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Control for large scale demand response of thermostatic loads*

Luminita C. Totu, John Leth and Rafael Wisniewski
Department of Electronic Systems, Faculty of Engineering and Science

Aalborg University
9220 Aalborg, Denmark
lct,jjl,raf@es.aau.dk

Abstract— Demand response is an important Smart Grid
concept that aims at facilitating the integration of volatile
energy resources into the electricity grid. This paper considers
a residential demand response scenario and specifically looks
into the problem of managing a large number thermostat-
based appliances with on/off operation. The objective is to
reduce the consumption peak of a group of loads composed
of both flexible and inflexible units. The power flexible units
are the thermostat-based appliances. We discuss a centralized,
model predictive approach and a distributed structure with a
randomized dispatch strategy.

I. INTRODUCTION

In many countries including Denmark [1], [2], energy
generation from volatile resources such as wind or solar
radiation is planned to increase. While these resources are
sustainable and have overall capacity to cover the growing
energy demand and even replace capacity currently served by
fossil-fuels, large scale use is challenging. This is because the
power system needs to be in balance between consumption
and production at all times. When a large percentage of the
generation is volatile, the balancing effort increases beyond
the possibilities of the traditional grid.

Smart Grid is a developing technology that proposes
real-time information exchange, distributed generation, dis-
tributed storages, and intelligent solutions for the electrical
network. It can facilitate the large scale integration of volatile
generation, reduce infrastructure investments and decrease
the need for large, stand-by energy reserves. An impor-
tant Smart Grid concept is demand response, which can
be described as the active, continuous participation of the
consumption in the energy balance: use less electricity when
it is scarce and difficult to produce, and more otherwise.

We present a demand response scenario where a large
group of thermostat-based appliances with on/off operation
represent power flexible units. We can think of the flexible
units as many, small and ”leaky” thermal storages.

Next, we briefly refer to works on a similar topic to outline
our focus. Dynamic demand, a concept closely related to
demand response, is addressed in [3] for a population of
domestic refrigerators acting as grid frequency stabilizers. In
this case, and in contrast to the demand response scenario,
the units cannot be used for planning, e.g., storing energy
minutes or hours before a consumption peak.

*This work is supported by the Southern Denmark Growth Forum and the
European Regional Development Fund under the project ”Smart & Cool”.

The demand-side management structures in [4] and [5]
are more appropriate for operating appliances as distributed
storages. Important techniques used here are randomization
and broadcasting. Furthermore, [6] discusses three different
structures for demand response (price signal, individual
power reference, and individual temperature reference) and
concludes that a successful scheme must combine optimiza-
tion and feedback. It is on these four ideas that we build the
distributed approach proposed in this work.

We start by investigating centralized optimization tech-
niques that are commonly used for production planning [7],
[8]. While these can offer an insight into the consumption
problem, such a direct approach alone is impractical. Due
to non-convex elements (the on/off device level control)
and the large number of variables that need to be com-
municated and computed, algorithms become impracticable.
Consequently, we propose a distributed structure with two
levels: a supervisor center and local controllers. The su-
pervisor center broadcasts a global coordination signal and
uses power measurements of the cumulated consumption as
feedback. A modified thermostat algorithm acts as the local
controller of each appliance. The algorithm handles device
specific operation and responds to the coordination signal in
a randomized manner.

The article is organized as follows. First, models based
on physical principles are introduced in section II. The
centralized optimization is presented in III, and the dis-
tributed structure in IV. Simulations for both approaches are
discussed in V, while VI concludes and points to future work.

II. MODELS

We assume given N+M power consuming devices, where
N units have thermal storage capabilities and thermostat
driven on-off behavior, and M units have a purely stochastic,
time-varying on-off behavior and no energy storage proper-
ties. We think of the first type as refrigerators, heat-pumps,
air-conditioning or water boilers, and of the second type as
lights, TVs, or ovens. With respect to the energy needed
for nominal operation, the devices of the first category
have power flexibility and are considered controllable, while
those of the second category are power inflexible and are
considered uncontrollable. It is also assumed that power
consumption is constant during the on-cycle for all devices.

The aim is to control the N flexible devices, within the
boundaries of their nominal operation and in the presence of



the M inflexible devices, such that the peak of the cumulated
consumption is reduced.

For both device categories, simplified physical models
combined with stochastic elements are used to capture the
main behaviors related to power consumption. Essential
aspects of the problem are scale and variability: the objective
is to manage a very large number of units and to tolerate
parameter variations.

A. Basic models for the flexible units

The flexible devices have an on/off consumption pattern
based on thermostat control. In the on-cycle, power is
consumed and thermal energy (heat or ”coldness”) is stored.
In the off-cycle, the thermal energy is lost in the surround-
ing environment. Modeling based on physical principles is
described next.

The power active component (e.g. vapor-compression
cycle, resistive heater, etc.) is modeled with a constant
coefficient of performance. A number of compartments of
uniform temperatures are modeled by heat balance affine
differential equations. Since the control and communication
will be based on digital systems, it is natural to work directly
in discrete time. We will use models of the form (1) where
the notation is summarized in Table I. A random term is
introduced in the dynamics. It can be designed to account
for the variety of disturbances coming from usage profiles
and the environment.

Fi :

{
Ti(k + 1) = AiTi(k) + biui(k) + ci + qi(k) (1a)
yi(k) = piui(k), (1b)

TABLE I
NOTATION AND SYMBOLS FOR MODELS OF FLEXIBLE UNITS

Signals

Ti(·) temperature vector for the compartments Rni

ui(·) on/off value of the power consuming comp. {0, 1}
u(·) collective on/off values {0, 1}N
yi(·) power consumption (Watts) R+

y(·) collective power consumption (Watts) RN
+

qi(·) random contributions Rni

Parameters

N number of flexible units N+

ni number of thermal compartments for a unit N+

Ai linear map, 2D-matrix Rni → Rni

bi, ci linear map, 1D-vector R→ Rni

pi power rating of the device (Watts) R+

p collective power ratings RN
+

DTi minimum down(off) time periods N+

UTi minimum up(on) time periods N+

Indexes

()i unit index 1, . . . , N
k discrete time index 1, 2, . . . ,K

Nominal operation is the evolution of Fi within a set of
constraints, e.g., temperature ranges and minimum on and off
times. The unit has operational flexibility because there are
different possibilities of controlling the on/off power cycle,
i.e. the ui signal, to maintain nominal operation.

Next, we collect the ui and pi terms in the following
notations, u(k) = (u1(k), . . . , uN (k)), p = (p1, . . . , pN )
and write the total consumption of the N flexible units at
time k as

y(k) = 〈p, u(k)〉 ∆
=

N∑
i=1

piui(k).

B. Basic models for the inflexible units

Inflexible units have a stochastic on-off behavior with time
varying properties. As example, an indoor light appliance is
more likely to be turned on in the early morning and in the
evening, and less at midday and after midnight. A natural
choice for modeling the random on/off behavior at the unit
level is using the discrete-time Markov chain formalism. We
will use notations similar to [9].

Each inflexible unit j will be modeled as a discrete time
Markov chain, with Xj(k) ∈ {1(on), 0(off)} the random
variable representing the state of the unit at time k, Pj(k) =
(pj0(k), pj1(k)) = (P [Xj(k) = 0], P [Xj(k) = 1]) the state
probability row vector at time k, and pj01(k) and pj10(k)
time varying transition probabilities, ”turn on” and ”turn off”
respectively. The evolution in time of the state probability
and the power consumption output can be described as

Ij :

{
Pj(k + 1) = Pj(k)Mj(k)

wj(k) = p′jXj(k),

where Mj(k) =

[
1− pj01(k) pj01(k)

pj10(k) 1− pj10(k)

]
is the transition

probability matrix.
This Markov chain is also depicted in Fig. 1 and notation

and symbols are summarized in Table II. The transition
probabilities can be parameterized to approximate usage
patterns for different device types.

X(k)=0 X(k)=1
(off) (on)

Turn Off

Turn On

p01(k)

p10(k)

1-p01(k)

1-p10(k)

Fig. 1. Markov chain for the inflexible units

We further collect the Xj and p′j terms in the notations,
X(k) = (X1(k), . . . , XM (k)) and p′ = (p′1(k), . . . , p′M (k))
to compactly express the total power consumption of the M
inflexible units, a random process, as

w(k) = 〈p′, X(k)〉 .

In this work, we use the probabilistic construction only
for numerical simulations. In the optimization formulation,
a deterministic sequence w̄(k) is used as a forecast for the
expected power consumption of the inflexible units over
a required time horizon. This deterministic sequence is
constructed by replacing each w(k) random variable with its



TABLE II
NOTATION AND SYMBOLS FOR MODELS OF INFLEXIBLE UNITS

Signals

Pj(·) probabilities for Markov states on and off R1×2

Xj(·) random variable, state of the unit: on(1) or off(0) {0, 1}
wj(·) power consumption (Watts) R+

w(·) cumulated power consumption R+

w̄(·) forecast/mean consumption profile (Watts) R+

Parameters

M number of inflexible units N
Mj(·) right stochastic matrix, time varying R2×2

pjxy(·) pr. of transition from state x to y, time varying [0, 1]

pjx(·) pr. of being in state x [0, 1]
p′i power rating of the device (Watts) R+

p′ collective power ratings RM
+

Indexes

j unit index 1, . . . ,M
k discrete time index 1, . . . ,K

expected value, E[w(k)]. Given an initial state probability
vector Pj(0) and knowing the transition matrices Mj(k),

E[w(k)] =

M∑
j=1

p′jPj(0)Mk
j

[
0 1

]T
,

where Mk
j = Mj(0)Mj(2) . . .Mj(k − 1).

Using the above models for the flexible and inflexible
units, the total power consumption of the N + M devices
can be expressed, depending on the context, as one of the
following two random processes:

z(k) = y(k) + w(k) = 〈p, u(k)〉+ 〈p′, X(k)〉 ,
z̄(k) = y(k) + w̄(k) = 〈p, u(k)〉+ w̄(k).

It is noted that while w̄(k) has been introduced as a
deterministic sequence, z̄(k) remains a random process for
all practical cases. This is because the dynamics of the
flexible units are affected by noise, and this fact will reflect
into the power consumption, the term u(k).

III. A CENTRALIZED APPROACH

A straightforward approach to reduce the peak consump-
tion is to employ optimization techniques based on an
objective, models and constraints to compute the on/off
controls for the flexible units. In this section, we formulate
and analyze a mixed integer linear optimization that is the
core component of the model predictive control (MPC) [10]
approach.

We want to calculate the ui(k) values for all the flexible
units Fi and over the entire time horizon {1, . . . ,K}, such
that the maximum value of the sequence z̄(k) is minimized.
This opaque minimax objective,

min
u(·)
‖z̄(k)‖∞ = min

u(·)
‖〈p, u(k)〉+ w̄(k)‖∞,

can be written in a convenient linear form [11] by adding a
new variable m ∈ R and a set of inequality constraints,

min
u(·)
‖z̄(k)‖∞ ⇔

 min
u(·),m

m

−m ≤ z̄(k) ≤ m; ∀k.

Furthermore, because z(k), the cumulated instantaneous
power consumption, is always non-negative, the left inequal-
ity, −m ≤ z̄(k), can be dismissed. Next, we detail three main
constraints.

First, the model dynamics must be included to indicate the
relation between the states Ti(·) and the decision variables
ui(·). For each flexible unit i, and k ∈ {1, . . . ,K}, equation
(1a) without the random term is accounted as an equality
constraint. It is noted that the Ti(1) temperatures are already
decided by the ui(0), and act as initial conditions. These
constraints apply on Ti(2) to Ti(K + 1).

Second, the states Ti(k) must be within the allowable
ranges, Tmin

i ≤ Ti(k) ≤ Tmax
i , where Tmin

i , Tmax
i ∈ Rni

are individual parameters of the flexible unit i and k ∈
{2, . . . ,K + 1}.

Third, we include minimum on and off times associated
with the power consumption of each Fi. These constraints
can be written in a linear form [8]. Expressions (2) are for
the minimum on-time and (3) are for the minimum off-time.



(UTi−Ci)ui(0)∑
k=1

ui(k) = (UTi − Ci)ui(0), (2a)

t+UTi−1∑
k=t

ui(k) ≥ UTi (ui(t)− ui(t− 1)) (2b)

∀t∈{(UTi−Ci)ui(0)+1,...,K−UTi+1},
K∑
k=t

ui(k)− (ui(t)− ui(t− 1)) ≥ 0 (2c)

∀t∈{K−UTi+2,...,K}.

(DTi−Ci)(1−ui(0))∑
k=1

ui(k)) = 0, (3a)

t+DTi−1∑
k=t

(1− ui(k)) ≥ DTi (ui(t− 1)− ui(t)) (3b)

∀t∈{(DTi−Ci)(1−ui(0))+1,...,K−DTi+1},
K∑
k=t

1− ui(k)− (ui(t− 1)− ui(t)) ≥ 0 (3c)

∀t∈{K−DTi+2,...,K}.

It can be seen that a number of approximately 2K linear
inequalities are used for each unit to assure the minimum
on and off time conditions. The inequalities have different
expressions at the beginning (2a), (3a) and at the end (2c),
(3c) of the time horizon. Ci is counter value that holds
number of samples that the unit has been in the initial state,
and is part of the optimization initialization. Thus value
(UTi − Ci) represents the number of periods that the unit
must remain in its initial state and not change. The term



ui(t)−ui(t−1) equals to 1 for a turn-on event at time t, and
thus the next UTi commands ui(t+ 1), . . . , ui(t+ UTi−1)
must remain on (=1). The term ui(t − 1) − ui(t) equals to
1 for a turn-off event at time t.

The optimization can now be passed to a mixed integer
linear solver. Simulation results are presented in section V.

We present next implementation considerations. In total,
the problem has 2 × N × K + 1 decision variables (tem-
peratures are also decision variables) and about 5×N ×K
constraints. A sample period Ts = 60 seconds is considered a
good choice with respect to the dynamic characteristics of the
controllable units, the level of detail in the modeling, and the
on/off control behavior. Ideally, the time horizon K should
cover 24 hours, the main period of the inflexible consumption
pattern. In the model predictive control solution, such an
optimization needs to be solved every sample period. Al-
though good algorithms exist for solving mixed integer linear
optimizations [12], memory and execution time requirements
will grow exponentially with the number of units and the
time horizon, and make computation infeasible for large
scale problems. Another disadvantage here is related to the
centralized nature of the approach: the computation center
must send and receive data from geographically distributed
locations in a short period of time, requiring a robust, fast,
double way communication infrastructure.

IV. A DISTRIBUTED APPROACH

In the centralized approach, the non-convex elements and
the large number of local variables and constraints make the
numerical computations impracticable. It seems reasonable
to carry out part of the control task at the local level where
knowledge of the state variables and operational constraints
is inherent. If the power consumption decisions are made
locally, some type of information sharing becomes necessary
to achieve a consistent global behavior.

We construct a demand response structure that has dis-
tributed characteristics, two control levels, and requires min-
imal communication. A diagram is shown in Fig. 2, where
blocks F1, . . . ,Fn represent flexible units equipped with the
local controllers KL and the (I1+. . .+IL) block corresponds
to the cumulated inflexible consumption process.

Σ
I1+...+IL

ε

y1

y2

yN

y3

w

z

........................

KL F1

KL F2

KL F3

KL FN

q1

q2

q3

qn

Supervisor Control 

  
Estimation

r

Dispatch
ε=(r-z)/N/pi

~ -

N, pi
~ -

z

Fig. 2. Distributed control structure

A. Supervisor Control and Estimation

Using consumption forecasts and an aggregation model
with approximate knowledge of type and number of cooling
units in the system, the supervisor control generates the
power reference signal r. The power reference has the
purpose of scheduling periods of thermal energy storage
and discharge. Furthermore, estimated values are needed to
characterize the refrigeration population. These are Ñon and
Ñoff , estimates for the number of units in the state ON and
OFF respectively that are in the flexibility range, and p̄i the
average specific power rating of a cooling unit in the group.
The flexibility range refers to the temperature of a unit i
being some distance away from the hard limits, that is in
the range [Tmin

i + ∆Ti, T
max
i −∆T ′i ]. This is done to avoid

successive on/off cycling due to conflicting local and global
objectives.

B. Local Controller

The local controller, shown in Fig. 3, is a computationally
inexpensive extension of the thermostat cooling logic. The
on/off decision is made with first priority on constraints, in
this case temperature and timer limits. If they are all satisfied,
the operational flexibility is used to respond to the broadcast
signal ε in a randomized manner. Fig. 4 shows a normal
thermostat operation versus an extended thermostat reacting
in a randomized manner to an external signal ε.

ε
Fi

qi

yi

ui

Ti

KL - Local Controller

if {ui(k-1)==0 & Ci < DTi}; ui(k)=0; goto END
if {ui(k-1)==1 & Ci < UTi}; ui(k)=1; goto END
if {Ti(k) > Ti

max}; ui(k)=1; goto END
if {Ti(k) < Ti

min}; ui(k)=0; goto END

%Local Constraints

%Global Objective
if {Ti(k) > Ti

min+ΔT & ε>0 & rand(1)<ε }; 
                  ui(k)=1; goto END
if {Ti(k) < Ti

max-ΔT' & ε<0 & rand(1)<|ε|}; 
                  ui(k)=0; goto END

END: Update_Ci();

Fig. 3. Local controller block KL
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(a) Normal duty cycle
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(b) Randomized duty cycle

Fig. 4. Operation of flexible unit. Temperature is shown in blue, and the
on/off state in black.



C. Dispatch Strategy

The ε signal is similar to the error signal in a classic
control structure. It is build as a scaled difference between
the reference signal r and the actual power consumption z. It
can either encourage consumption (ε > 0), or discourage it
(ε < 0). The scaling is performed such that the absolute
value has the meaning of a fraction of the total number
of refrigerators. For example, if ε = −0.1, the broadcast
information is that 10% of the refrigerators should turn off.
The formula for computing ε is thus

ε =

{
(r − z)/(Ñoff p̄i), if r > z

(r − z)/(Ñonp̄i), if r < z.

Refrigerator units in the flexibility range respond to the ε
signal by making random trial with success rate |ε|. If the
trial is successful, the unit reacts by turning on (ε > 0)
or respectively off (ε < 0). For a sufficiently large number
of refrigerators and good Ñ estimates, by the law of large
numbers, the cumulated responses of the individual units will
be close to the requested fraction. It is thus possible to follow
the a power reference signal r that is well-designed.

We have organized a dispatch strategy that can support an
arbitrarily large number of individual units, is computation-
ally and communication-wise cheap, and is robust to faults
in the coordination level. The dispatch is intrinsically noisy,
but the relative noise ratio will decrease with the number
of units. This can be seen in the next section. Some of
the complexity of the problem remains to be handled at
the coordination level, where good aggregation models and
algorithms are needed for tracking the thermal storage level
and for estimating the Ñon and Ñoff values.

V. NUMERICAL EXPERIMENTS

This section puts forward specific models for the flexible
and inflexible units, and presents simulation results for the
centralized optimization control and the distributed control.

We take the case of a 1-compartment cooling unit in
constant ambient temperature, similar to [3], [4] or [5],

Fi :


Ti(k + 1) = aiTi(k)+

+(1− ai)
(
T a
i − ui(k)T g

i

)
+ q(k)

yi(k) = piui(k),

where a = exp(−UA ·Ts/C), T g = COP · p/UA and Ts =
60 seconds. A random, white component q(k) with normal
distribution has been added to the temperature dynamics
to simulate disturbances. Overall, this is a simple model
with the purpose of evaluating the control approaches, and
is a particular case of the general affine linear state-space
representation (1).

We work with two parameter sets, described in Table III.
Parameters marked with ∗ will be generated with a ±10%
normal variation around the given value. In uncontrolled
operation mode, the thermostat drives the power consumption
cycle in regular intervals of approximately 20 minutes on and
162 minutes off for the first parameter set (refrigerators) and

TABLE III
NUMERICAL PARAMETERS FOR THE FLEXIBLE UNIT MODEL

Descr. Units Refrig. Freezer
C∗ heat capacity J/◦C 9.4 · 104 13.5 · 104

UA∗ overall heat transfer W/◦C 1.432 0.8
Ta∗ ambient temp. ◦C 24 22
COP∗ coeficient of perf. - 2.8 2.8
p∗ power rating W 100 140
Tmin min operational temp. ◦C 2 -22
Tmax max operational temp. ◦C 5 -15
UT min up time min 5 5
DT min down time min 5 5
q(·) random, normal distrib. ◦/s σ = 0.05 σ = 0.05

43 minutes on and 490 minutes off for the second parameter
set (freezers).

The inflexible unit j is described by the transition proba-
bilities pj01(k) and pj10(k) specified over the time horizon of
a day. The transition probabilities have been designed piece-
wise constant, and create a state probability profile pj1(k)
with two exaggerated peaks, shown in Fig. 5. The probability
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Fig. 5. Properties for the inflexible units, In the left figure, Turn On event
probabilities are shown in red and Turn Off event probabilities in blue.

behavior is identical for all units, such that the cumulated
consumption has the same shape.

For the MPC approach, the optimization problem defined
in Section III has been implemented for the Gurobi solver
MATALB interface. It was parameterized for a group of
identical 1-compartment cooling units with identical ambient
temperatures and inflexible consumption profile w̄(k). The
largest number of controllable units for which it was possible
to obtain solutions in a reasonable amount of time was
N = 20. The optimized commands associated corresponding
to the first time step, u(1), are dispatched to each unit.
The new temperatures are then collected and used as initial
conditions for the next optimization, which is carried out
with a receded horizon.

For the distributed approach, a simulation was set-up in
MATLAB as described in section IV. The elements of the
Supervisor Control and Estimation block have not been com-
pletely developed for this simulation. The reference signal r
was designed manually such that periods of energy storage
were scheduled prior to the peaks, and periods of energy
discharge were scheduled during the peaks. In addition, the
Ñoff and Ñon estimates were constructed using simulation
data that would not normally be available to the supervisor
center.



Fig. 6 shows realizations for the small scale case. The
differences between the planned schedule Fig. 6(a) and the
MPC realization 6(b) are due to model parameter variations
and noisy dynamics in the simulation of the flexible units,
and also because of errors in the inflexible consumption
forecast. For the distributed control 6(d), it can be seen that
the reference signal for the total consumption is followed
in an imprecise manner. This is mainly due to large relative
granularity of the system as the response from the refrigerator
group is in steps of approximately ±100W. Furthermore,
at this scale, the dispatch strategy is imprecise due to the
randomization. For both the MPC and the distributed control,
the peak has been reduced.
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(a) Single Optimization
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(b) MPC with receding horizon
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(c) Uncontrolled operation
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(d) Distributed control

Fig. 6. Small scale experiments for refrigerator units, N = 20. Blue shows
the consumption of the flexible units y(·), red shows the consumption of
the inflexible units w(·), and black represents the total power z(·). For the
distributed control, the power reference r(·) is shown in green. In figures
6(c) and 6(d), data from 3 days is plotted in an overlapped manner.

(a) Uncontrolled operation (b) Distributed control

Fig. 7. Large scale experiments for refrigerator units, N = 1000. Same
conventions as in Fig. 6.

Fig. 7 shows realizations for the large scale case. The
dispatch strategy is now able to keep the response smooth
and precise. The shortcomings in this experiment are only
related design of the power reference signal. This remains
to be addressed in future work. It can also be noticed that
the second peak starting around 16:40 has a longer duration.
The refrigerator units simply do not have enough storage
capacity to completely ride through this peak and after the

20:00 mark, power consumption increases over the reference
value. Fig. 8 shows a distributed control run for a group
of freezers, units with a larger individual flexibility. In this
case, it is possible to keep the peak close to the level of the
inflexible consumption.

Fig. 8. Distributed control for freezer units, N = 1000.

VI. CONCLUSION

We have proposed in this work a demand response sce-
nario with a power peak reduction objective and emphasis
on large scale. First, a centralized MPC framework was eval-
uated as infeasible. Subsequently, we presented a distributed
control structure with good performance for large numbers of
control units. A main contribution is the randomized dispatch
strategy, which keeps decision making at the local level
where specific operation is easy to manage. The approach has
only minimal communication requirements. Future work will
address in detail the design of the supervisor level control
based on an aggregated model of the group of thermostat-
based devices, and a stochastic performance analysis.
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