:

A. Estimation of the Roll Angle and Rider’'s Torque

In order to make the system observable, the motorcycle
model (13) is rewritten such that the roll angleand the  in which z,, is the vector of estimated states,c R"
steering torquer, are considered as unknown inputs. Inandd € R" is given by (recall thats = 7, r = [2,1] and
fact, the unstable invariant zero is a direct consequence of = 3):
the counter-steering phenomena generated by the motercycl

roll. In this case, the new system equation is written as: Y1
9 — gl IR | vi2 (20)
&, = Apzy + DypC (17) 9, | R U2,1
1) Va
Ypp = 7/) =Cppxp
Once againw; € R™*+k+1 is the nonlinear part of the

D,,=[D, B,] ¢"=[¢ 7] observer wheré = 1,---,m and ry; = max(r;). Each
unknown input¢; is bounded with|(;| < (; max and the
where z, = [vy,z/},gb,&d, F,., F, )T denotes the state (ry;—r;+k) successive derivatives ¢f are bounded by the
vector and matricesi,,, B, and D,, are given by: same constang; .., consequently the auxiliary variabie



[ 0 —0.899v, — 0.015v,  0.033v, —0.057 —1.862 0.018 0.009 7
0 0.028v, 0.033v, 0.016v, + 0.374 —2.443 —0.018 0.024
0 —0.163v, —0.009v, 0.109 — 0.059v, 2.949 —0.021 —0.012
A, = 0 —2.373v, 4.516v,  —0.025v, — 15.611 127.454 0.035 —0.309
0 0 0 1 0 0 0
—64934.37 31155.51 0 0 0 —4.102v, 0
| —45832.65 —42841.04 0 5307.421 42580.46v, 0 —4.101v, |

is a solution of the discontinuous vector differential éipra —165, —180, and the obtained matrix is:

by consideringk = 1 as: _954.15 ~155,92
99, 80 297, 89
i1 = —3AT |vi1 — yp + sz\% SigN(vi,1 — Yp + Cpz) + vi2 1097, 82 1537, 85
Gio = —2X\F [vio — 011 SIQN(vi3 — B11) + vis (1) L,=| 593204  7017,05
Gi3 = —1.5A% ;5 — o] % SIQN(vs3 — Di2) + vis 208, 44 51,40
Dia = —LINSIGN(v;4 — Bi.3) 2,58 x 10° 9,16 x 10*

1,35 x 10° 6,69 x 10°

Finally, the reconstruction of the unknown input vector isl "€ change of coordinates matflxis given in equation (23).
possible by using: With these parameters and matrices, the UIHOSMO is im-

plemented with initial condition$(0) = [0.1745 0.1745 —
0.2618 — 0.0873 50 50 0] and ¢(0) = 0. These

2 —p! R T e initial conditions correspond to a early cornering casehwit
7 V2,2 a11,21 - Q12,24 longitudinal speed at,.(t) = 15m/s.
— d d v_(m/s)
D= 11 12 22) ‘ ‘ ‘ N
do1  da2 (

Remark 4.1:In the strong observability case, all system’s  -oog=t—— >3 2
states are exactly estimated and the coordinates trareforr . dotu(degy)
tion matrix §¢ = T« is none than the observability matrix
P. However, in the strong detectability case, onlgystem'’s
states are exactly estimated wherés the relative degree. |
Consequently, it is simple to show that théirst lines of the & 2 4 6 8 10 12 14 16 18 20
coordinates transformation matriX are the same of those of ©
the observability matrix”. The expression of the remaining rig. 4. Actual state (solid blue line) and estimated statst{dd red line)
n — r lines are explicitly described and proven in [20].

V. SIMULATION RESULTS OW
-0.5 .

In this section, the unknown input high order sliding [ I R U T CRN R CR Y
mode observer is constructed for the presented motorcyc ¢(de9
model. Some simulations and discussions are provided
illustrate the effectiveness and the ability of the UIHOSMC
in estimating simultaneously the dynamic states and bdkh rc
angle and the applied torque by the rider on the handleb:
The observer is designed in such a way to estimate all the , _ _ _
dynamic states and unknown inputs from only the knowledgFég' 5. Actual state (solid blue line) and estimated statesk{dd red line)
of steering anglé(¢) and the yaw rate)(t). The parameters
M\, i = 1,2 of the differentiator (21) are chosen as followsA. Initial Conditions
A1 = A2 = 10000. The Luenberger gairL,, of (25) is A first simulation is performed with the same initial
computed by pole placement at15, —30, —45, —60, —150,  conditionsz(0) = «(0). For different initial conditions, let

Il bl I Il Il Il Il Il Il |
2 4 6 8 12 14 16 18 20

10
t(s)



0 0 0 0 1 0 07
0 —51,4 0 1 —208,44 0 0
0 1 0 0 0 00
T=1| 0 6,28 -1 0,14 —4,08 00 (23)
-1 —-3,82 0 —0.08 4,3 00
0 —-114x10* 0 -275,19 1.3x10® 1 0
0 —8,13x10®° 0 —194,85 —4,3x10®> 0 1 |
dot ¢ (deg/s) T, (N.m)
o VARRN
-10¢ . . . . . . . . . ]
0 2 4 6 8 10 12 14 16 18 20
dot 5 (deg/s)
1 -
o
= L ‘ ‘ L ‘ P L ‘ ‘ L ‘
0 2 4 6 8 12 14 16 18 20 0 2 4 6 8 12 14 16 18 20

10 10
t(s) (s)

Fig. 6. Actual state (solid blue line) and estimated statesHi{dd red line) Fig. 8. Actual states (solid blue line) and estimated statashed red line)

Fyr (N)

only in the estimation of the lateral forces and rider torque
Nevertheless, the obtained estimations are acceptable. As

vy (m/s)

‘ ]
8 10 12 14 16 18 20

dot Y (deg/s)
o 2 4 6 8 10 12 14 16 18 20 Zg* ‘ ‘ ‘ ‘ ‘ ‘ L]
t(s) 0 2 4 6 8 10 12 14 16 18 20
dot @ (deg/s)
Fig. 7. Actual state (solid blue line) and estimated stateshédd red line) i ‘ ‘ ‘ ‘
-10

o‘zAéé&gizﬂiel‘séo
us consider the initial conditions of the systemad9) = . _ _ _ _
[O 00 0 0 0 0_1] and gb(O) — 0. The simulation Flg. 9. Actual states (soll_d l_)lue I]ne) and estimated statasHed red line)
. . . . . in the presence 020% variations in the parameters

results concerning the dynamics states and their estinsatio
are depicted in figures 5 (top), 6 and 4. The lateral forces Qkplained previously, the longitudinal velocity, is consid-
each wheel (rear and front) are illustrated in figure 7. Bnal greq constant, but in practice, it is not. The proposed ebser
the unkpoyvn inputs (roll angle(t) and rider torque-(¢) are g subjected to a time-varying, € [13.8, 15.3](m/s) figure
shown in figures 5 (bottom) and 8. One can conclude that th® The estimated states in this case are illustrated in the
UIHOSMO provides satisfactory results. In this work, onlyfigyre 13. Notice that the observer provides an acceptable
state and unknown input estimation is considered, but it i§ate estimation for almost all states, only the estimatioh
p0§sible to deal with the problem of oscillations by paramet () and7(t) are faintly affected, in particular, in the range
adjustment of the observei) time [3,5.5)(s) wherewv,(t) = 13.8m/s which is far from
the nominal value ofl5m/s.

To end the simulation part, let us consider the abilities of

In order to illustrate the performances of the proposethe proposed observer in noisy measurement case. A centered
observer in the presence of modeling uncertainties, tlrandom noise in the rangg-0.0001,0.0001] is added to
observer is designed by using the motorcycle nominal modéie measurement§(¢) and v(¢). The obtained results are
and applied to the system witt0% parameters variation depicted in the figure 14. The states are correctly estimated
with respect to nominal values. As shown in figures 9, 1@xpect the steering angle raﬁét). This problem can be
and 11 the observer provides accurate estimations for alma®lved by reducing the value of the parameters = 1,2,
the state variables. The effect of the uncertainties careée s for example, with the valuea; = Ay = 10, the obtained

B. Simulation With Uncertain Parameters



dot 3 (deg/s)
;

longitudinal velocity v_ with respect to time (m/s)
T T T T T T T

15.5

AN

8 6(%?%9) 12

14 16 18 20

s 13.5 s s ‘ s s s ‘ ‘ ‘
20 2 4 6 8 10 12 14 16 18 20
) {(s)
Fig. 10. Actual states (solid blue line) and estimated stédashed red Fig. 12. Longitudinal velocity with respect to time
line) in the presence di0% variations in the parameters
v, (m/s) dot y (deg/s) dot ¢ (deg/s)
0.0, 10—
. Vet IS I Vaaee
0 10 20 0 10 20 0 10 20
dot & (deg/s) & (deg) Fyr (N)
1 0 10Qum
i —— .- @ﬂ/—r\_‘
i -0. 504
0 10 20 b 10 20_ég 10 20
Fyf (N) ¢ (deg) T, (N.m)
5|
5 -20! -1 - -5
0 10 20 0 10 20 0 10 20
k) 2 4 10 12 14 16 18 20
t(s)
Fig. 13. Actual states (blue line) and estimated states {reg In time

Fig. 11. Actual states (solid blue line) and estimated stédashed red varying longitudinal velocity situation

line) in the presence di0% variations in the parameters

vy (m/s)

dot  (deg/s) dot ¢ (deg/s)

results in figure 15 are less affected by the measureme
noises and more accurate estimations are obtained.

VI. CONCLUSION

Fig. 14. Actual states (blue line) and estimated states {rej in noised
measurement situation

In this article, the problem of observer design for simul-
taneously estimating the dynamics states of a motorcycle,
an unknown inputs (rider’s action) and the lateral forces on

each wheel (front and rear) is considered. For that purpos 00 vy (m/s) ot (degis) dot  (deg/s)
an Unknown Inputs High Order Sliding Mode observer is o g 3
proposed. A motorcycle model similar to the well-known — Z30d ™ E§
Sharp model is derived using JourdainSs principle. Th 0 oostleas 20 0 sda 2
observability of the initial model is not guaranteed, then . ol ‘ ‘ OW
transformation of this last into a model with two inputs by -1 9
considering the unobservable staig) as an unknown input O pffy % ;D Y.
as well as the rider torque applied on the handlebar. Tt _100 E 0
obtained model is then exploited to construct the Unknow 2008 -10% -5
0 10 20 0 10 20 0 10 20

Inputs High Order sliding mode observer. Some simulatio
results are provided in order to illustrate the efficiencyhaf
High Order Sliding Mode Observer.

Fig. 15. State estimation with noised measuremekis=£ Ao = 10)



VII. APPENDIX

motorcycle
Vg, Vy' longitudinal and lateral velocity
», Y, o: roll, yaw and steer rotations
Tyl rider torque
Fyp, Fyr: lateral force
A, state matrixA, = M1 E
B, input matrix B, = M ~1[0,0,0,1,0,0,0]T
M: motorcycle mass matrix
E: motorcycle generalized effort vector
notations
T, T derivatives of a variable: w.r.t time
T estimate of a variable
2T transpose of vector or matrix
Ty, Tr denotes front and rear
motorcycle [15]
mg, my front and rear mas80.65, 217.45 [kg]
Zy front tire normal force—1005.3 [N]
Ipp, If, front body inertial.23, 0.44 [kg.m?]
Irz, Iz, Crzz  rear body inertie1.18, 21.07, 1.73 [kg.m?]
ity iry wheels spin inerti@.718, 1.051 [kg.m?]
Ry, Ry wheels radiu®).304, R, = 0.304 [m]
of, O tire’s relaxation [m]
a, b, h,e f 0.948, 0.479, 0.615, 0.024, 0.028 [m]
n pneumatic trail0.116 [m]
€ castor anglé).4715 [rad]
Cs handlebar damping [N.m'.s]
g gravity force 9.81 [N]
l vehicle wheelbase [m]
[ a1 a2 a3 ais O 0 0 0 7
a2 a3 a2 O 0 0 0
azs asa O 0 0 0
M= asa 0 0 0 0
* -1 0 0 0
-1 0 0
0 o O
L oy J
r 0 bia 0 0 0 0 -1 -1 7
0 b2 b2z b2y O 0 -b -l
0 bs2 O b3s b3s bss O 0
B 0 ba2 baz Cs bas by O n
lo 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
L O 0 0 0 0 0 0 |
parametersu;;
ail =myg+my Q12 :mfk‘ (z13:m,«h+mfj

alq
a23
a24
as3

azq = mfej +Ifz sin €

myre age = mfk2 +Iry + 15, cos? e+ If, sin2 e
mykj — Croz + (I, — Ifz)cosesine

myek + Iy, cose

mph? 4+ myj? 4+ Ire + Ipgcos? e+ Iy, sin? e

aqq :mfe2 +Ifz

parameters; ;

b12
bas
b32
b3
bss
b2

bys = Zyn —myeg

(ms +mr)vg
7(ify/Rf +iRy/RT)Uac
(mfj—i-mrh—l-ify/Rf +iRy/R1~)vm
ipy /Ry cOS€vy

—(mysj +mrh)g
(mype+ipy/Rysine)vy

boo = mykvy
bag = —igy /Ry sinevy

bsg = an —myeg
byz = —igy /Ry cos evy
by = (Zyn — myeg)sine
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