
UC Irvine
UC Irvine Previously Published Works

Title
Optimal scheduling of chiller plant with thermal energy storage using mixed integer linear 
programming

Permalink
https://escholarship.org/uc/item/430167cn

ISBN
9781479901777

Authors
Deng, Kun
Sun, Yu
Chakraborty, Amit
et al.

Publication Date
2013-09-11

DOI
10.1109/acc.2013.6580284

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/430167cn
https://escholarship.org/uc/item/430167cn#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Optimal Scheduling of Chiller Plant with Thermal Energy Storage

using Mixed Integer Linear Programming

Kun Deng, Yu Sun, Amit Chakraborty, Yan Lu, Jack Brouwer, and Prashant G. Mehta

Abstract— In this paper, we consider the optimal scheduling
problem for a campus central plant equipped with a bank
of multiple electrical chillers and a Thermal Energy Storage
(TES). Typically, the chillers are operated in ON/OFF modes
to charge the TES and supply chilled water to the campus. A
bilinear model is established to describe the system dynamics.
A model predictive control (MPC) problem is formulated to
obtain optimal set-points to satisfy the campus cooling demands
and minimize daily electricity costs. At each time step, the MPC
problem is represented as a large-scale mixed integer nonlinear
programming (MINLP) problem. We propose a heuristic algo-
rithm to search for suboptimal solutions to the MINLP problem
based on mixed integer linear programming (MILP), where the
system dynamics is linearized along the simulated trajectories
of the system. Simulation results show good performance and
computational tractability of the proposed algorithm.

I. INTRODUCTION

For a campus with a large number of buildings, a central

chiller plant is commonly used to serve its cooling loads.

Depending on the size and number of buildings, the campus

cooling loads can be huge and vary in a large range. A bank

of multiple chillers is usually installed at the central plant to

meet various cooling demands with high operational flexi-

bility. These chillers can have different performance charac-

teristics and they are often operated in ON/OFF modes [1].

Plant operator needs to decide a scheduling strategy to mix

and match various chiller combinations to meet the campus

cooling demands, while considering the need to reduce the

energy consumptions and operating costs.

Thermal Energy Storage (TES) can be used to shape the

campus cooling loads. In the simplest case, a TES is a large

tank for the storage of chilled water. A typical campus central

plant with a chiller bank and a TES is depicted in Fig. 1. The

chiller bank can either supply chilled water directly to the

campus for cooling, or store some of chilled water in TES

for later use. TES is charged by chiller bank at night when

electricity rates and cooling demands are both low. During

daytime hours, TES discharges the stored chilled water for

campus cooling, thus reducing peak loads of chillers.

Well-designed control system can help realizing the full

potential of both energy and cost savings for campus central
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Fig. 1. A systematic diagram of a typical campus central plant. The chilled
water is supplied by a bank of nc chillers, and circulates through campus
and Thermal Energy Storage (TES). More details can be found in Section II.

plant. The goal of control here is to minimize energy con-

sumption or operation cost while satisfying campus cooling

demands and system operational constraints. The focus of

this paper is on the design of high-level supervisory control,

using model predictive control (MPC) scheme, to determine

the optimal set-points for scheduling the chiller bank with

TES. Several studies have identified promising saving po-

tentials through the MPC scheme for the central chiller

plant [2]–[7]. Most of these studies assumed that the mass

flow rates of the chilled water can be continuously adjusted

for chillers. However, in many practical retro-fit cases, chiller

operation decisions are ON/OFF scheduling sequences. For

such problems the optimization/control framework proposed

in above works would not directly apply. To generate optimal

ON/OFF sequences for chillers, a mixed integer nonlinear

programming (MINLP) problem needs to be solved at each

time step for the MPC scheme. This MINLP problem

involves considerable nonlinearity and a large number of

integer variables, therefore finding a global optimal solution

is nontrivial and computationally expensive.

In this paper, we propose a MILP-based heuristic al-

gorithm to search for the suboptimal solutions of MINLP

problem. The main idea is to formulate a MILP problem to

approximate the MINLP problem by linearizing the system

dynamics along the nominal trajectory of the system. Here

the nominal trajectory is obtained by simulating the system

with the optimal predicted control trajectory calculated from

the last time step MPC problem. The major advantage of the
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proposed algorithm is that the MILP problem can be solved

very efficiently with guaranteed performance. Moreover, the

model mismatch due to the linearization can be compensated

by the moving horizon scheme of MPC. We demonstrate

the proposed algorithm through a case study for the campus

central plant at University of California, Irvine.

II. SYSTEM MODELING

The schematic diagram of a campus central plant is

depicted in Fig. 1, with all pumps omitted. In this section,

we describe simplified system models for the real-time

optimization purpose.

A. Nomenclature

The notations used in this paper are summarized below:

i Index of chiller

Tamb Ambient temperature (K)

cpw Specific heat capacity of water (kJ/kg·K)

A Cross-layer area of TES tank (m2)

Ta Top layer ’a’ temperature of the TES model (K)

Tb Bottom layer ’b’ temperature of the TES model (K)

ṁtes Chilled water mass flow rate through TES (kg/s)

Q̇chw Cooling amount provided by chiller (kW)

ṁchw Chilled water mass flow rate from chiller (kg/s)

Tchws Chilled water supply temperature from chiller (K)

Tchwr Chilled water return temperature to chiller (K)

Wchw Electricity consumed by chiller (kW)

Q̇cam Cooling loads of campus (kW)

ṁcam Chilled water mass flow rate to campus (kg/s)

Tcams Chilled water supply temperature to campus (K)

Tcamr Chilled water return temperature from campus (K)

B. Chiller bank model

The chiller bank is composed of nc electrical chillers

operated only in ON/OFF modes. When a chiller is ON,

it supplies chilled water at a fixed maximum mass flow rate

and a fixed supply temperature; When a chiller is OFF, it is

shut down and supplies no chilled water. For i = 1, . . . ,nc,

the operating set-point of the ith chiller is given by a binary

decision variable

δi =

{

1, if ith chiller is ON

0, if ith chiller is OFF.
(1)

The amount of cooling provided by the ith chiller is

Q̇chw,i = δiṁchw,icpw(Tchwr,i −Tchws,i). (2)

The total electricity consumed by a chiller depends on

several factors, e.g., supply water mass flow rates ṁchw,i, gen-

erated cooling amount Q̇chw,i, circulated water temperature

differentiation (Tchwr,i − Tchws,i). Note that ṁchw,i is a fixed

constant when chiller is power on, and Q̇chw,i is a bilinear

function of ṁchw,i and (Tchwr,i − Tchws,i). Thus the chiller

electricity consumption mainly depends on temperature dif-

ferentiation (Tchwr,i − Tchws,i). Following [6], the electricity

consumption Wchw,i of the ith chiller is simply modeled as:

Wchw,i = ai(Tchwr,i −Tchws,i)+ bi (3)

where the coefficients ai and bi can be obtained by regression

analysis of the measured chiller data. The Coefficient of

Performance (COP) is employed as a metric to quantify the

energy efficiency of a chiller

COPi = Q̇chw,i/Wchw,i. (4)

The total chilled water mass flow rate supplied by the

chiller bank is

ṁchw =
nc

∑
i=1

δiṁchw,i. (5)

The total power consumed by the chiller bank is

Wchw =
nc

∑
i=1

δiWchw,i. (6)

The supply temperature and return temperature of the chiller

bank are denoted by Tchws and Tchwr, respectively. All chillers

are assumed to have the same supply temperature Tchws and

the same return temperature Tchwr, i.e., for i = 1, . . . ,nc,

Tchws,i = Tchws, Tchwr,i = Tchwr. (7)

C. TES model

We employ a stratified two layer TES model developed

in [6], where the state of TES is captured by the top layer

water temperature Ta and the bottom layer water temperature

Tb. The model is further simplified by ignoring the time

delays of the TES tank output. We also assume that the TES

tank is always full, implying that the mass flow rate entering

the tank is equal to the mass flow rate exiting the tank.

The TES is operated in two modes: in charging mode,

chilled water from chiller bank is supplied to both the TES

and the campus; in discharging mode, chilled water from the

TES and the chiller is supplied to the campus together. The

TES operating mode is denoted by a binary variable:

σ =

{

1, if ṁchw ≥ ṁcam

0, if ṁchw < ṁcam.
(8)

In charging mode (i.e., σ = 1), the dynamics of TES is

Tcams = Tchws (9a)

ṁtes = ṁchw − ṁcam (9b)

ṁchwTchwr = ṁtesTa + ṁcamTcamr (9c)

ρcpw

dTa

dt
= facṁtescpw(Tb −Ta)+UcA(Tb −Ta) (9d)

ρcpw
dTb

dt
= fbcṁtescpw(Tcams −Tb)+UcA(Ta −Tb). (9e)

In discharging mode (i.e., σ = 0), the dynamics of TES is

Tcamr = Tchwr (10a)

ṁtes = ṁcam − ṁchw (10b)

ṁcamTcams = ṁtesTb + ṁchwTchws (10c)

ρcpw
dTa

dt
= fadṁtescpw(Tcamr −Ta)+UdA(Tb −Ta) (10d)

ρcpw
dTb

dt
= fbdṁtescpw(Ta −Tb)+UdA(Ta −Tb). (10e)

Parameters fac, fbc, fad , fbd are time constant multipliers, and

Uc,Ud are inter-layer overall heat transfer coefficients, which

can be calibrated using the actually measured TES data.
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D. Campus load model

The campus cooling load satisfies the following energy

balance equation:

Q̇cam = ṁcamcpw(Tcamr −Tcams). (11)

Here ṁcam, Tcams, and Tcamr are taken as system variables,

while Q̇cam is taken as a given exogenous input to the system.

Note that, Q̇cam can be predicted based on the historical

load data and the weather forecast of ambient temperature,

humidity, and solar radiation [3].

E. Model summary

By collecting system dynamic equations (1) to (11) and

discretizing the system with the sampling time ∆t, we

represent the system dynamics in the state-space form:

x(k + 1) = f (x(k),z(k),u(k)) (12a)

g1(x(k),z(k),u(k),d(k)) = 0 (12b)

g2(z(k),u(k)) = 0 (12c)

where the state variable of the system is denoted by

x = [Ta,Tb],

the intermediate variable of the system is denoted by

z = [Wchw,Wchw,i=1,...,nc
,Q̇chw,i=1,...,nc

,ṁchw,Tchwr,Tcams,Tcamr],

the control variable of the system is denoted by

u = [σ ,δ1,...,nc ,ṁcam],

and the input variable to the system is denoted by

d = [Q̇cam].

The equation (12a) corresponds to TES dynamic equa-

tions (9d), (9e), (10d), and (10e); The equation (12b) cor-

responds to TES and campus balance equations (9a) to (9c),

(10a) to (10c), and (11); The equation (12c) corresponds to

chiller balance equations (2) to (7). Besides system dynam-

ics, we also impose various constraints for system variables,

i.e., x ∈ X, z ∈ Z, and u ∈ U for some bounded sets X, Z,

and U. These constraints are due to equipment limitations,

or desirable operating conditions of main components.

III. MODEL PREDICTIVE CONTROL PROBLEM

The objective of the optimization is to obtain a real-time

optimal scheduling strategy for chiller bank and TES to

minimize the total electricity costs, and satisfy the campus

cooling demands and system constraints. We formulate a

Model Predictive Control (MPC) problem to search for the

optimal set points of the scheduling strategy. At each time

step k, we are interested in solving the following finite-

horizon optimization problem regarding the state and control

actions at time steps {k, . . . ,k + N − 1}, where N is the

prediction horizon of the MPC problem:

min
X(k),Z(k),U(k)

k+N−1

∑
l=k

c(l|k)z1(l|k)∆t

s.t. x(l + 1|k) = f (x(l|k),z(l|k),u(l|k)),

g1(x(l|k),z(l|k),u(l|k),d(l|k)) = 0,

g2(z(l|k),u(l|k)) = 0, l = k, . . . ,k + N −1,

x(l|k) ∈ X, z(l|k) ∈ Z, u(l|k) ∈ U;

x(k|k) = x(k), x(k + N|k) ∈ X f

(13)

where x(l|k) denotes the state variable for the time step l

predicted at time step k (similar notations also apply for

other variables); the sets X(k) = {x(l|k)|l = k, . . . ,k + N},

Z(k) = {z(l|k)|l = k, . . . ,k + N −1}, and U(k) = {u(l|k)|l =
k, . . . ,k+N−1} denote the predicted state, intermediate, and

control sequences over the predicted horizon; electricity rate

c(l|k) is assumed to be known for all time and z1 = Wchw

denotes the electricity power consumed by the chiller bank;

the cooling load d(l|k) is a given input that can be obtained

from weather forecast; x(k) denotes the actual state of the

TES at time k; and X f denotes the terminal constraint set for

the TES state variables, which is chosen to ensure stability

and feasibility of the MPC problem [3], [8].

By assuming that the maximum campus cooling load never

exceeds the maximum capacity of the chiller bank, we know

that there always exist feasible solutions to the problem (13).

Among all feasible solutions, let (X∗(k),Z∗(k),U∗(k)) de-

note the optimal solution to the problem (13). At time step

k, only the first element of U∗(k) is implemented to the

system, i.e., u(k) = u∗(k|k). At time step k+1, the horizon of

interests moves one-step forward to {k + 1, . . . ,k + N}, and

the optimization problem (13) is solved again by changing

index from k to k+1. The initial point of the predicted state

sequence is taken as x(k+1|k+1)= x(k+1), where x(k+1)
denotes the newly measured state at time step k + 1. This

procedure is repeatedly implemented by moving forward the

horizon step-by-step, which yields a moving horizon control

strategy or model predictive control strategy.

For the MPC optimization problem (13), at each time-

step k, there are a total of N ∗ (4nc + 8) decision variables

to be computed, of which there are N ∗ (nc + 1) binary

variables, and N ∗ (3nc + 7) real variables. We also note

that the constraints due to the system dynamics (12) have

non-convex terms due the bilinear system dynamics. Thus,

the optimization problem (13) is a non-convex mixed-integer

nonlinear programming (MINLP) problem, which is quite

difficult to solve in both theory and practice [9]. There are

many software packages that can solve non-convex MINLP

problem to proven optimality, such as BARON, α − BB,

LINDO−Global, and Couenne [9]. But these software pack-

ages require a lot of computing resources and a large amount

of computation time to achieve a certain global optimality.

These software packages can therefore be used off-line to

compute the optimal set points, but they are not suitable for

real-time implementation of the MPC scheme.
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IV. MILP-BASED HEURISTIC ALGORITHM

In this paper, we propose a heuristic algorithm to solve

the non-convex MINLP problem (13) by further exploring its

special structure. Our goal is to obtain sub-optimal solutions

to (13) in a time efficient way with performance guarantee.

A. Deciding TES operation mode profile

TES is the major component in the system to shift the

campus cooling load from the peak hours to the off-peak

hours. Intuitively, we should charge the TES during off-peak

hours when electricity rate is low, and discharge the TES

during the peak hours or partial-peak when electricity rate is

high. In order to reduce the complexity of optimization [3],

[6], we also assume a fixed operation profile, denoted by

σ f ix, for charging/discharging the TES.

B. Linearizing system dynamics

It appears that the major difficulties of solving a non-

convex MINLP problem are due to the non-convexities of

the problem, which prevents the implementation of efficient

algorithms [9]. For problem (13), non-convexities mainly

come from bilinear terms in chiller and TES dynamics. Let

x̄(k), z̄(k), and ū(k) denote the nominal values of the state

and control at the kth time step. We approximate the bilinear

dynamic equation (12a) by a set of linear dynamic equations

x(k + 1) = A1(k)x(k)+ A2(k)z(k)+ B(k)u(k)+ E0(k)

where the matrices A1(k),A2(k),B(k),E0(k) are obtained

through linearization of (12a) around nominal values

x̄(k), z̄(k), ū(k). Similarly, we approximate bilinear balance

equation (12b) by a set of linear balance equations

C11(k)x(k)+C12(k)z(k)+ D11(k)u(k)+ D12(k)d(k) = E1(k).

To remove the bilinear terms introduced by the product

of a binary valued variable and a real valued function, we

employ an equivalence modeling trick described below [10]:

(P1): Let ξ (ω) ∈ R be a real valued scalar function de-

fined on a bounded set Ω such that m ≤ ξ (ω)≤ M

for any ω ∈ Ω, κ ∈ {0,1} be a binary valued scalar

variable, µ ∈R be a real valued scalar variable. For

any ω ∈ Ω, we have the following equivalence:

µ = κξ (ω)⇐⇒

{

µ ≤ Mκ ,µ ≤ ξ (ω)−m(1−κ)
µ ≥ mκ ,µ ≥ ξ (ω)−M(1−κ).

We apply Property (P1) to convert the bilinear equation (12c)

equivalently to a set of linear inequalities

C21z(k)+ D21u(k) ≤ E2(k).

C. Formulating an MILP problem

In this section, we define a simplified MPC optimization

problem with the linearized model described in Section IV-B.

We fix the TES operation mode profile as σ f ix. At each time

step k, we choose a nominal trajectory of state and control

{x̄(l|k), z̄(l|k), ū(l|k)|l = k, . . . ,k + N −1}.

The linearized dynamics for the predicted horizon {k, . . . ,k+
N −1} is obtained along the nominal trajectory of state and

control. Then we consider the following finite-horizon opti-

mization problem as an approximation to the problem (13):

min
X(k),Z(k),U(k)

k+N−1

∑
l=l

c(l|k)z1(l|k)∆t

s.t. x(l + 1|k) = A1(l|k)x(l|k)+ A2(l|k)z(l|k)

+ B(l|k)u(l|k)+ E0(l|k),

C11(l|k)x(l|k)+C12(l|k)z(l|k)+ D11(l|k)u(l|k)

+ D12(l|k)d(l|k) = E1(l|k),

C21(l|k)z(l|k)+ D21(l|k)u(l|k) ≤ E2(l|k),

x(l|k) ∈ X, z(l|k) ∈ Z, u(l|k) ∈ U,

u1(l|k) = σ f ix(k), l = k, . . . ,k + N −1;

x(k|k) = x(k), x(k + N|k) ∈ X f .
(14)

The optimization problem (14) is a mixed integer linear

programming (MILP) problem, with N ∗ nc binary variables

and N ∗ (3nc + 7) real variables. Due to the convexity of

the problem, the MILP problem is much easier to solve

than the non-convex MINLP problem in general. There exist

many software packages that can efficiently solve an MILP

problem with certain performance bound, e.g., SCIP, GLPK,

lpsolve, and CBC [11], [12]. Here the performance bound

provides a quantitative estimation of the goodness of sub-

optimal solutions compared to the global optimal solution.

D. Generating nominal trajectories for linearization

Recall that, to solve the MILP problem (14) at each

time step k, we require a nominal trajectory of the state

and control for the predicted horizon {k, . . . ,k + N − 1}. In

this paper, we generate the nominal trajectory through the

simulation of the nonlinear system model (12) with optimal

predicted control computed from the MILP problem (14). Let

(X∗(k),Z∗(k),U∗(k)) denote the optimal solution to (14) at

time step k. For the next predicted horizon {k+1, . . . ,k+N},

we heuristically choose the following control sequence as the

nominal trajectory of control

ū(l|k + 1) =

{

u∗(l|k), if l = k + 1, . . . ,k + N −1

u∗(k|k), if l = k + N.

Then we apply the control sequence {ū(l|k + 1)|l = k +
1, . . . ,k+N} to simulate the the nonlinear system model (12)

with the predicted loads input {d(l|k+1)|l = k+1, . . . ,k+N}
and initial state x̄(k + 1|k + 1) = x∗(k + 1|k). The simulated

state sequences {x̄(l|k +1)|l = k +1, . . . ,k +N} and {z̄(l|k +
1)|l = k + 1, . . . ,k + N} are taken as the nominal trajectory

of state for the predicted horizon {k + 1, . . . ,k + N}.

V. CASE STUDY

In this section, we present a case study to demonstrate

the model predictive control of the central chiller plant in

summer time at the University of California, Irvine (UCI).

A. System setup

System diagram of the UCI central plant is depicted in

Fig. 1. A bank of nc = 7 chillers supplies chilled water

to satisfy the campus cooling demand. The supply water
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Fig. 2. (a) Campus cooling loads and electricity rates, (b) hourly electricity consumption by two strategies, (c) hourly electricity cost by two strategies.
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Fig. 3. The plot of chiller COP for different return water temperature

TABLE I

CALIBRATED PARAMETERS FOR CHILLER MODEL

Chiller i ṁchw,i (kg/s) ai (kW/K) bi (kW)

1 119.87 54.67 318.3

2 119.87 54.67 318.3

3 138.80 80.17 225.0

4 283.91 143.6 666.1

5 236.59 165.7 592.8

6 236.59 109.2 786.7

7 283.91 168.8 332.1

temperature of all chillers is the same and maintained at a

constant value Tchws = 40◦F1. The return water temperature

Tchwr is also assumed to be the same for all chillers, but

varied according to the system dynamics. For MPC strategy

considered below, we constrain the return water temperature

Tchwr in the range of [53,63]◦F to let all chillers to work

with high efficiency. All chillers can only work in ON/OFF

modes, either with the maximum mass flow rate or with

the zero mass flow rate. The calibrated parameters of the

chiller electricity model (3) are summarized in Table I. The

chiller COPs are calculated using model (4) and depicted

in Fig. 3 versus return water temperature in the range of

interests. Intuitively, we observe that the 7th chiller has

highest efficiency and the 5th chiller has lowest efficiency

in most range of return water temperature.

The chilled water supplied by the chiller bank can also be

stored in a water tank TES for shifting the campus cooling

loads. The cross-layer area of the TES is A = 564.95m2

with a height of h = 30.48m. At the initial time, the TES is

1Temperature T can be converted as T (K) = 273.15+(T (◦F)−32)5/9.

assumed to be fully discharged with the uniform water tem-

perature of 60◦F. kkThe calibrated time-constant multipliers

of the TES model (9) and (10) are fac = 1.740, fbc = 2.222,

fad = 4.138, and fbd = 1.599. The calibrated inter-layer

overall heat transfer coefficients are Uc = 0.0283kW/(m2 ·K)
and Ud = 0.0197kW/(m2 ·K).

B. Two scheduling strategies

In this section, we consider two strategies for scheduling

chiller bank and the TES. One is a greedy-search-based

heuristic approach which serves as a baseline strategy, and

the other is the proposed MILP-based MPC strategy. In both

strategies, the TES is operated with a fixed operation profile

δ f ix(k) = 1 for 0 ≤ k ≤ 9 and δ f ix(k) = 0 for 10 ≤ k ≤ 23.

1) Baseline strategy: This strategy generates sub-optimal

chiller and TES operation sequences based on a greedy

search algorithm. All possible 27 chiller ON/OFF modes are

first ordered according to their efficiency. Then for a given

TES charging and discharging profile, an initial feasible

solution is obtained which requires more than necessary

chillers staged ON. Starting from this initial solution, a

greedy algorithm is applied to search for better chiller

operation sequences that mostly reduce the Time-Of-Use

(TOU) based cost until some given constraints are violated.

This strategy has been tested with historical operation data

and is shown to achieve 30% saving over the plant operator’s

heuristic operation in [6].

2) MILP-based MPC strategy: This strategy implements

the MPC scheme by considering the MILP formulation (14).

The MILP-based heuristical algorithm described in Sec-

tion IV is employed to search for the optimal set points of the

system. The sampling time is taken as ∆t = 1 hours to dis-

cretize the system model. The prediction horizon of the MPC

scheme is taken as N = 24 hours. At each hour, the software

package SCIP is employed to solve the MILP problem (14)

with performance gap ε = 5%. For the problem considered in

this paper, it usually takes less than 10 minutes to achieve the

performance gap. The initial nominal trajectory is obtained

by simulating the system with the baseline strategy.

C. Comparison of two strategies

The performance of two strategies are compared through

MATLAB simulations for a specific day in June, 2010. The
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Fig. 4. Two strategies scheduling results: hourly cooling amount generated by individual chillers and TES.

predicted campus cooling load profile is depicted in Fig. 2

(a) overlaid with the electricity rate for summer hours. We

duplicate the campus cooling load profile for the next day to

simulate the MPC scheme.

The control set points computed from the two strategies

are applied to the simulation model of the UCI central plant.

For both strategies, the hourly cooling amount provided by

individual chillers and the TES are illustrated in Fig. 4,

where the negative cooling amount means that the TES is

in charging mode. We observe that in both strategies chiller

5 is never operated, and chillers 1,2,7 are operated in most

of time. This makes sense since chiller 5 has the lowest

COP while chillers 1,2,7 have almost highest COP in the

range of interests for the chilled water return temperature

(see Fig. 3 for COP plot). But two strategies are different

in the way to charge or discharge the TES. We observe that

TES charges more cooling amount in baseline strategy than

in MPC strategy during off-peak hours. TES discharges less

cooling in baseline strategy than in MPC strategy during on-

peak hours. The overcharge in off-peak hours and insufficient

discharge in on-peak hours are the main causes of energy

inefficiency using baseline strategy. The hourly electricity

consumption and hourly electricity cost of two strategies are

depicted in Fig. 2 (b) and (c), respectively. We observe that

MPC strategy outperforms the baseline in almost all time.

VI. CONCLUSIONS

In this paper, we formulated a model predictive control

(MPC) approach for the ON/OFF scheduling problem of

a central chiller plant with thermal energy storage. We

proposed an efficient heuristic algorithm to search for a sub-

optimal scheduling strategies based on mixed integer lin-

ear programming. Simulation results showed that electricity

costs are largely reduced using MILP-based MPC strategy.
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