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Sampling-based Algorithms for Continuous-time POMDPs

Pratik Chaudhari∗ Sertac Karaman∗ David Hsu† Emilio Frazzoli∗

Abstract— This paper focuses on a continuous-time,
continuous-space formulation of the stochastic optimal con-
trol problem with nonlinear dynamics and observation noise.
We lay the mathematical foundations to construct, via in-
cremental sampling, an approximating sequence of discrete-
time finite-state partially observable Markov decision processes
(POMDPs), such that the behavior of successive approximations
converges to the behavior of the original continuous system
in an appropriate sense. We also show that the optimal cost
function and control policies for these POMDP approximations
converge almost surely to their counterparts for the underlying
continuous system in the limit. We demonstrate this approach
on two popular continuous-time problems, viz., the Linear-
Quadratic-Gaussian (LQG) control problem and the light-dark
domain problem.

I. INTRODUCTION

Uncertainty, whether it arises from unmodeled dynamics
or from imprecise sensors, forms a significant part of most
systems. Control of such systems, many of which have
continuous-time dynamics, necessitates a formulation that
explicitly accounts for this uncertainty. Stochastic differ-
ential equations (SDEs) have been a popular approach to
address different aspects of problems in control of general,
continuous-time systems with uncertainty [1]. It is thus
tempting to formulate the stochastic optimal control problem
for robotic systems as control of SDEs. However, although
they have long been a focus of control theory, closed form,
analytical solutions for such models are hard to come by;
solutions for only a few special cases, e.g, linear dynamics
with Gaussian noise, can be computed easily [2].

On the other hand, more recent literature in the context of
artificial intelligence and robotics, focuses on discrete-time
and discrete-state models using partially-observable Markov
decision processes (POMDPs). In this formulation, the robot
and its environment are expressed by a finite number of
states. The dynamics is governed by stochastic transitions
which depend on the particular action chosen. However, the
state of the underlying Markov decision process (MDP) is not
directly observable to the robot; only its noisy observations
are available. The problem of stochastic control for this
model is often formulated as optimizing the expected value
of some performance metric of this discrete system, where
the expectation is taken over all possible realizations of noise.

Similar to the continuous-time case, solving discrete
POMDPs is computationally challenging, it is in fact
PSPACE-hard [3]. Despite this, there are a number of
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general-purpose algorithms that have been demonstrated to
work on challenging examples. An enabling idea behind
these algorithms has been the notion of “belief space”, which
is defined as the space of all probability distributions over
the set of states. The problem is then reformulated with the
dynamics consisting of controlled stochastic transitions in the
belief space. A particularly successful class of algorithms,
often called point-based methods, search for an optimal
policy by sampling only the reachable belief space [4],
[5]. These approaches are tailored to solve discrete-time
discrete-space POMDPs; algorithmic tools for continuous-
time continuous-space formulations of the problem have
received relatively little attention so far. Only recently, point-
based solvers have been adapted to continuous state-spaces
by simulating the continuous-time system using particle-
based methods [6] whereas continuous observation spaces
have been studied in [7].

In this paper, we consider a continuous-time continuous-
space system described by a set of stochastic differential
equations. We propose a two-stage approach. First, we gener-
ate a sequence of discrete-time discrete-space POMDPs that
approximate, in some suitable sense, the original continu-
ous system. We then solve these POMDP approximations
using an existing algorithm. We show that the resulting
cost function and controllers converge to the optimal cost
function and controller for the original continuous system
in the limit. Inspired by recent advances in sampling-based
optimal motion-planning [8], these POMDP approximations
are constructed incrementally in a computationally-efficient
manner using random sampling. We also demonstrate the
proposed approach on the Linear-Quadratic-Gaussian (LQG)
control problem and the light-dark domain problem.

The paper is organized as follows. After some prelimi-
naries in Section II, the general problem is formulated in
Section III. An algorithm for constructing POMDP approxi-
mations is outlined in Section IV its convergence properties
are analyzed in Section V. Section VI discusses computa-
tional experiments with conclusions and directions for future
work provided in Section VII.

II. PRELIMINARIES

We introduce some notation and the Markov chain ap-
proximation method for constructing discrete-Markov chain
approximations for continuous-time processes in this section.

A. Markov Chains

A Markov chain (MC) is denoted by the tuple M =
(S, P, z0), where S is a finite set of states and P : S×S →
[0, 1] is a function that denotes the transition probabilities.
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For convenience, we denote by P (z | z′), the probability that
the next state is z given that the current state is z′. The
random process denoted by {ξi; i ∈ N} is the (discrete-
time) trajectory of the Markov chain M starting from z0.

B. Markov Decision Processes

A Markov Decision Process (MDP) is a tuple M =
(S,U, P, z0) where S is a finite set of states, U is a finite set
of controls, P : S×U×S → [0, 1] is a transition probability
function and z0 ∈ S is the initial state. The dynamics of
the process has the Markov property, i.e., a control action
u ∈ U at a state z ∈ S results in a new state z′ ∈ S with a
probability that we denote as P (z′ | z, u).

A policy for a MDP is a mapping π : S → U that assigns a
control action to each state. The cost function corresponding
to a policy π for T time units is defined to be:

Jπ(z̄) = E
[∑T

k=1
γkl
(
z(k), π(z(k))

)
+ L

(
z(T )

)
| z0 = z̄

]
,

where γ < 1 is the discount factor, l : S × U → R>0 is the
running cost, and L : S → R>0 is the terminal cost. Let Π
denote the (finite) set of all policies. An optimal policy is
a policy π∗ ∈ Π such that Jπ∗(z) = minπ∈Π Jπ(z) for all
z ∈ S. Denote the optimal cost function by Jπ∗(·).

C. Partially-observable Markov Decision Processes

A (discrete-time discrete-state) partially-observable
Markov decision process (POMDP) is a tuple M = (S,U,O,
P,Q, b0) such that S is a finite set of states, U is a
finite set of controls, O is a finite set of observations,
P : S × U × S → [0, 1] are the transition probabilities,
Q : S × O → [0, 1] are the observation probabilities,
and bo : S → [0, 1] is the initial distribution of states.
A control action u ∈ U at a state z results in z′ ∈ S
with probability P (z′ | z, u). However, the process is only
partially observable, an observation o ∈ O is observed at
z ∈ S with probability Q(z, o), denoted as Q(z | o).

A belief is a probability mass function over the set of
states b : S → [0, 1]. Starting from an initial state z0,
drawn from a distribution b0, applying a sequence of control
actions, u(k), where k ∈ {1, 2, . . . , T} results in a sequence
of observations which we denote by o(k). A distribution of
possible states for each time step, computed using Bayes law,
is called the belief trajectory, simply denoted by b(k). Let B
denote the (infinite) set of all beliefs. A policy is a function
π : B → U that assigns a control to each belief. Under a
policy π, the control π(b) is executed when the current belief
is b ∈ B. The cost function can be written as

Jπ(b̄) = E
[∑T

k=1
γkl(b(k), π(b(k))) + L(b(T )) | b0 = b̄

]
,

where γ is the discount factor, l : B × U → R>0 is the
running cost, and L : B × U → R>0 is the terminal cost.
Let Π denote the (infinite) set of all policies. An optimal
policy is a policy π∗ ∈ Π such that Jπ∗(b) = infπ∈Π Jπ(b)
for all b ∈ B. The function Jπ∗ is the optimal cost function.

Fig. 1: Blue : Trajectory of the original stochastic system, Bold
black : interpolated trajectory ξ(t), ∆t = t3 − t2 is the holding
time of state ξ(t3).

D. The Markov Chain Approximation Method

In this paper, we are interested in continuous-time
continuous-state processes. A widely-accepted continuous-
time analogue of a Markov chain is the following stochastic
differential equation (SDE):

dx(t) = f(x(t)) dt + F (x(t)) dw(t), x(0) = x0 (1)

where {w(t) : t ∈ R≥0} is the standard k-dimensional
Wiener process, x(t) ∈ S ⊂ Rd is the state, x0 ∈ S is
the initial state while f : Rd → Rd is the drift vector and
F : Rd → Rd×k is the diffusion matrix. The solution to this
SDE is a stochastic process {x(t) : t ∈ R≥0} that satisfies,

x(t) = x(0) +

∫ t

0

f(x(τ)) dτ +

∫ t

0

F (x(τ)) dw(τ), (2)

where the last term is the usual Itô integral. The Markov
chain approximation method, proposed by Kushner (see,
e.g., [9]), provides a set of conditions under which a se-
quence of (discrete) Markov chains, approximate the original
continuous process described by the SDE above.

For a Markov chain, M = (S, P, z0), let ∆t : S → R>0

be a function that assigns to each state, a positive real number
∆t(z) called the holding time. Let the continuous-time
interpolation, ξ(t), of the discrete Markov chain trajectory
{ξi; i ∈ N}, be given by ξ(t) = ξi for all [ti, ti+1), where
ti =

∑i
j=1 ∆t(ξj). Roughly, the Markov chain spends a

time ∆t(z) at state ξi = z before making a transition. Fig. 1
shows an example interpolated trajectory. Similarly, we can
also define the corresponding interpolated belief trajectory
of a POMDP as b(t) = b(ti) for all [ti, ti+1).

Let {Mn = (Sn, Pn, z0,n) : n ∈ N} be a sequence
of Markov chains, ∆tn be a sequence of holding times
and {ξni : i ∈ Z≥0} be trajectories of Mn. The sequence
Mn along with the sequence ∆tn is said to be locally
consistent [9] with the original system described by Eqn. (1)
if the following conditions are satisfied for all z ∈ S.

◦ lim
n→∞

∆tn(z) = 0, (3)

◦ lim
n→∞

E[ξni+1 − ξni | ξni = z]

∆tn(z)
= f(z), (4)

◦ lim
n→∞

Cov[ξni+1 − ξni | ξni = z]

∆tn(z)
= F (z)F (z)T . (5)

where Cov(x) = E[(x−E[x])(x−E[x])T ]. Local consistency
implies that interpolated trajectories of successive Markov
chains converge in distribution to trajectories of the stochas-
tic differential equation given by Eqn. (1). This statement is
made precise by the following theorem.



Theorem 1 (Thm. 10.4.1 in [9]) If {Mn : n ∈ Z≥0} is
a sequence of Markov chains and ∆tn is a sequence of
holding times satisfying local consistency conditions, then
the sequence of trajectories ξn(·) has a subsequence that
converges in distribution to x(·) that satisfies Eqn. (2).

Let us note two recent approaches based on this method
that use sampling-based techniques inspired from motion
planning literature to create discrete MDPs [10] and Hid-
den Markov Models (HMMs) [11]. Roughly speaking, our
approach merges these two ideas to create efficient POMDPs.

III. PROBLEM FORMULATION AND APPROACH

We formulate the continuous-time, continuous-state par-
tially observed stochastic control problem in this section.

Problem 2 Consider the stochastic dynamical system:

dx(t) = f(x(t), u(t)) dt+ F (x(t)) dw(t)

dy(t) = g(x(t)) dt+G(x(t)) dv(t)
(6)

where {w(t) : t ∈ R≥0} and {v(t) : t ∈ R≥0} are inde-
pendent k-dimensional and l-dimensional standard Wiener
processes, x(t) ∈ S ⊂ Rd, u(t) ∈ U ⊂ Rm, y(t) ∈ Rp,
f : S × U → Rd, F : S → Rd×k, g : S → Rp, and
G : S → Rp×l. Find a control π(t) ∈ U which is a non-
anticipating functional of the observation process, such that,

Jπ = E
[ ∫ T

0

l(x(t), π({y(τ) : 0 ≤ τ ≤ t}), t) dt

+ L(x(T ))
∣∣ x(0) = x0

]
. (7)

is minimized. x0 is a random variable with distribution b0.
The terminal time T (finite or infinite) is defined as the exit
time from a compact set K, i.e., T = inf{t : x(t) /∈ Ko}.
We tacitly assume that the sets S,U are bounded and
functions f, F, g,G, l and L are continuous and bounded
on bounded intervals to guarantee existence and uniqueness
of solutions (see [1]). Note that the observation process
y(t) given above is equivalent to the more popular version
given as y(t) = g′(x(t)) + G′(x(t)) ṽ where ṽ is white
Gaussian noise [1]. The conditional expectation in Eqn. (7)
will be clear from the context and is henceforth dropped.
The following lemma shows that the above cost function
also admits a belief space representation.

Lemma 3 Prob. 2 is equivalent to minimizing

J ′π′ = E
[ ∫ T

0

l′(b(t), π(b(t)), t) dt+L′(b(T ))
∣∣ b(0) = b0

]
.

for some functions l′(·) and L′(·).

Proof: Let u(t) = π({y(τ) : τ ≤ t}). Using the Law
of Iterated Expectations and Fubini’s Thm.,

Jπ = E

[∫ T

0

E[l(x, u, t) | Fyt ] dt

]
+ E

[
E[L(x(T ) | FyT ]

]
Note that since b(t) is a sufficient statistic, i.e., it contains all
information needed for control in the POMDP problem [12],

we can calculate a new policy π′ : B → U from π(·). This
is equivalent to J ′π′ with

l′(·, ·, ·) = E[l(x, u, t) | Fyt ] =

∫
S
l(x, u, t) b(x(t)) dx(t),

L′(·) = E[L(x(T )) | FyT ] =

∫
S
L(x(T ))b(x(T )) dx(T ).

Our approach to solving Prob. 2 can be briefly summarized
as follows. We first generate a discrete-time discrete-space
POMDP that approximates the continuous-time continuous-
space stochastic system in Eqn. (6). We then use an existing
POMDP solver, SARSOP [5], to obtain a policy for the
POMDP approximation. The following section describes
the construction of discrete POMDP approximations using
sampling-based methods.

IV. CONSTRUCTING POMDP APPROXIMATIONS

A. Primitive procedures
A few preliminary procedures required are as follows.
1) Sampling: For x ∈ S ⊂ Rd, the SampleState pro-

cedure returns states sampled independently and uniformly
from S. SampleControl samples control inputs uniformly
randomly from the set of admissible controls, U .

2) Neighboring states: The procedure Near(z, S) returns
all states within a distance of r = γs (log n/n)1/d from z,

Znear =
{
zk ∈ S, zk : ‖zk − z‖2 ≤ γs (log n/n)

1/d
}

where n = |S|, d = dim(S) and γs > 0 is a constant
calculated in Thm. 4 of [11].

3) Holding Time: Given z ∈ S and u ∈ U , the
ComputeHoldingTime(z, u, S) procedure returns the hold-
ing time computed as ∆t(z, u) = r2

‖F (z)FT (z)‖2+r‖f(z,u)‖2 ,

where r is as given in the procedure Near(z, S).
4) Transition Probabilities: Let |U | = m, i.e.,

u1, . . . um ∈ U ⊂ U . For every one of these controls,
the ComputeTransProb(z, u, δ) procedure uses local con-
sistency conditions to calculate transition probabilities as,

E[∆ξ(z, u)] = f(z, u) δ

Cov[ξni+1 − ξni | ξni = z, uni = u] = F (z)FT (z) δ.

Let the transition probabilities be pk = P(zk | z, u) for all
zk ∈ Znear with P(z′ | z, u) = 0 if z′ /∈ Znear. These condi-
tions are a set of linear equations for probabilities pk. They
can also be obtained using a small-time approximation [11].

5) Observation Probabilities: Given a state z ∈ S, the
procedure ComputeObsProb(z) returns

Q(z′ | z) = P(z′ | o) = η N(g(z′), g(z), G(z) GT (z)),

where o = g(z) and z′ ∈ Znear(z). N(x, µ,Σ) denotes the
probability density of a normal random variable with mean
µ and variance Σ calculated at x and η is a normalizing
constant. Note that (i) this procedure can be modified suitably
for cases where observation noise is not Gaussian and, (ii)
we assume that the set of states and observations are same.

6) Connect State: ConnectState computes transition
and observation probabilities for a given state z ∈ S.



B. Algorithm

The “batch construction” in Alg. 1 takes a set of n sampled
states and m sampled controls to construct a discrete model
of Prob. 2. On the other hand, Alg. 3 incrementally refines

Algorithm 1: Batch POMDP
1 U0 = ∅, S0 = ∅;
2 for k ≤ m do
3 u← SampleControl;
4 Uk ← {u} ∪ Uk−1;

5 for k ≤ n do
6 z ← SampleState;
7 Sk ← {z} ∪ Sk−1;

8 for z ∈ Sn do
9 for u ∈ Um do

10 ∆tn(z, u)← ComputeHoldingTime(z, u, Sn);

11 δn ← minz∈Sn,u∈Um ∆tn(z, u);
12 for z ∈ Sn do
13 ConnectState(z, Sn, Um, Pn, Qn, δn);

14 return (Sn, Um, Pn, Qn, δn);

Algorithm 2: ConnectState(z, S, U, P,Q, δ)
1 for u ∈ Um do
2 P (· | z, u)← ComputeTransProb(z, u, δ);
3 Q(· | z)← ComputeObsProb(z);

Algorithm 3: Incremental construction of POMDP
1 z ← SampleState;
2 Sn+1 ← {z} ∪ Sn;
3 U ← Um;
4 if bc (log(n+ 1)− logn)c > 1 then
5 u← SampleControl;
6 U ← {u} ∪ Um;

7 ConnectState(z, Sn+1, U, Pn, Qn, δn);
8 if minu∈U ∆tn+1(zn+1, u) ≤ δn then
9 δn+1 = δn/2;

10 for z ∈ Sn+1 do
11 ConnectState(z, Sn+1, U, Pn+1, Qn+1, δn+1);

12 else
13 δn+1 ← δn;
14 for z′ ∈ Znear(zn+1) do
15 ConnectState(z′, Sn+1, U, Pn+1, Qn+1, δn+1);

16 Um+1 ← U ;
17 return (Sn+1, Um+1, Pn+1, Qn+1, δn+1);

the POMDP created by the batch construction. In other
words, it creates a new POMDP Mn+1 from Mn by sampling
an addition state zn+1 and control um+1. New control inputs
are sampled to ensure that |U | = m = O(log n). Transition
probabilities of all states using the new control um+1 need
to be recalculated. However, it is can be shown that by
recalculating probabilities only in the set Znear (Lines 14–
15), every state z ∈ Sn will have transition probabilities
using the new control after finitely many iterations (see
Thm. 5 of [11]). The equalized holding time δn (Alg. 1,
Line 11) is refined incrementally as δn+1 = δn/2 and
all transition probabilities are recalculated every time we
add a new state that has ∆t(zn+1) ≤ δn (Lines 8–11).
The amortized complexity of Alg. 3 can be shown to be
O((log n)2) per iteration [11].

Given a POMDP approximation Mn created using the

above algorithms, we obtain the optimal cost function us-
ing SARSOP. An equivalent discrete cost function Jn that
approximates Eqn. (7), e.g., J =

∫∞
0
e−2αtl(x, u)dt is,

Jn ∼
∞∑
k=0

e−2αkδn l(x, u) δn =

∞∑
k=0

γkn l
′(x, u)

where γn = e−2αδn , l′(x, u) = l(x, u)δn and α > 0.

V. ANALYSIS

In this section, we first prove that interpolated belief trajec-
tories of a POMDP approximation, bn(·), converge weakly
to belief trajectories of the original system, b(·). Weak
convergence will then imply that the cost function calculated
on Mn converges to the optimal cost function almost surely.
A technical construction known as “relaxed controls” will
then be used to prove that the control policies also converge
with probability one. The analysis in this section follows the
analysis for the fully observed stochastic control problem
in [9]. However, there are technical differences due to the
fact that we are working with convergence in function spaces.
For the sake of brevity, we only sketch important proofs.

A. Convergence of belief trajectories

Recall that from Thm. 1, trajectories of the Markov chain,
i.e., xn(·) converge in distribution to state trajectories of the
original system, i.e., x(·). The belief of approximate POMDP
is bn(t) = P(xn(t) | Fy,nt ) while the belief of the original
stochastic system is b(t) = P(x(t) | Fyt ) where Fy,nt denotes
the filtration of n discrete observations. We shall use the
notation bn(·)⇒ b(·) to denote weak convergence.

Definition 4 A probability measure P is tight if for each
ε > 0, there exists a compact set K such that P (K) > 1−ε.
A sequence of measures Pn is tight if for every ε, there exists
a compact set K such that Pn(K) > 1− ε for all n ∈ N.

Tightness roughly means that we can always find a set K
that contains most of the measure. It is essential to claim
weak convergence of a sequence of measures in Thm. 7.

Lemma 5 The sequence bn(·) is tight.

Proof: Given bn(·) we will prove the conditions of
Prokhorov’s theorem to claim tightness. Let λn(A,ω) =
Pn(xn(t) ∈ A | Fyt ). Since xn(·) is tight (see Thm. 10.4.1
in [9]), we have Pn(xn(t) ∈ Kε) > 1− ε for all n. Thus,

1− ε < En[λ(Kε)]

=

∫
λn(Kε)

(
1{λn(Kε)>1−1/k} + 1{λn(Kε)≤1−1/k}

)
dPn

<
1

k
Pn (λn(Kε) > 1− 1/k) + (1− 1/k)

=⇒ Pn (λn(Kε) > 1− 1/k) ≥ 1− ε′/2k
=⇒ Pn (λn(Kε) > 1− 1/k ∀ k ) ≥ 1− ε′

where ε = ε′

k 2k
. This proves that the sequence of measures

λn is tight by Prokhorov’s theorem [13].



Theorem 6 (Thm. 2.1 in [14]) Let Xn, Yn be two random
variables taking values in a Polish space S. Suppose
(Xn, Yn) defined on the probability space (Ωn,Fn, Pn)
converges in distribution to (X,Y ) defined on the space
(Ω,F , P ). Suppose a measure Qn exists such that (i) Pn be
absolutely continuous with respect to Qn for each n and, (ii)
(Xn, Yn) become independent under Qn. If a corresponding
distribution Q exists for (X,Y ) and if Qn converges weakly
to Q, for every bounded continuous function F : S → R,
F (Xn) and F (X) converge in distribution, i.e.,

EPn [F (Xn) |Yn]⇒ EP [F (X) |Y ]

Furthermore, using the above result for random variables
x(·) and y(·) given by Eqn. (6) we have,

EPn [F (xn(·)) | Fyt ]⇒ EP [F (x(·)) | Fyt ].

We however require something stronger because the belief
trajectory bn(·) is calculated using sampled observations, i.e.,
observations in the set On, which generate the filtration Fy,nt .
This is proved in the following theorem.

Theorem 7 ([15]) Assume that the conditions of Thm. 6 are
true. If the process y(t) described by Eqn. (6) is approxi-
mated by a process yn(t) such that increments in yn(t) are
Gaussian with zero mean, then,

EPn [F (xn(·)) | Fy,nt ]⇒ EP [F (x(·)) | Fyt ],

i.e., belief trajectories bn(·) converge in distribution to b(·).

Proof: From Eqn. (6), corresponding to state ξi = z,
the increments in observations are ∆yi = G(z)∆vi which is
a Gaussian with zero mean and variance G(z)G(z)T .

B. Relaxed Controls
Relaxed controls is a theoretical framework which roughly,

compactifies the control space to ensure that control policies
of the discrete POMDPs also converge [9]. Given a compact
control space U , let B(U) denote the σ-algebra of its subsets.
A relaxed control is then a Borel measure m(·) such that
m(U × [0, T ]) = t for all t ≥ 0. The derivative mt(·) is
defined as mt(A) = limδ→0

m(A×[t−δ,t])
δ . It can be shown

that any relaxed control can be approximated arbitrarily well
by an ordinary control.

As an example, consider the system ẋ(t) = b(x, u), writ-
ten using relaxed controls as ẋ(t) =

∫
U b(x(t), α) mt(dα).

If the optimal control is non-unique with values ±1, the
corresponding relaxed control is given by mt(·) which takes
those values with equal probability, i.e., m(A×[0, T ]) is total
control corresponding to the set A ⊂ U during the interval
[0, T ]. The solution of Eqn. (6) using control m(·) is,

x(t) = x(0)+

∫ T

0

∫
U
f(x, α)m(dα, ds)+

∫ T

0

F (x)dw (8)

C. Convergence of cost function
Lemma 8 The cost function Jn converges to J almost surely
where, Jn = E

[
L(bn(T ), T ) +

∫ T
0

l(bn(t), t) dt
]

and J =

E
[
L(b(T ), T ) +

∫ T
0

l(b(t), t) dt
]

Proof: Thm. 7 proved that bn(t) ⇒ b(t). Define a
continuous bounded function f : B → R as f(bn) =

L(bn(T ), T ) +
∫ T

0
l(bn(t), t)dt. By the Mapping Thm. [13]

for a weakly convergent sequence bn, we have that f(bn)⇒
f(b). Since f(bn) and f(b) converge in distribution, all
moments converge almost surely, in particular, E[f(bn)] →
E[f(b)] almost surely. If the terminal time is infinite or an
exit time from some compact set, Tn needs to be continuous
under the measure induced by bn to get Tn ⇒ T (and
Tn → T almost surely using Skorohod embedding). The
above lemma still remains valid (see Thm. 9.4.3 in [9]).

Let the cost function using relaxed controls be given by,

W (b,m) := E

[∫ T

0

∫
U
l′(b(s), α, s) m(dα ds) + L′(b(T ))

]
(9)

It can be shown that relaxed controls are continuous,
i.e., if (b,m) be a solution such that it is ε away from
the optimal cost, there exists a relaxed control m′ such
that |W (b,m′)−W (b,m)| ≤ δ. Also, using Lem. 5
and Thm. 10.4.1 in [9], we can prove that any sequence
{xn, bn,mn, Tn} contains a subsequence that converges to
{x, b,m, T} weakly if xn ⇒ x.

The following theorem is the main result of this paper.
It proves that the cost function approximation as calculated
on the approximate Markov chain converges almost surely
to the cost function of the original stochastic system. Since
mn ⇒ m weakly, it also means that the relaxed controls
converge in an almost sure sense in the Skorohod topology.

Theorem 9 (The Convergence Theorem) Let Vm(b) be
the optimal cost function of Prob. 2 using relaxed con-
trols, similarly let Vmn(bn) be the optimal cost function
as calculated on POMDP approximation Mn using relaxed
controls. If we have {xn, bn,mn, Tn} ⇒ {x, b,m, T}, then,
W (bn,mn)→W (b,m) ≥ Vm(b) almost surely. Also,

lim inf
n

Vmn(bn) ≥ Vm(b)

lim sup
n

Vmn(bn) ≤ Vm(b)

Proof: (Sketch) Note that W (b,m) ≥ Vm(b) by defini-
tion. Skorohod representation of weak convergence gives,∫
U
l′(bn(s), α, s) mn(dα ds) + L′(bn(T ))→∫

U
l′(b(s), α, s) m(dα ds) + L′(b(T ))

almost surely, thereby giving W (bn,mn) → W (b,m) ≥
Vm(b) almost surely using Tn

a.s.−−→ T . Using the
same argument along with Fatou’s lemma, we have,
lim infnW (bn,mn) ≥ W (b,m); thereby giving
lim infn Vmn(bn) ≥ Vm(b). Let mε

n(·) be an adaptation of
an “almost optimal” control mε to Mn. We have,

Vm(bn) ≤W (bn,m
ε
n)→W (b,mε) ≤ ε+ Vm(b)

thereby giving, lim supn Vmn(bn) ≤ Vm(b).
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Fig. 2: Convergence of cost for 1-dimensional LQG problem

VI. EXPERIMENTS

This section discusses simulation experiments where
POMDP approximations of a continuous-time stochastic
control problem are solved using SARSOP.

A. Linear Quadratic Gaussian (LQG)

If the dynamics and observations are linear and corrupted
by white Gaussian noise, it turns out that we can solve
Prob. 2 exactly. Consider a 1-dimensional linear system,

dx = −x dt+ u dt+ F dw

y(t) = x(t) +G ṽ

where ṽ denotes unit variance white Gaussian noise. The
objective then is to minimize a cost function of the form
J = E

[∫ 5

0
(x2 + u2) dt

]
. We use Alg. 3 to construct a

discrete POMDP for the above dynamics x ∈ [−1, 1] and
u ∈ [−1, 1] and 2 log n uniformly sampled controls where n
is the number of states in the POMDP. The discount factor
in SARSOP is set to 0.99 to approximate a non-discounted
cost function. Fig. 2 shows the cost of the policy obtained
by solving discrete POMDPs with different number of states
corresponding to the same continuous-time LQG problem
with an optimal cost of 81.02. Note that the convergence
slows down as the number of samples increases and as
the problems grow larger, it becomes increasingly harder to
search for an optimal policy for the discrete POMDP.

B. Light-dark domain

In this section, we test the proposed approach on a
popular problem known as “light-dark domain” [16] which
has been previously solved using techniques like belief-space
planner [16] and convex optimization [17]. In this problem, a
robot with noisy dynamics has to localize its position before
entering a pre-defined goal region to obtain reward. There are
regions in the state-space with beacons, i.e., light regions
where highly accurate observations can be obtained while
all other parts of the state-space are dark regions with large
observation noise. Let the system be,

dx(t) = u(t) dt+ F dw

y(t) = x(t) +G(x(t)) ṽ. (10)
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Fig. 3: An example policy calculated on a POMDP with 20 states
for 1-dimensional Light-dark domain. Red denotes the goal region
while the system has access to accurate observations in the green
region. Blue rectangles denote the belief bn(t). These six figures
show the belief at 6 different instants of policy execution.

where x, y ∈ [−2, 2] while the observation noise is

G(x) =

{
ε : |x− b1| < e1

1/ε : otherwise.

Note that our formulation is non-convex and is a harder
problem than a quadratic gradient in G(x) considered in [16],
[17]. A gradient ensures that even greedy policies can solve
the problem whereas in our case, SARSOP is not aware of
any good policy until it explicitly samples the light region.

Define the goal region as g = {x : |x− g1| < e1, x ∈
S}. The robot has 5 log n actions u ∈ [−1, 1] along with a
terminal action called ugoal to claim the reward. This also
determines the terminal time T . It gets a reward of 1000 if it
reaches the goal region and a penalty of -1000 if it terminates
at any other state. The reward function is

J = E

[
−

T∑
k=0

γkl(xk, uk) + γTR(x(T ))

]
,

where l(xk, uk) = ‖uk uTk ‖2δn is a quadratic cost.
1) Single Beacon: We will consider a 1-dimensional

example with a single beacon first. An example policy
calculated for g1 = −0.9, b1 = 0.9, e1 = 0.1 is shown in
Fig. 3. It is seen that the belief trajectory first travels to the
light region to localize itself after which it proceeds to the
goal to obtain the reward of 721± 40.3.

2) Two beacons: We demonstrate two aspects of our
approach using the next example with two beacons, (i)
incrementality of SARSOP and (ii) incremental refinement of
POMDP approximations to get a better policy. Consider the
dynamics in Eqn. (10) in two dimensions with two beacons



(a) 150 states, 100 sec, Reward: 212.1 ± 99.7 (b) 75 states, 200 sec, Reward: 377.9 ± 48.7 (c) 150 states, 200 sec, Reward: 428.6 ± 55.2

Fig. 4: This figure shows 1000 simulated belief trajectories for policies obtained for different discrete POMDPs. The XY plane represents
the mean of the belief in the X, Y dimensions while the Z axis shows the 2-norm of the variance. The robot starts with a high variance
before it localizes in the green light region to reach the goal region at (1.5, -1.5) with low variance.

placed at b1 = (1.4, 1.4) and b2 = (−1.4,−1.4), both of
width (1.2, 1.2) (shown in green). The initial position of the
robot is at (−1.5,−0.5) which means that it is closer to b2
than b1. The goal is located at (1.5,−1.5) with a width of
(0.2, 0.2). Fig. 4 shows 1000 simulated belief trajectories for
POMDP approximations with different number of states.

Fig.s 4a and 4c show that for the same discrete POMDP,
SARSOP quickly finds a policy which goes through the light
region but if given more computational resources, it finds a
policy that goes through the light region closest to the starting
point, thereby yielding a larger reward. Roughly, in Fig. 4b,
the set of α-vectors calculated on the sparse POMDP is not
accurate enough to ensure that system uncertainty is reduced
by going into the light region. For a larger POMDP in Fig. 4c
with the same computational resources, a more refined set
of α-vectors results in much better reduction of uncertainty
and eventually a larger reward.

VII. CONCLUSIONS

We modeled a continuous-time, continuous-state stochas-
tic system by a pair of stochastic differential equations and
incrementally constructed a sequence of discrete POMDP
approximations of this system via random sampling. Belief
trajectories of discrete POMDPs thus created can be shown
to converge in distribution to belief trajectories of the original
continuous system. We have also shown that the optimal cost
function and control policies for these POMDP approxima-
tions converge almost surely to their counterparts for the
underlying continuous system in the limit.

Our result lays the mathematical foundation for an in-
cremental approach to optimal control of continuous-time,
continuous-state stochastic systems. In our current imple-
mentation, each POMDP approximation is solved indepen-
dently using an existing discrete POMDP solver. The chal-
lenge lies in building upon these results to obtain the solution
incrementally, i.e., taking a coarse POMDP model of the
continuous system as input along with a coarse policy and
incrementally refining both of them.
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