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Abstract— In this paper, we develop a provably correct
optimal control strategy for a finite deterministic transition
system. By assuming that penalties with known probabilities of
occurrence and dynamics can be sensed locally at the states of
the system, we derive a receding horizon strategy that minimizes
the expected average cumulative penalty incurred between two
consecutive satisfactions of a desired property. At the same
time, we guarantee the satisfaction of correctness specifications
expressed as Linear Temporal Logic formulas. We illustrate the
approach with a persistent surveillance robotics application.

I. INTRODUCTION

Temporal logics, such as Computation Tree Logic (CTL)
and Linear Temporal Logic (LTL), have been customarily
used to specify the correctness of computer programs and
digital circuits modeled as finite-state transition systems [1].
The problem of analyzing such a model against a temporal
logic formula, known as formal analysis or model checking,
has received a lot of attention during the past thirty years, and
several efficient algorithms and software tools are available
[2], [3], [4]. The formal synthesis problem, in which the goal
is to design or control a system from a temporal logic spec-
ification, has not been studied extensively until a few years
ago. Recent results include the use of model checking al-
gorithms for controlling deterministic systems [5], automata
games for controlling non-deterministic systems [6], linear
programming and value iteration for synthesis of control
policies for Markov decision processes [1], [7]. Through the
use of abstractions, such techniques have also been used for
infinite systems, such as continuous and discrete-time linear
systems [8], [9], [10], [11], [12].

The connection between optimal and temporal logic con-
trol is an intriguing problem with a potentially high impact
in several applications. By combining these two seemingly
unrelated areas, our goal is to optimize the behavior of
a system subject to correctness constraints. Consider, for
example, a mobile robot involved in a persistent surveillance
mission in a dangerous area and under tight fuel / time
constraints. The correctness requirement is expressed as a
temporal logic specification, e.g., “Alternately keep visiting
A and B while always avoiding C”, while the resource
constraints translate to minimizing a cost function over the
feasible trajectories of the robot. While optimal control
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is a mature discipline and formal synthesis is fairly well
understood, optimal formal synthesis is a largely open area.

In this paper, we focus on finite labeled transition systems
and correctness specifications given as formulas of LTL. We
assume there is a penalty associated with the states of the sys-
tem with a known occurrence probability and time-behavior.
Motivated by persistent surveillance robotic missions, our
goal is to minimize the expected average cumulative penalty
incurred between two consecutive satisfactions of a desired
property associated with some states of the system, while
at the same time satisfying an additional temporal logic
constraint. Also from robotics comes our assumption that
actual penalty values can only be sensed locally in a close
proximity from the current state during the execution of the
system. We propose two algorithms for this problem. The
first operates offline, i.e., without executions of the system,
and therefore only uses the known probabilities but does
not exploit actual penalties sensed during the execution.
The second algorithm designs an online strategy by locally
improving the offline strategy based on local sensing and
simulation over a user-defined planning horizon. While both
algorithms guarantee optimal expected average penalty col-
lection, in real executions of the system, the second algorithm
provides lower real average than the first algorithm. We
illustrate these results on a robotic persistent surveillance
case study.

This paper is closely related to [13], [14], [5], which
also focused on optimal control for finite transitions systems
with temporal logic constraints. In [5], the authors developed
an offline control strategy minimizing the maximum cost
between two consecutive visits to a given set of states, subject
to constraints expressed as LTL formulas. Time-varying,
locally sensed rewards were introduced in [13], where a
receding horizon control strategy maximizing rewards col-
lected locally was shown to satisfy an LTL specification. This
approach was generalized in [14] to allow for a broader class
of optimization objectives and reward models. In contrast
with [13], [14], we interpret the dynamic values appearing
in states of the system as penalties instead of rewards, i.e.,
in our case, the cost function is being minimized rather than
maximized. That allows the existence of the optimum in
expected average penalty collection. In this paper, we show
how it can be achieved using automata-based approach and
game theory results.

In Sec. II, we introduce the notation and definitions
necessary throughout the paper. The problem is stated in
Sec. III. The main results of the paper are in Sec. IV and
Sec. V. The simulation results are presented in Sec. VI.
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II. PRELIMINARIES

For a set S, we use Sω and S+ to denote the set of all
infinite and all non-empty finite sequences of elements of S,
respectively. For a finite or infinite sequence α = a0a1 . . ., we
use α(i) = ai to denote the i-th element and α(i) = a0 . . . ai
for the finite prefix of α of length |α(i)| = i+ 1.

Definition 1: A weighted deterministic transition system
(TS) is a tuple T = (S, T,AP,L,w), where S is a non-
empty finite set of states, T ⊆ S×S is a transition relation,
AP is a finite set of atomic propositions, L : S → 2AP is
a labeling function and w : T → N is a weight function.
We assume that for every s ∈ S exists s′ ∈ S such that
(s, s′) ∈ T . An initialized transition system is a TS T =
(S, T,AP,L,w) with a distinctive initial state sinit ∈ S.

A run of a TS T is an infinite sequence ρ = s0s1 . . . ∈ Sω
such that for every i ≥ 0 it holds (si, si+1) ∈ T . We use
inf(ρ) to denote the set of all states visited infinitely many
times in the run ρ and RunT (s) for the set of all runs of
T that start in s ∈ S. Let RunT =

⋃
s∈S RunT (s). A finite

run σ = s0 . . . sn of T is a finite prefix of a run of T and
RunTfin(s) denotes the set of all finite runs of T that start
in s ∈ S. Let RunTfin =

⋃
s∈S RunTfin(s). The length |σ|, or

number of stages, of a finite run σ = s0 . . . sn is n+ 1 and
last(σ) = sn denotes the last state of σ. With slight abuse
of notation, we use w(σ) to denote the weight of a finite run
σ = s0 . . . sn, i.e., w(σ) =

∑n−1
i=0 w((si, si+1)). Moreover,

w∗(s, s′) denotes the minimum weight of a finite run from s
to s′. Specifically, w∗(s, s) = 0 for every s ∈ S and if there
does not exist a run from s to s′, then w∗(s, s′) =∞. For a
set S′ ⊆ S we let w∗(s, S′) = min

s′∈S′
w∗(s, s′). We say that a

state s′ and a set S′ is reachable from s, iff w∗(s, s′) 6=∞
and w∗(s, S′) 6=∞, respectively.

Every run ρ = s0s1 . . . ∈ RunT , resp. σ = s0 . . . sn ∈
RunTfin, induces a word z = L(s0)L(s1) . . . ∈ (2AP )ω , resp.
z = L(s0) . . . L(sn) ∈ (2AP )+, over the power set of AP .

A cycle of the TS T is a finite run cyc = c0 . . . cm of T
for which it holds that (cm, c0) ∈ T .

Definition 2: A sub-system of a T = (S, T,AP,L,w)
is a TS U = (SU , TU , AP, L|U , w|U ), where SU ⊆ S and
TU ⊆ T ∩ (SU × SU ). We use L|U to denote the labeling
function L restricted to the set SU . Similarly, we use w|U
with the obvious meaning. If the context is clear, we use L,w
instead of L|U , w|U . A sub-system U of T is called strongly
connected if for every pair of states s, s′ ∈ SU , there exists a
finite run σ ∈ RunUfin(s) such that last(σ) = s′. A strongly
connected component (SCC) of T is a maximal strongly
connected sub-system of T . We use SCC(T ) to denote the
set of all strongly connected components of T .

Strongly connected components of a TS T are pairwise
disjoint. Hence, the cardinality of the set SCC(T ) is bounded
by the number of states of T and the set can be computed
using Tarjan’s algorithm [15].

Definition 3: Let T = (S, T,AP,L,w) be a TS. A control
strategy for T is a function C : RunTfin → S such that for
every σ ∈ RunTfin, it holds that (last(σ), C(σ)) ∈ T .

A strategy C for which C(σ1) = C(σ2), for all finite
runs σ1, σ2 ∈ RunTfin with last(σ1) = last(σ2), is called
memoryless. In that case, C is a function C : S → S.

A strategy is called finite-memory if it is defined as a tuple
C = (M, next,∆, start), where M is a finite set of modes,
∆: M ×S →M is a transition function, next : M ×S → S
selects a state of T to be visited next, and start : S → M
selects the starting mode for every s ∈ S.

A run induced by a strategy C for T is a run ρC =

s0s1 . . . ∈ RunT for which si+1 = C(ρ
(i)
C ) for every i ≥ 0.

For every s ∈ S, there is exactly one run induced by C that
starts in s. A finite run induced by C is σC ∈ RunTfin, which
is a finite prefix of a run ρC induced by C.

Let C be a strategy, finite-memory or not, for a TS T .
For every state s ∈ S, the run ρC ∈ RunT (s) induced by C
satisfies inf(ρC) ⊆ SU for some U ∈ SCC(T ) [1]. We say
that C leads T from the state s to the SCC U .

Definition 4: Linear Temporal Logic (LTL) formulas over
the set AP are formed according to the following grammar:
φ ::= true | a | ¬φ | φ∨φ | φ∧φ | Xφ | φUφ | Gφ | Fφ,
where a ∈ AP is an atomic proposition, ¬, ∨ and ∧ are
standard Boolean connectives, and X (next), U (until), G
(always) and F (eventually) are temporal operators.

The semantics of LTL is defined over words over 2AP ,
such as those generated by the runs of a TS T (for details
see e.g., [1]). For example, a word w ∈ (2AP )

ω satisfies Gφ
and Fφ if φ holds in w always and eventually, respectively.
If the word induced by a run of T satisfies a formula φ, we
say that the run satisfies φ. We call φ satisfiable in T from
s ∈ S if there exists a run ρ ∈ RunT (s) that satisfies φ.

Having an initialized TS T and an LTL formula φ over
AP , the formal synthesis problem aims to find a strategy
C for T such that the run ρC ∈ RunT (sinit) induced by
C satisfies φ. In that case we also say that the strategy C
satisfies φ. The formal synthesis problem can be solved using
principles from model checking methods [1]. Specifically, φ
is translated to a Büchi automaton and the system combining
the Büchi automaton and the TS T is analyzed.

Definition 5: A Büchi automaton (BA) is a tuple B =
(Q, 2AP , δ, q0, F ), where Q is a non-empty finite set of
states, 2AP is the alphabet, δ ⊆ Q× 2AP ×Q is a transition
relation such that for every q ∈ Q, a ∈ 2AP , there exists
q′ ∈ Q such that (q, a, q′) ∈ δ, q0 ∈ Q is the initial state,
and F ⊆ Q is a set of accepting states.

A run q0q1 . . . Q
ω of B is an infinite sequence such that

for every i ≥ 0 there exists ai ∈ 2AP with (qi, ai, qi+1) ∈ δ.
The word a0a1 . . . ∈ (2AP )ω is called the word induced by
the run q0q1 . . .. A run q0q1 . . . of B is accepting if there
exist infinitely many i ≥ 0 such that qi is an accepting state.

For every LTL formula φ over AP , one can construct a
Büchi automaton Bφ such that the accepting runs are all and
only words over 2AP satisfying φ [16]. We refer readers to
[17], [18] for algorithms and to online implementations such
as [19], to translate an LTL formula to a BA.

Definition 6: Let T = (S, T,AP,L,w) be an initial-
ized TS and B = (Q, 2AP , δ, q0, F ) be a Büchi au-
tomaton. The product P of T and B is a tuple P =



(SP , TP , sPinit, AP, LP , FP , wP), where SP = S × Q,
TP ⊆ SP × SP is a transition relation such that for every
(s, q), (s′, q′) ∈ SP it holds that ((s, q), (s′, q′)) ∈ TP if
and only if (s, s′) ∈ T and (q, L(s), q′) ∈ δ, sPinit =
(sinit, q0) is the initial state, LP((s, q)) = L(s) is a labeling
function, FP = S × F is a set of accepting states, and
wP(((s, q), (s′, q′))) = w((s, s′)) is a weight function.

The product P can be viewed as an initialized TS with a
set of accepting states. Therefore, we adopt the definitions
of a run ρ, a finite run σ, its weight wP(σ), and sets
RunP((s, q)), RunP , RunPfin((s, q)) and RunPfin from above.
Similarly, a cycle cyc of P , a strategy CP for P and runs
ρCP , σCP induced by CP are defined in the same way as for
a TS. On the other hand, P can be viewed as a weighted
BA over the trivial alphabet with a labeling function, which
gives us the definition of an accepting run of P .

Using the projection on the first component, every run
(s0, q0)(s1, q1) . . . and finite run (s0, q0) . . . (sn, qn) of P
corresponds to a run s0s1 . . . and a finite run s0 . . . sn of
T , respectively. Vice versa, for every run s0s1 . . . and finite
run s0 . . . sn of T , there exists a run (s0, q0)(s1, q1) . . . and
finite run (s0, q0) . . . (sn, qn). Similarly, every strategy for P
projects to a strategy for T and for every strategy for T there
exists a strategy for P that projects to it. The projection of
a finite-memory strategy for P is also finite-memory.

Since P can be viewed as a TS, we also adopt the defini-
tions of a sub-system and a strongly connected component.

Definition 7: Let P = (SP , TP , sPinit, AP, LP , FP , wP)
be the product of an initialized TS T and a BA B. An
accepting strongly connected component (ASCC) of P is an
SCC U = (SU , TU , AP, LP , wP) such that the set SU ∩ FP
is non-empty and we refer to it as the set FU of accepting
states of U . We use ASCC(P) to denote the set of all ASCCs
of P that are reachable from the initial state sPinit.

In our work, we always assume that ASCC(P) is non-
empty, i.e., the given LTL formula is satisfiable in the TS.

III. PROBLEM FORMULATION

Consider an initialized weighted transition system T =
(S, T,AP,L,w). The weight w((s, s′)) of a transition
(s, s′) ∈ T represents the amount of time that the transition
takes and the system starts at time 0. We use tn to denote the
point in time after the n-th transition of a run, i.e., initially
the system is in a state s0 at time t0 = 0 and after a finite
run σ ∈ RunTfin(s0) of length n+ 1 the time is tn = w(σ).

We assume there is a dynamic penalty associated with
every state s ∈ S. In this paper, we address the following
model of penalties. Nevertheless, as we discuss in Sec.V,
the algorithms presented in the next section provide optimal
solution for a much broader class of penalty dynamics.
The penalty is a rational number between 0 and 1 that
is increasing every time unit by 1

r , where r ∈ N is a
given rate. Always when the penalty is 1, in the next time
unit the penalty remains 1 or it drops to 0 according to a
given probability distribution. Upon the visit of a state, the
corresponding penalty is incurred. We assume that the visit
of the state does not affect the penalty’s value or dynamics.

Formally, the penalties are defined by a rate r ∈ N and a
penalty probability function p : S → (0, 1], where p(s) is the
probability that if the penalty in a state s is 1 then in the next
time unit the penalty remains 1, and 1−p(s) is the probability
of the penalty dropping to 0. The penalties are described
using a function g : S × N0 → { ir | i ∈ {0, 1, . . . , r}}, such
that g(s, t) is the penalty in a state s ∈ S at time t ∈ N0.
For s ∈ S, g(s, 0) is a uniformly distributed random variable
with values in the set { ir | i ∈ {0, 1, . . . , r}} and for t ≥ 1

g(s, t) =

{
g(s, t− 1) + 1

r
if g(s, t− 1) < 1,

x otherwise,
(1)

where x is a random variable such that x = 1 with
probability p(s) and x = 0 otherwise. We use

gexp(s) = (1− p(s)) · 1
2 + p(s) · 1 = 1

2 (1 + p(s)) (2)

to denote the expected value of the penalty in a state s ∈ S.
Please note that 1

2 ≤ gexp(s) ≤ 1, for every s ∈ S.
In our setting, the penalties are sensed only locally in

the states in close proximity from the current state. To be
specific, we assume a visibility range v ∈ N is given.
If the system is in a state s ∈ S at time t, the penalty
g(s′, t) of a state s′ ∈ S is observable if and only if
s′ ∈ Vis(s) = {s′ ∈ S | w∗(s, s′) ≤ v}. The set Vis(s)
is also called the set of states visible from s.

The problem we consider in this paper combines the
formal synthesis problem with long-term optimization of the
expected amount of penalties incurred during the system’s
execution. We assume that the specification is given as an
LTL formula φ of the form

φ = ϕ ∧ GFπsur, (3)

where ϕ is an LTL formula over AP and πsur ∈ AP . This
formula requires that the system satisfies ϕ and surveys the
states satisfying the property πsur infinitely often. We say that
every visit of a state from the set Ssur = {s ∈ S | πsur ∈
L(s)} completes a surveillance cycle. Specifically, starting
from the initial state, the first visit of Ssur after the initial
state completes the first surveillance cycle of a run. Note
that a surveillance cycle is not a cycle in the sense of the
definition of a cycle of a TS in Sec. II. For a finite run σ such
that last(σ) ∈ Ssur, ](σ) denotes the number of complete
surveillance cycles in σ, otherwise ](σ) is the number of
complete surveillance cycles plus one. We define a function
VT ,C : S → R+

0 such that VT ,C(s) is the expected average
cumulative penalty per surveillance cycle (APPC) incurred
under a strategy C for T starting from a state s ∈ S:

VT ,C(s) = lim sup
n→∞

E
(∑n

i=0 g(ρC(i), w(ρ
(i)
C ))

](ρ
(n)
C )

)
, (4)

where ρC ∈ RunT (s) is the run induced by C starting from
s and E(·) denotes the expected value. In this paper, we
consider the following problem:

Problem 1: Let T = (S, T,AP,L,w) be an initialized
TS, with penalties defined by a rate r ∈ N and penalty
probabilities p : S → (0, 1]. Let v ∈ N be a visibility range
and φ an LTL formula over the set AP of the form in
Eq. (3). Find a strategy C for T such that C satisfies φ and



among all strategies satisfying φ, C minimizes the APPC
value VT ,C(sinit) defined in Eq. (4).

In the next section, we propose two algorithms solving the
above problem. The first algorithm operates offline, without
the deployment of the system, and therefore, without taking
advantage of the local sensing of penalties. On the other
hand, the second algorithm computes the strategy in real-time
by locally improving the offline strategy according to the
penalties observed from the current state and their simulation
over the next h time units, where h ≥ 1 is a natural number,
a user-defined planning horizon.

IV. SOLUTION

The two algorithms work with the product P =
(SP , TP , sPinit, AP, LP , FP , wP) of the initialized TS T
and a Büchi automaton Bφ for the LTL formula φ. To project
the penalties from T to P , we define the penalty in a state
(s, q) ∈ SP at time t as g((s, q), t) = g(s, t). We also
adopt the visibility range v and the set Vis((s, q)) of all
states visible from (s, q) is defined as for a state of T . The
APPC function VP,CP of a strategy CP for P is then defined
according to Eq. (4). We use the correspondence between the
strategies for P and T to find a strategy for T that solves
Problem 1. Let CP be a strategy for P such that the run
induced by CP visits the set FP infinitely many times and
at the same time, the APPC value VP,CP (sPinit) is minimal
among all strategies that visit FP infinitely many times. It
is easy to see that CP projects to a strategy C for T that
solves Problem 1 and VT ,C(sinit) = VP,CP (sPinit).

The offline algorithm leverages ideas from formal meth-
ods. Using the automata-based approach to model checking,
one can construct a strategy CφP for P that visits at least one
of the accepting states infinitely many times. On the other
hand, using graph theory, we can design a strategy CVP that
achieves the minimum APPC value among all strategies of
P that do not cause an immediate, unrepairable violation of
φ, i.e., φ is satisfiable from every state of the run induced by
CVP . However, we would like to have a strategy CP satisfying
both properties at the same time. To achieve that, we employ
a technique from game theory presented in [20]. Intuitively,
we combine two strategies CφP and CVP to create a new
strategy CP . The strategy CP is played in rounds, where
each round consists of two phases. In the first phase, we play
the strategy CφP until an accepting state is reached. We say
that the system is to achieve the mission subgoal. The second
phase applies the strategy CVP . The aim is to maintain the
expected average cumulative penalty per surveillance cycle
in the current round, and we refer to it as the average subgoal.
The number of steps for which we apply CVP is computed
individually every time we enter the second phase of a round.

The online algorithm constructs a strategy CP by locally
improving the strategy CP computed by the offline algo-
rithm. Intuitively, we compare applying CP for several steps
to reach a specific state or set of states of P , to executing
different local paths to reach the same state or set. We
consider a finite set of finite runs leading to the state, or

set, containing the finite run induced by CP , choose the one
that is expected to minimize the average cumulative penalty
per surveillance cycle incurred in the current round and apply
the first transition of the chosen run. The process continues
until the state, or set, is reached, and then it starts over again.

A. Probability measure

Let CP be a strategy for P and (s, q) ∈ SP a state of
P . For a finite run σCP ∈ RunPfin((s, q)) induced by the
strategy CP starting from the state (s, q) and a sequence
τ ∈ ({ ir | 0 ≤ i ≤ r})+ of length |σCP |, we call (σCP , τ)
a finite pair. Analogously, an infinite pair (ρCP , κ) consists
of the run ρCP ∈ RunP((s, q)) induced by the strategy CP
and an infinite sequence κ ∈ ({ ir | 0 ≤ i ≤ r})

ω . A cylinder
set Cyl((σCP , τ)) of a finite pair (σCP , τ) is the set of all
infinite pairs (ρCP , κ) such that τ is a prefix of κ.

Consider the σ-algebra generated by the set of cylinder
sets of all finite pairs (σCP , τ), where σCP ∈ RunPfin((s, q))
is a finite run induced by the strategy CP starting from the
state (s, q) and τ ∈ ({ ir | 0 ≤ i ≤ r})+ is of length
|σCP |. From classical concepts in probability theory [21],
there exists a unique probability measure PrP,CP

(s,q) on the σ-
algebra such that for a finite pair (σCP , τ)

PrP,CP
(s,q) (Cyl((σCP , τ)))

is the probability that the penalties incurred in the first
|σCP |+ 1 stages when applying the strategy CP in P from
the state (s, q) are given by the sequence τ , i.e.,

g(σCP (i), wP(σ
(i)
CP

)) = τ(i)

for every 0 ≤ i ≤ |σCP |. This probability is given by
the penalty dynamics and therefore, can be computed from
the rate r and the penalty probability function p. For a
set X of infinite pairs, an element of the above σ-algebra,
the probability PrP,CP

(s,q) (X) is the probability that under CP
starting from (s, q) the infinite sequence of penalties received
in the visited states is κ where (ρCP , κ) ∈ X .

B. Offline control

In this section, we construct a strategy CP for P that
projects to a strategy C for T solving Problem 1. The
strategy CP has to visit FP infinitely many times and
therefore, CP must lead from sPinit to an ASCC. For
an U ∈ ASCC(P), we denote V ∗U ((s, q)) the minimum
expected average cumulative penalty per surveillance cycle
that can be achieved in U starting from (s, q) ∈ SU . Since
U is strongly connected, this value is the same for all the
states in SU and is referred to as V ∗U . It is associated with a
cycle cycVU = c0 . . . cm of U witnessing the value, i.e.,

1
|cycVU ∩SUsur|

m∑
i=0

gexp(ci) = V ∗U

where SUsur is the set of all states of U labeled with πsur.
Since U is an ASCC, it holds SUsur 6= ∅.

We design an algorithm that finds the value V ∗U and a
cycle cycVU for an ASCC U . The algorithm first reduces U
to a TS U and then applies the Karp’s algorithm [22] on U .
The Karp’s algorithm finds for a directed graph with values



run1 run8

run3

run7 run9

run4

run6

run2

run5

run5.run4

run2.run6

Fig. 1: An example of elimination of a state during the reduction of an
ASCC U . The finite run run8 is equal to the one of the finite runs run1

and run2.run4 that minimizes the sum of expected penalties in the states
of the run. Similarly, run9 is one of the finite runs run7 and run5.run6.

on edges a cycle with minimum value per edge also called
the minimum mean cycle. The value V ∗U and cycle cycVU are
synthesized from the minimum mean cycle.

Let U = (SU , TU , AP, LP , wP) be an ASCC of P . For
simplicity, we use singletons such as u, ui to denote the states
of P in this paragraph. We construct a TS

U = (SUsur, TU , AP, LP , wU ),

and a function run: TU → RunUfin for which it holds that
(u, u′) ∈ TU if and only if there exists a finite run in
U from u ∈ SUsur to u′ ∈ SUsur with one surveillance
cycle, i.e., between u and u′ no state labeled with πsur is
visited. Moreover, the run run((u, u′)) = u0 . . . un is such
that u = u0 and σ = u0 . . . unu

′ is the finite run in U
from u to u′ with one surveillance cycle that minimizes
the expected sum of penalties received during σ among all
finite runs in U from u to u′ with one surveillance cycle.
The TS can be constructed from U by an iterative algorithm
eliminating the states from SU\SUsur one by one, in arbitrary
order. At the beginning let U = U , TU = TU , and for every
transition (u, u′) ∈ TU let run((u, u′)) = u. The procedure
for eliminating u ∈ SU\SUsur proceeds as follows. Consider
every u1 6= u, u2 6= u such that (u1, u), (u, u2) ∈ TU .
If the transition (u1, u2) is not in TU , add (u1, u2) to
TU and define run((u1, u2)) = run((u1, u)).run((u, u2)),
where . is the concatenation of sequences. If TU already
contains the transition (u1, u2) and run((u1, u2)) = σ, we
set run((u1, u2)) = run((u1, u)).run((u, u2)), if∑

gexp

(
run((u1, u)).run((u, u2))

)
≤
∑

gexp

(
σ
)
,

where
∑
gexp(x) for a run x is the sum of gexp(x(i)) for

every state x(i) of x, otherwise we let run((u1, u2)) = σ.
The weight wU ((u1, u2)) =

∑
gexp(run((u1, u2))). Once all

pairs u1, u2 are handled, remove u from SU and all adjacent
transitions from TU . Fig. 1 demonstrates one iteration of the
algorithm.

Consequently, we apply the Karp’s algorithm on the ori-
ented graph with vertices SUsur, edges TU and values on
edges wU . Let cycU = u0 . . . um be the minimum mean
cycle of this graph. Then it holds

V ∗U = 1
m+1

m∑
i=0

gexp

(
run((ui, ui+1 mod (m+1))

)
,

cycVU = run((u0, u1)). . . . .run((um−1, um)).run((um, u0)).

When the APPC value and the corresponding cycle is
computed for every ASCC of P , we choose the ASCC
that minimizes the APPC value. We denote this ASCC
U = (SU , TU , AP, LP , wP) and cycVU = c0 . . . cm.

The mission subgoal aims to reach an accepting state from
the set FU . The corresponding strategy CφP is such that from
every state (s, q) ∈ SP\FU that can reach the set FU , we
follow one of the finite runs with minimum weight from
(s, q) to FU . That means, CφP is a memoryless strategy such
that for (s, q) ∈ SP\FU with w∗P((s, q), FU ) < ∞ it holds
CφP((s, q)) = (s′, q′) where

wP((s, q), (s′, q′)) = w∗P((s, q), FU )− w∗P((s′, q′), FU ).

The strategy CVP for the average subgoal is given by
the cycle cycVU = c0 . . . cm of the ASCC U . Similarly to
the mission subgoal, for a state (s, q) ∈ SP\cycVU with
w∗P((s, q), cycVU ) < ∞, the strategy CVP follows one of
the finite runs with minimum weight to cycVU . For a state
ci ∈ cycVU , it holds CVP (ci) = ci+1 mod (m+1). If all the states
of the cycle cycVU are distinct, the strategy CVP is memoryless,
otherwise it is finite-memory.

Proposition 1: For the strategy CVP and every state
(s, q) ∈ SU , it holds

lim
n→∞

Pr
U,CV

P
(s,q)

(∑n
i=0 g(ρCV

P
(i), wP(ρ

(i)

CV
P

))

](ρ
(n)

CV
P

)
≤ V ∗U

)
= 1.

Equivalently, for every state (s, q) ∈ SU and every ε > 0,
there exists j(ε) ∈ N such that if the strategy CVP is played
from the state (s, q) until at least l ≥ j(ε) surveillance
cycles are completed, then the average cumulative penalty
per surveillance cycle incurred in the performed finite run is
at most V ∗U + ε with probability at least 1− ε.

Proof: (Sketch.) The proof is based on the fact that the
product P with dynamic penalties can be translated into a
Markov decision process (MDP) (see e.g., [23]) with static
penalties. The run ρCV

P
corresponds to a Markov chain (see

e.g., [24]) of the MDP. Moreover, the cycle cyc∗U corresponds
to the minimum mean cycle of the reduced TS U . Hence,
the equation in the theorem is equivalent to the property
of MDPs with static penalties proved in [20] regarding the
minimum expected penalty incurred per stage.

Remark 1: Assume there exists a state (s, q) ∈ SP with
p((s, q)) = 0, i.e., if the penalty in (s, q) is 1, it always
drops to 0. The dynamics of the penalty in (s, q) is not
probabilistic and if we visit (s, q) infinitely many times, the
expected average penalty incurred in (s, q) might differ from
gexp((s, q)). That can cause violation of Prop. 1.

Now we describe the strategy CP . It is played in rounds,
where each round consists of two phases, one for each
subgoal. The first round starts at the beginning of the
execution of the system in the initial state sPinit of P . Let
i be the current round. In the first phase of the round the
strategy CφP is applied until an accepting state of the ASCC
U is reached. We use ki to denote the number of steps we
played the strategy CφP in round i. Once the mission subgoal
is fulfilled, the average subgoal becomes the current subgoal.
In this phase, we play the strategy CVP until the number of
completed surveillance cycles in the second phase of the
current round is li ≥ max{j( 1

i ), i · ki}.
Theorem 1: The strategy CP projects to a strategy C of

T that solves Problem 1.



Proof: From the fact that the ASCC U is reachable from
the initial state sPinit and from the construction of CφP , it
follows that U is reached from sPinit in finite time. In every
round i of the strategy CP , an accepting state is visited.
Moreover, from Prop. 1 and the fact that li ≥ max{j( 1

i ), i ·
ki}, it can be shown that the average cumulative penalty per
surveillance cycle incurred in the i-th round is at most V ∗U+ 2

i
with probability at least 1− 1

i . Therefore, in the limit, the run
induced by CP satisfies the LTL specification and reaches
the optimal average cumulative penalty per surveillance cycle
V ∗U with probability 1.

Note that, in general, the strategy CP is not finite-memory.
The reason is that in the modes of the finite-memory strategy
we would need to store the number of steps spent so far in
the first phase ki and the number li of the surveillance cycles
in the second phase of a given round. Since j( 1

i ) is generally
increasing with i, we would need infinitely many modes to be
able to count the number of surveillance cycles in the second
phase. However, if there exists a cycle cycVU of the SCC U
corresponding to V ∗U that contains an accepting state, then
the finite-memory strategy CVP for the average subgoal maps
to a strategy of T solving Problem 1, which is therefore in
the worst case finite-memory as well.

Complexity: The size of a BA for an LTL formula φ is
in the worst case 2O(|φ|), where |φ| is the size of φ [17].
However, the actual size of the BA is in practice often quite
small. The size of the product P is O(|S| ·2O(|φ|)). To com-
pute the minimum weights w∗((s, q), (s′, q′)) between every
two states of P we use Floyd-Warshall algorithm taking
O(|SP |3) time. Tarjan’s algorithm [15] is used to compute
the set SCC(P) in time O(|SP | + |TP |). The reduction of
an ASCC U can be computed in time O(|SU | · |TU |2). The
Karp’s algorithm [22] finds the optimal APPC value and cor-
responding cycle in time O(|SU | · |TU |). The main pitfall of
the algorithm is to compute the number j( 1

i ) of surveillance
cycles needed in the second phase of the current round i
according to Prop. 1. Intuitively, we need to consider the
finite run σCV

P ,k
induced by the strategy CVP from the current

state that contains k = 1 surveillance cycles, and compute
the sum of probabilities PrP,CP

(s,q) (Cyl((σCV
P ,k

, τ))) for every
τ with the average cumulative penalty per surveillance cycle
less or equal to V ∗U + 1

i . If the total probability is at least
1− 1

i , we set j( 1
i ) = k, otherwise we increase k and repeat

the process. For every k, there exist r
|σ

CV
P ,k
|

sequences τ . To
partially overcome this issue, we compute the number j( 1

i )
only at the point in time, when the number of surveillance
cycles in the second phase of the current round i is i ·ki and
the average cumulative penalty in this round is still above
V ∗U + 2

i . As the simulation results in Sec. VI show, this
happens only rarely, if ever.

C. Online control

The online algorithm locally improves the strategy CP
according to the values of penalties observed from the current
state and their simulation in the next h time units. The
resulting strategy CP is again played in rounds. However, in
each step of the strategy CP , we consider a finite set of finite

runs starting from the current state, choose one according to
an optimization function, and apply its first transition.

Throughout the rest of the section we use the following
notation. We use singletons such as u, ui to denote the
states of P . Let σall ∈ RunPfin(sPinit) denote the finite run
executed by P so far. Let i be the current round of the
strategy CP and σi = ui,0 . . . ui,k the finite run executed
so far in this round, i.e., ui,k is the current state of P . We
use ti,0, . . . , ti,k to denote the points in time when the states
ui,0, . . . , ui,k were visited, respectively.

The optimization function f : RunPfin(ui,k) → [0, 1] as-
signs every finite run σ = u0 . . . un starting from the current
state a value f(σ) that is the expected average cumulative
penalty per surveillance cycle that would be incurred in the
round i, if the run σ was to be executed next, i.e.,

f(σ) =

k∑
j=0

g(ui,j , ti,j) +
n∑
j=1

gsim(uj , ti,k + wP(σ
(j)))

](σi.σ(1) . . . last(σ))
, (5)

where gsim(uj , ti,k + wP(σ(j))) is the simulated expected
penalty incurred in the state uj at the time of its visit. If
the visit occurs within the next h time units and the state
uj is visible from the current state ui,k, we simulate the
penalty currently observed in uj over wP(σ(j)) time units.
Otherwise, we set the expected penalty to be gexp(uj). The
exact definition of wP(σ(j)) can be found in Tab. I.

For a set of states X ⊆ SP , we define a shorten-
ing indicator function IX : TP → {0, 1} such that for
((s1, q1), (s2, q2)) ∈ TP

IX
(
((s1, q1), (s2, q2))

)
=


1 if w∗P((s1, q1), X)

> w∗P((s2, q2), X),

0 otherwise.
(6)

Intuitively, the indicator has value 1 if the transition leads
strictly closer to the set X , and 0 otherwise.

In the first phase of every round, we locally improve the
strategy CφP computed in Sec. IV-B that aims to visit an
accepting state of the chosen ASCC U . In each step of the
resulting strategy Cφ

P , we consider the set Runφ(ui,k) of all
finite runs from the current state ui,k that lead to an accepting
state from the set FU with all transitions shortening in the
indicator IFU defined according to Eq. (6), i.e.,

Runφ(ui,k) = {σ ∈ RunPfin(ui,k) | last(σ) ∈ FU ,
∀0 ≤ j ≤ |σ| − 1: IFU ((σ(j), σ(j + 1))) = 1}.

Let σ ∈ Runφ(ui,k) be the run that minimizes the optimiza-
tion function f from Eq. (5). Then Cφ

P(σall) = σ(1). Just
like in the offline algorithm, the strategy Cφ

P is applied until
a state from the set FU is visited.

In the second phase, we locally improve the strategy CVP
for the average subgoal computed in Sec. IV-B to obtain a
strategy CV

P . However, the definition of the set of finite runs
we choose from changes during the phase. At the beginning
of the second phase of the current round i, we aim to reach
the cycle cycVU = c0 . . . cm of the ASCC U and we use
the same idea that is used in the first phase above. To be
specific, we define CV

P (σall) = σ(1), where σ is the finite



gsim(uj , ti,k + wP (σ
(j))) =


g(uj , ti,k) +

wP (σ(j))
r

if uj ∈ Vis(ui,k), wP (σ
(j)) ≤ h and g(uj , ti,k) +

wP (σ(j))
r

≤ 1,
r∑
x=0

pst(x
r
) + pst(1) if uj ∈ Vis(ui,k), wP (σ

(j)) ≤ h and g(uj , ti,k) +
wP (σ(j))

r
> 1,

gexp(uj) otherwise.

pst(x
r
) =

( z1∑
y=0

(z1−y+z2+y(r+1))!
(z1−y)!·(z2+y(r+1))!

· (1− p(uj))(z1−y) · (p(s))(z2+y(r+1))
)
· (1− p(s)) · x

r

if z = wP (σ
(j))− (1− g(uj , ti,k)) · r − x− 1 ≥ 0, z1 = z div (r + 1), z2 = z mod (r + 1); otherwise if z < 0, pst(x

r
) = 0

pst(1) =
z3∑
y=0

(z3−y+z4+y(r+1))!
(z3−y)!·(z4+y(r+1))!

· (1− p(uj))(z3−y) · (p(s))(z4+y(r+1)) · p(s)

where z = wP (σ
(j))− (1− g(uj , ti,k)) · r − 1, z3 = z div (r + 1), z4 = z mod (r + 1)

TABLE I: The function computing the simulated expected penalty incurred in a state uj of the run σ at the time of its visit ti,k + wP (σ
(j)) if we are

to apply the run σ from the current state ui,k , div stands for integer division and mod for modulus.

run minimizing f from the set
RunV (ui,k) = {σ ∈ RunPfin(ui,k) | last(σ) ∈ cycVU ,

∀0 ≤ j ≤ |σ| − 1: IcycVU
((σ(j), σ(j + 1))) = 1}.

Once a state ca ∈ cycVU of the cycle is reached, we continue
as follows. Let cb ∈ cycVU be the first state labeled with πsur

that is visited from ca if we follow the cycle. Until we reach
the state cb, the optimal finite run σ is chosen from the set

RunV (ui,k) = {σ ∈ RunPfin(ui,k) | last(σ) = cb, and
∀0 ≤ j ≤ |σ| − 1: Icb ((σ(j), σ(j + 1))) = 1 or
|σca→ui,k |+ |σ| ≤ b− a+ 2 mod (m+ 1)},

where σca→ui,k
is the finite run already executed in P from

the state ca to the current state ui,k. Intuitively, the set
contains every finite run from the current state to the state cb
that either has all transitions shortening in Icb or the length of
the finite run is such that if we were to perform the finite run,
the length of the performed run from ca to cb would not be
longer than following the cycle from ca to cb. When the state
cb is reached, we restart the above procedure with ca = cb.
The strategy CV

P is performed until li ≥ max{j( 1
i ), i · ki}

surveillance cycles are completed in the second phase of
the current round i, where ki is the number of steps of the
first phase and j is from Prop. 1. We can end the second
phase sooner, specifically in any time when we complete a
surveillance cycle and the average cumulative penalty per
surveillance cycle incurred in the current round is less or
equal to V ∗U + 2

i .
Theorem 2: The strategy CP projects to a strategy C of

T solving Problem 1.
Proof: First, we prove that Prop. 1 holds for the strategy

CV
P as well. This result follows directly from the facts below.

The set of finite runs we choose from always contains a
finite run induced by the strategy CVP . Once the cycle cycVU
is reached, the system optimizes the finite run from one
surveillance state of the cycle to the next, until it is reached
after finite time. Finally, if the strategy CV

P does not follow
CVP , it is only because the chosen finite run provides lower
expected average. The correctness of the strategy CP is
now proved analogously to the correctness of the strategy
computed offline.

Proposition 2: The strategy CP is with probability 1
expected to perform in the worst case as good as the
strategy CP computed offline. That means, if the average
cumulative penalty per surveillance cycle incurred in the so
far performed run of the system is lower than the optimal

APPC value V ∗U , it will rise slower under the strategy CP
than under the strategy CP . On the other hand, if the average
cumulative penalty per surveillance cycle incurred in the so
far performed run of the system is higher than the optimal
APPC value V ∗U , it is expected to decrease faster under the
strategy CP than under the strategy CP .

Proof: Follows from the proof of Theorem 2.
Complexity: The cardinality of the set of finite runs

Runφ(ui,k) grows exponentially with the minimum weight
w∗P(ui,k, FU ). Analogously, the same holds for the set of
finite runs RunV (ui,k) and the set cyc∗V or one of its surveil-
lance states. To simplify the computations and effectively
use the algorithm in real time, one can use the following
rule that was also applied in our implementation in Sec.VI.
We put a threshold on the maximum weight of a finite run
in Runφ(ui,k) and RunV (ui,k). In the second phase of a
round, when on the optimal cycle, we optimize the finite
run from the state ca to the next surveillance state on the
cycle cb. However, if the weight of the fragment of the
cycle from ca to cb is too high, we can first optimize the
run to some intermediate state c′b. Also, the complexity of
one step of the strategy CP grows exponentially with the
user-defined planning horizon h. Hence, h should be chosen
wisely. One should also keep in mind that the higher the
planning horizon, the better local improvement.

V. DISCUSSION

Every LTL formula ϕ over AP can be converted to a
formula φ of the form in Eq. (3) for which it holds that
a run of the TS T satisfies φ if and only if it satisfies ϕ.
The formula is φ = ϕ ∧ GFπsur where πsur ∈ L(s) for
every s ∈ S. In that case, Problem 1 requires to minimize
the expected average penalty incurred per stage.

The algorithms presented in Sec. IV can be used to
correctly solve Problem 1 also for the systems with different
penalty dynamics than the one defined in Sec. III. However,
for every state we need to be able to compute the expected
value of the penalty in the state, like in Eq. (2). For the online
algorithm we also require that the dynamics of penalties
allows to simulate them for a finite number of time units.
More precisely, if we observe the penalty in a state s ∈ S
in time t, we can compute the simulated expected value of
the penalty in s in every following time unit, up to h time
units, based only on the observed value.
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Fig. 2: (a) A TS modeling the robot (black dot) motion in a partitioned
environment. Two stock locations are in green, a base is shown in blue,
and unsafe locations are in red. There is a transition between vertically,
horizontally or diagonally neighboring states. The weight of a horizontal
and vertical transition is 2, for a diagonal transition it is 3. (b) The penalty
probabilities in states. Darker shade indicates higher probability.

The online algorithm from Sec. IV-C is a heuristic. The
sets of finite runs Runφ(ui,k),RunV (ui,k) can be defined
differently according to the properties of the actual problem.
To guarantee the correctness of the strategy CP , the sets
must satisfy the following conditions. There always exists a
finite run in the set minimizing the optimization function f
in Eq. (5). The definition of the set Runφ(ui,k) guarantees
that an accepting state from FU is visited after finite number
of steps. The definition of RunV (ui,k) also guarantees a visit
of the cycle cycVU in finite time and moreover, Prop. 1 holds
for the resulting strategy CV

P .

VI. CASE STUDY

We implemented the framework developed in this paper
for a persistent surveillance robotics example in Java [25].
In this section, we report on the simulation results.

We consider a mobile robot in a grid-like partitioned
environment modeled as a TS depicted in Fig. 2a. The robot
transports packages between two stocks, marked green in
Fig. 2a. The blue state marks the robot’s base location. The
penalties in states are defined by rate r = 5 and penalty
probability function in Fig. 2b. The visibility range v is 6.
For example, in Fig. 2a the set Vis(s) of states visible from
the current state s, with corresponding penalties, is depicted
as the blue-shaded area. We set the planning horizon h = 9.

The mission for the robot is to transport packages be-
tween the two stocks (labeled with propositions a, and b,
respectively) and infinitely many times return to the base
(labeled with proposition c). The red states in Fig. 2a are
dangerous locations (labeled with u) which are to be avoided.
At the same time, we wish to minimize the cumulative
penalty incurred during the transport of a package, i.e., the
surveillance property πsur is true in both stock states. The
corresponding LTL formula is

G
(
a⇒ X (¬aU b)

)
∧ G

(
b⇒ X (¬bU a)

)
∧

GF c ∧ G(¬u) ∧ GFπsur,

and the Büchi automaton has 10 states. The cycle provid-
ing the minimum expected average cumulative penalty per

(a)

(b)

Fig. 3: (a) The average cumulative penalty per surveillance cycle incurred
during the runs, shown at the end of each round. The red line marks the
optimal APPC value. (b) The average cumulative penalty per surveillance
cycle incurred in every round. The red bars indicate the threshold V ∗U + 2

i
.

surveillance cycle is depicted in magenta in Fig. 2a and the
optimal APPC value is 5.4.

We ran both offline and online algorithm for multiple
rounds starting from the base state. In Fig. 3 we report
on the results for 20 rounds, for more results see [25].
As illustrated in Fig. 3a, the average cumulative penalty
per surveillance cycle incurred in the run induced by the
offline strategy is above the optimal value and converges
to it fairly fast. For the run induced by the online strategy,
the average is significantly below the minimum APPC value
due to the local improvement based on local sensing. On the
other hand, Fig. 3b shows the average cumulative penalty
per surveillance cycle incurred in each round separately.
The number of surveillance cycles performed in the second
phase of every round i of the offline strategy was less
than i · ki, i.e., the second phase always ended due to the
fact that the average incurred in the round was below the
threshold V ∗U + 2

i . The maximum number of surveillance
cycles performed in the second phase of a round was 7. The
same is true for the online strategy and the maximum number
of surveillance cycles in the second phase of a round was
3. For both algorithms, the number of surveillance cycles in
the second phase of a round does not evolve monotonically,
rather randomly. Hence we conclude that in every round i
we unlikely need to compute the value j( 1

i ).
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