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Adaptive Continuous Homodyne Phase Estimation
Using Robust Fixed-Interval Smoothing

Shibdas Roy*, lan R. Petersehand Elanor H. Huntingtoh

Abstract— Adaptive homodyne estimation of a continuously relevant to be able to keep track oftime-varyingphase
evolving optical phase using time-symmetric quantum smodt  instead [11], [12]. There are a number of ways of estimating
ing has been demonstrated experimentally to provide supesr 5 ~3ssical process dynamically coupled to a quantum system

accuracy in the phase estimate compared to adaptive or non- d fi t Vi dicti filteri
adaptive estimation using filtering alone. Here, we illustate under conunuous measurement, viz. prediction or Titering

how the mean-square error in the adaptive phase estimate SmMoothing and retrodiction [13]. Smoothing, in particular

may be further reduced below the standard quantum limit an estimation technique, that uses both past and future mea-
f_|9f thests_toghflstic nt?lise protﬁess i{onstidefeld by g;?‘ing a ?b;Ch surements, and, therefore, yields a more accurate estanate
ung-Striebel smoother as the estimator, alongwith an opthal e

Kalman filter in the feedback loop. Further, the estimation compared_tolonly fllterlng,that uses only past measurements
using smoothing can be made robust to uncertainties in the However,. itis eslsent'a”y_a non-causal _methOd that Can.nOt
underlying parameters of the noise process modulating the be used in real-time but is used for offline data processing

system phase to be estimated. This has been done using aor with a delay with respect to the estimation time.

robust fixed-interval smoother designed for uncertain sysgms The fixed-interval smoothing problem [14], [15], [16]
safisfying a certain integral quadratic constraint. involves measurements over a given fixed time-intefial
| INTRODUCTION One solution to the fixed-interval smoothing problem is the

Mayne-Fraser two-filter smoother [17], [18], [19], that sise
Quantum parameter estimation (QPE) [1] involves estimata addition to a forward-time Kalman filter, a backward-time
ing an unknown classical parameter of a quantum system ar@lman filter, also known as an “information filter” [20]
plays important role in various fields such as quantum conand finally combines the two estimates to yield the optimal
putation [2], quantum key distribution [3] and gravitat&dn smoothed estimate. Rauch, Tung and Striebel combined the
wave interferometry [4]. A common and technologicallyinformation filter and the smoother into a single backward
relevant example of QPE is estimating an optical phase. Tkgnoother [21], [22].
fundamental limit to the precision of the phase estimate is The first experimental demonstration of adaptive quantum
set by Heisenberg's uncertainty principle [S]. On the othephase estimation of a continuously varying phase using
hand, the standard quantum limit (SQL) is the minimunguantum smoothing was presented in Ref. [23], where an
level of quantum noise that can be obtained using standaggdtimate could be obtained with a mean-square error of up
approaches not involving real-time feedback. to 2.24 4+ 0.14 times smaller than the SQL. The experiment
Since the phase of an electromagnetic field cannot h&ed a classical stochastic Ornstein-Uhlenbeck (OU) noise
measured directly, all phase-measurement schemes empiwycess to modulate the signal phase to be estimated. The
measurement of some other quantity, that necessarily-intrauthors have previously shown in Ref. [24] that the feedback
duces uncertainty in the phase estimate. The standard chetliiiter used in Ref. [23] is only optimal when the noise process
of measuring the phase of a signal is treterodynescheme, is a Wiener process and the measurement is assumed to
where the signal is combined with a strong local-oscillatobe linear and that using an optimal Kalman filter, instead,
(LO) field detuned from the signal, resulting in an introddice significantly reduces the mean-square error in the phase
excess uncertainty scaling ag\” (A := |a|? is the mean estimate. Here, we show that using a Rauch-Tung-Striebel
photon number). By contrashomodynescheme introduces (RTS) smoother, in addition to the Kalman filter in the
greatly reduced uncertainty, in cases where there is somefgedback loop, improves the accuracy of the phase estimate
priori knowledge about the phase, by using an LO phase thas compared to the (offline) estimator used in Ref. [23].
is /2 out of phase with the signal. Moreover, bgapting It is desirable to make the estimation process robust
the LO phase using feedback during the measurement, ittis uncertainties in the underlying parameters of the noise
possible to further reduce the excess uncertainty to olatainprocess, since it is physically unreasonable to specifgethe
mean-square estimation error lower than the SQL [6], [7parameters accurately. Significant effort has been put on
[8], [9] and even attain the theoretical limit [10]. developing robust approaches to QPE [25], [26]. The authors
However, these works were based simgle-shotmea- have illustrated in Ref. [24] how the feedback filter and,
surements offixed unknown phase. Practically, it is moretherefore, the precision of the phase estimate can be made
robust to uncertainty in one of the underlying parameters,
'S. Roy,?I. R. Petersen andE. H. Huntington are with the School of hased on a guaranteed cost robust filtering approach [27].
Engineering and Information Technology, University of N&eauth Wales, : .
Canberra. Here, the optimal RTS smoother is made robust to parameter
*shibdas.roy at student.adfa.edu.au uncertainty by applying the fixed-interval robust smooghin
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theory described in Ref. [28] for continuous-time uncertai arising from the vacuum entering the empty port of the input
systems satisfying a certain integral quadratic condtrain beamsplitter corresponding to the two arms, respectivély.
Il. STANDARD QUANTUM LIMIT FOR these noises are assumed to be zero-mean white Gaussian.

ORNSTEIN-UHLENBECK PROCESS The output of the arctan block is:

The standard quantum limit plays an important role as a 9 = arctan <2|O‘| sing + m + "2) , @)
benchmark for the quality of a measurement and is set by 2|afcos ¢ +n3 —na
the minimum error in phase estimation that can be obtained A Taylor series expansion up to first-order terms of the
using perfect heterodyne technique, or in other words, right-hand side yields:
non-adaptive filtering scheme. The case when the signal 1
phase varies as a Weiner process has been considered in Vx~ ¢+ T”l + S ne- )

. : : al 2|al

Ref. [11], where the minimum variance was obtained to be ) ]
VE/(v2]a]). In this section, we shall consider the case when The tra_nsfer function of the low-pass filter for the case of
the signal phase varies as an OU process as in Ref. [23]. g [23] is [24]:
deduce the minimum error covariance for the case of OU b %
noise using the standard optimal filtering approach rather G(s) = 9 s+v (4)

s+x
than the method used in Ref. [11]. Wi determine th X. hen that filter i
The OU noise process under consideration is [23], [24]: < can getermine the error covariance when that fiter 1S

. used as follows. The system augmented with the filter may
B(t) = =Ap(t) + Vro(t), (1) Dbe represented by the state-space model:

where ¢(t) is the system phase to be estimatead; 0 is Xx=AX+BW, (5)
the mean reversion rate,> 0 is the inverse coherence time
. ; . . . . where

and v(t) is a zero-mean white Gaussian noise with unity v
amplitude. n

In our analysis here, we use the fact that the heterodyne % } and Ny
scheme of measurement is, in principle, equivalent to, and n3
incurs the same noise penalty aljal-homodynescheme N4
[23], such as the schematic depicted in Elg. 1. We model the )
OU process as a signal at the input being phase-modulated:rom (). (3) and[(4), we get:
using an electro-optic modulator (EOM) that is driven by an
OU noise source. The modulated signal is then split using a Process: ¢ = —\¢ + /kv, (6)
50 — 50 beamsplitter into two arms each with a homodyne L ~ % %
detector (HD1 and HD2, respectively, with the LO phase Filter: ¢ = —x¢ +x¢ + m”l + M”Q' @)
of HD1 7 /2 out of phase with that of HD2). The ratio of .

. Thus, we have:

the output signals of the two arms goes toaaotan block, _ ) _ VE 0 0 0 0
the output of which is fed into a low-pass filter (LPF). The A =] , _, } andB = { 0 25 w5 0 0
filter for the case in Ref. [23] is sub.—optlmal,_ a}nd WE USE 1pe steady-state state covariance maRix is obtained
here a Kalman filter, instead, to obtain the minimum error;

covariance that determines the SQL for the OU process. by solving theLyapunov equation

g
I

Il
—

ASRSH

The output signals of the two arms are: APg + PSKT +§ET =0, (8)
I = % (2]a] sin ¢ + ny +na), wherePg is the symmetric matrix
Lo B PS_E(iiT)_[Pl PQ}

2—\/5( |af cos ¢+ ng —n4), P, P
wheren,; andns are measurement noises of the two homo- Upon solving [[8), we get
dyne detectors, respectively, and and n, are the noises P, = % ’
Py X
T /—{ri}— YOy
cid ‘ ® 19 LPF[— ¢ pg_X{ Py 12}_
Signalﬁa\ewﬁ/‘} I o 2 [ AM(A+x) .2|04|
3 The estimation error can be written as:
5o e=¢—d=[1 - 1x,

Fig. 1. Block diagram of the dual-homodyne scheme for deduche Which is mean zero since all of the quantities determinring
SQL for OU noise. are mean zero.



The error covariance is then given as:

_ Py

=1 -1] [ P,

Thus, we obtain:
2 _ K X

TSy STV ER

)

The transfer function of this filter is:

©_(s) X
= . 14
0(s) s+ X (14)
Thus, the forward-time process and filter equations are:
Process: ¢ = —\¢ + kv, (15)
Filter: ©_ = —XoptO— + Xopt® + ;(raptlw. (16)

Let the steady-state state covariance matrix for the fatwar

Note that whem\ = 0, the above expression for the errorsystem be:

reduces to that given by Eq. (3.8) from Ref. [11].
By contrast, the optimal filter is given by the Kalman filter,

which may be determined in steady-state from the algebraic Ngte that

Riccati equation, which for the process given ly (1) and

measurement given bf/(3) is:
—2\P —2|a*P? + k= 0. (10)

The stabilising solution of the above equation foris:

Py, = [ 0N } (17)
2
Po=p{| g |0 0-T}=r[ g, G |
Thus, we have
Y =E[¢’], M;=E[¢0_], N;=E[O]

p_ A+ /A2 + 2k|af? 1 Upon solving the Lyapunov equation of the forfd (8) for
- 2[a? (1) the forward system, we get:
K

This, being the minimum error that can be obtained =5y (18)
without feedback, determines the standard quantum limit M — Xopt K (19)
for OU noise process. Note that when = 0, we get f= 22\ + Xopt)
P= /(o)) 8 expected. _ ol + X X

The error-covariance given bl (9) is obtained when using Ny = SIaZAN + ] : (20)
the filter from Ref. [23], that is only optimal when assuming @ Xopt
Wiener noise but not so for the more general OU noise, Thus, we obtain:
since it has only one variable that controls both the gain O+ 2xom) RO+ 4ol V)
and the corner frequency of the filter. On the contrary, in |07} = X"ptg Xopt) _ . (22)
deriving the error covariance given by {11) of the Kalman ' 8lal? (A + xopt)  4af(A + 2]alv/k)

filter, no such assumptions were made, so that the gaingone can verify that this expression for the error covariance

and the corner frequency of the filter were allowed to b@grees witho2 of Eq. (10) from Ref. [23] for the optimal
two independent values, thereby yielding lower mean-sgjuagase ofy. -

error in the estimate than in the former case.
B. Backward Filter

The backward filter has the following form:
0.0 =x [ 8N
t
Let( =T — ¢ andr = T —t. Then,d( = —d(. When

(=t,(=T—t=7andwhen{ = co0,( =T — 00 = —c0.
Thus, we get:

I1l. ADAPTIVE PHASE ESTIMATION USING
SMOOTHER FROM REF. [23]

In this section, we consider the (offline) estimator from
Ref. [23], which is essentially a combination of two filters,
one forward-time and another reverse-time.

(22)

A. Forward Filter
The forward filter has the following form [24]:

© = — 7009 T — ~ 7X.(T*é)d~
@,(t) = X/t Q(C)eX(gft)dC =y (e(t) % e*X»t) 7 (12) +(T) X\é: ( C)e C
N © = é - *Xv(T*é)dNZ é —X-T ’
where the value of is x.,+ = 2|a|\/k, which is optimal = ©+(7) X/,oo (e ¢ X( (7) xe )

in the limit A — 0. Also, 6(t) comprise the measurementswhereé(g) —o(T - ).

given by: . Thus, we get in the Laplace domain:
0(t) = ot —w(t 13
(t) =o(t) + 2|a|w( ) (13) ®~+(s) _ X ’ 23)
wherew(t) is a zero-mean white Gaussian noise with unity 0(s) stXx

amplitude. wheres is the Laplace variable.



Thus, we obtain: C. Smoothed Error Covariance

) R Suppose we have two unbiased estimates of some:state
O04(1) = =xO4(7) + x0(7), We call thesez; andi,. We form a new estimaté as a

linear combination oft; andz, [29]:
where again the value of is x.p,: = 2|a|v/k, which is ! 2 [29]

optimal in the limitA — 0. &= ki@ + koo, (31)
V_Vhen_our model[{1),(13), which is driven by GaUSSiaQ/\(here for the new estimate to be unbiased,
white noise, has reached steady state, the output prockss wi
be a stationary Gaussian random process, which is described ki + ke = 1.
purely by its auto-correlation function. If we considersthi
output process in reverse time, this will also be a statipnar
random process with the same auto-correlation functiois Th
follows from the definition of the auto-correlation funatio El(x —2)’] = E{[z — kid1 — (1 - k1)22]°},  (32)
Hence, the statistics of the reversed time output process &,
Ephe same as the statl_stlcs of the forward time output processb;leg] = E{lki(e1 — e2) + eo]?)
us, the reversed time output process can be regarded a 9o R, (
being generated by the same (and not time reversed) process = F1Zleil + (1 — k1) Elez] + 2k (1 — k1) Eferea),
that generated the forward time process, i.e. where e, e;, and e; are the errors inz, z;, and i,
respectively. Eq[(33) may now be differentiated with respe
to k1 and set equal t® to find the optimalk,. Thus, we

The mean-square error fdris then

33)

&(1) = =Ag(7) + V() obtain:
- 1
0(r) = o(7) + 5 w(7). 2 _
2|al ky = 2E[62] 2E[6162] _ (34)
Elei] + Ele3] — 2E[e1e2]
Now, we would use the Lyapunov method to deduce the Substituting fork, in @3 ¢
state covariance matrix and error-covariance of the bakwa ="o> NG 1orky N ), we get
filter, the process and filter equations of which are: Ele2\Ele2] — (E 2
ppe?) = BB~ Bl | o
Elei] + Ele3] — 2E[e1e2]
Process: q'S: — Ao + VK, (24) This relation can be used to obtain the smoothed error
Hape € Xopt covariance, given the forward and backward systems. In our
Filter: ©4 = —XoptO+ + Xopt® + . (25 g y
+ XoptO+ + Xopt® 2|« (25) Case,el:gb—@,,62:¢—@+,E[eQ]:U?,E[eg]:UE
Let the steady-state state covariance matrix for the bacﬁpd it remains to evaluatle;ez] = E[(¢~6-)(¢—0+)].
ward system be:
1
- E[eleg]:E{[l _1}[5 }[gb ®+]{_1]}
Pbs = ) (26) -
My Ny ¢ ¢ 1
e[ ][]
where we have O_¢ 0_0. -1
X M, 1
S =E[¢?, M,=E[$0,], N,=E[e%]. =[1 1] { M; aSB ] { 1 ]
Upon solving the Lyapunov equation of the forfd (8) for =X - My — My+aXp,
the information filter, we get: wherea = M;¥~! and 3 = ©~'M, [16]. Thus, we get:
= % (27)
A
__ Xowh o3 = E[(0—0 )6 - 04)] = -o———.| (36)
My 2A(A\ + Xopt) (28) T T 2N+ Xopt)?
N, — Axopt|a*k + XoptA? + Xgpt)\ (29) Note that this agrees with Eqg. (11) from Ref. [23] for the
" 8[a>A(A + Xopt) ' optimal case ofy.
- Upon substituting appropriately if_(35), we thus get the
Thus, we obtain: following as the smoothed error covariance:
opt (A =+ 2X0 k(A + 4|alv/k 2 2
o2 = X ptg : Xopt) _ [(A 2| VE) | (30 2 _ VRO +8lajAVE + 8laf’k) @7)
Bl (A + xopt) 4ol (X + 2|alv/k) : 8|\ + 2]a| k)2

One can verify that this expression for the error covariance One can verify that this expression for the error covariance
agrees witho? of Eq. (10) from Ref. [23] for the optimal agrees withs? of Eq. (12) from Ref. [23] for the optimal
case ofy. case ofy.



IV. ADAPTIVE PHASE ESTIMATION USING A C. Backward Filter

RAUCH-TUNG-STRIEBEL SMOOTHER The RTS smoother, as obtained in the previous section,

In this section we design the optimal RTS smoother for th bstr.acts away the backyvard filter, th? error—f:ovarlande an
the filter equation of which are explicitly derived here for

adaptive system of Ref. [23] and analyse the error-coveeian

of the same to show that it is equivalent to an optimal two[eference later. _ ) i i
filter smoother, before we compare it with the estimator used 1€ Steady-state Riccati equation for the backward filter
in Ref. [23] and the Kalman filter used in Ref. [24] in the'S [22]:
next section. 2AP, — 4|a|* P2 + k= 0. (46)

A. Forward Filter The stabilising solution of the above equation oy is:

. . . 1
The forward filter is the same as the Kalman filter from P, = - (/\ 4 hnlaP s )\2) . 47)
Ref. [24]. The steady-state Riccati equation is: 4|«

Thus, the Kalman gain for the backward filter is:

Ky = X+ V4k|af? + A2 (48)

The backward filter equation is:

—2XAP; —4|a*P} + k= 0. (38)

The stabilising solution of the above equation @y is:

1
Pr=—— (—-\+V4dsla|2 + X2). 39 A N K
7 4laf? ( o ) (39) bp = (A — K3y + Ky + T;'w. (49)
The Kalman gain is: Remark.: One can verify that the error-covariances of
the forward and the backward Kalman filters, obtained using
Ky ==A+ Vanlal? + A% (40)  the Lyapunov method used in sectloq IIl, would be the same
as in [39) and[(47), respectively. In addition, referring to
The forward filter equation is: section 11I-Q, one can show:
: A K E[(¢ — ¢5)(¢ — dw)] =0, (50)
¢ =—(\+ K)oy + Kpp+ Téf'w. (41) I 2 v)]
which implies that the forward and the backward estimates of

the optimal smoother are independent. The error covariance

of the RTS smoother thus obtained from](35) would agree
The steady-state Riccati equation for the RTS smoother W§th @3).

[22]:

B. Rauch-Tung-Striebel Smoother

V. COMPARISON BETWEEN RTS SMOOTHER,
— KALMAN FILTER USED IN REF. [24], AND FILTER
—2AP +2rP; P — £ =0. (42) AND SMOOTHER USED IN REF. [23]

Fig.[@ shows the plot of the mean-square error against the
parameter\ for the four cases, viz. RTS smoother, Kalman
P filter used in Ref. [24], filter used in Ref. [23] and smoother

P = W- (43)  used in [23], as compared to the SQL for the noise process

modulating the signal phase being estimated. The nominal

experimental values used in the adaptive experiment in Ref.

Note that whem = 0, we getP’ = /x/4|a|, as desired [23] were used for the other parameters in obtaining these

Upon substituting fotPy and solving forP, we get:

(see Ref. [23]). graphs. It is clear that smoothing offers improvement over
The smoother gain is obtained to be [22]: filtering alone in the accuracy of the estimate. For lower
values of), both the filter and the smoother from Ref. [23]
_ Ao’k (44) approximate well the Kalman filter and RTS smoother, re-
X+ V4Kl + 22 spectively. However, with increasing the optimal filter and
smoother improve significantly and beat the SQL throughout,
The equation for the smoothed estimate is [22]: unlike the sub-optimal ones used in Ref. [23]. In summary,

it is evident that the RTS smoother is the best scheme. The
red vertical line denotes the value &fused in the adaptive
experiment in Ref. [23].

6= (-\+ F)p— Fd;. (45)




01 The stabilising solution of the above equation fris:
' —Filter from Ref. [23]

—;:wlm:;”ftreurn:r?e:fﬁezfé][m A+ \/)\2 — ‘LLQ)\Q + 4|OL|2,‘€
~——RTS Smoother X J— .
—SQL

(56)

K
The steady-state backward Riccati equation, as obtained
from Eq. (5.2) in Ref. [28] for our case, is:

M? 22

K

“%0.061

—2\Y — kY2 +4lal? = 0. (57)

The stabilising solution of the above equation 6ris:
v - X+ /A2 — 1222 + 4o’k

. L
10' 10 10 10' 6145110° 10 10 K

Next, Eq. (5.3) in Ref. [28] for our case yields:

Fig. 2. Comparison of the error covariance between the RTSo#rer, . 2 __ 92 2 2
Kalman filter used in Ref. [24], and filter and smoother use®éf. [23]. nm= (\/)‘ pEA® 4|a| '%)77 + 4|a| ¢+ 2|a|w. (59)

(58)

Likewise, Eq. (5.4) in Ref. [28] for reverse-time yields:

VI. ADAPTIVE PHASE ESTIMATION USING A £ = —(V A2 — 12X2 + 4]a2k)€ + 4|af*¢ + 2|alw.  (60)

ROBUST FIXED-INTERVAL SMOOTHER The forward filter is, then, simply the centre of the ellipse
We shall use the technique laid down in Ref. [28] toof Eq. (3.3) in Ref. [28]:
build a robust smoother for our continuous-time uncertain

|
system, satisfying a certain Integral Quadratic Constrasn o5 = X (61)
in Eq. (2.4) in Ref. [28]. The uncertainty is introduced ireth Likewise, the backward filter is:
parameter\ as follows:
A= A — uAN, %=y (62)
whereA is an uncertain parameter satisfyipg| < 1, and The forward filter differential equation is, thus:
0 < p < 1 determines the level of uncertainty in the model. 2 . 4la)?k 2|alk
Eq. (2.5) in Ref. [28], then, takes the form: ¢r=—Los+ L o+ T (63)
Process: ¢ = —\¢p+ BiAK¢+ Biw, (51) and the backward filter differential equation is:
1
Measurement: 6 = ¢ + —w, (52) ; . 4lal?k 2|l
2 —
|al o) L¢b+—)\+L¢+—/\+Lw’ (64)
whereB; = /k and K = p)/+/k.
The uncertainty outpudf Eq. (2.1) in Ref. [28] for our WhereL = /A2 — )2 + 4|a[?k. _
system is: The robust smoother for the uncertain system would, then,
pA (53) be the centre of the ellipse of Eqg. (5.5) in Ref. [28]:
v | | b= 1% (65)
For the purpose of the Integral Quadratic Constraint (IQC) X+Y
satisfied by our system, we will hav€, = 0, since noa- One can verify that forx = 0, (€3) and [(64) reduce to

priori information exists about the initial condition of the (41) and [(4D), respectively.

state in our case. Alsa@) = 1 for the uncertainty matrix VIl. COMPARISON BETWEEN ROBUST AND RTS

A to_ satisfy the reql_ured .bound. Als@, = 1, since the SMOOTHERS FOR THE UNCERTAIN SYSTEM
amplitudes of the white noise processeandw have been

assumed to be unity. The IQC of Eq. (2.4) in Ref. [28], thus, The error-covariances of the robust smoother and the
takes the following form in our case: RTS smoother for the uncertain system may be computed

using the Lyapunov technique employed in secfioh IlIl, as a
T, 1, T function of A, for the nominal experimental values of all
/0 (@ + 4|a|2“ R)dt < 1+/0 l2II7dt, (34)  the parameters and a given value jaf Fig. [3 shows the
~ _ o comparison of the two for the case&if% uncertainty, below
wherew = AK¢+v andv = w are theuncertainty inputs \ich the robust smoother is not quite significantly superio

_ 2 .
Thus, we would have? = 4|a|* in our case. _in performance as compared to the RTS smoother.
The steady-state forward Riccati equation, as obtained Figs.[4 and b show the comparison for= 0.8 and y =
from Eq. (5.1) in Ref. [28] for our case, is: 0.9, respectively. Clearly, the robust smoother performs much

. p2A? ) better than the RTS smootherAsapproaches for all levels
= 22X 4 kX" —— —dfal" = 0. (55)  of uncertainty in\.



VIII. CONCLUSION

This paper extends the optimal and robust filtering theorg
of Ref. [24], as applied to adaptive continuous homodyn
phase estimation of a coherent state of light, to includ
optimal RTS and robust fixed-interval smoothing rather than
filtering alone. In particular, it presents an insightfubbysis

of the relative performance of these various schemes witft]
respect to the standard quantum limit. These theoretice}b]
results are to be demonstrated experimentally as part of
further work. It would be interesting to extend these result
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Fig. 3. Comparison of error covariance as a functiomfor p = 0.5. [9]
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Fig. 4. Comparison of error covariance as a functiomofor p = 0.8. [16]
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Fig. 5. Comparison of error covariance as a functiomfor p = 0.9.

for the case of squeezed states of light or other complexnois
rocesses. Robustness to uncertainties in other parameter
uch as the photon flux or the noise power may also be
gxplored.
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