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Observer Design for Motorcycle’s Lean and Steering Dynamics
Estimation: a Takagi-Sugeno Approach

Dalil Ichalal, Hichem Arioui and Säıd Mammar

Abstract— In this paper, a nonlinear motorcycle model is
considered in order to estimate both the lean and steering
dynamics. The model is transformed into a Takagi-Sugeno (T-S)
form using the well-known sector nonlinearity approach. The
first contribution of this work is the exactness of the obtained
T-S model compared to the considered nonlinear model, where
the weighting functions of the T-S model depend on unmeasured
state variables. A novel approach to construct a nonlinear
unknown input fast observer is proposed. The objective is
the simultaneous reconstruction of the state variables and the
rider’s torque. The observer’s convergence is studied using
Lyapunov theory guaranteeing boundedness of the state and
unknown input estimation errors which is expressed by the
Input to State Practical Stability (ISpS). Stability conditions
are then expressed in terms of Linear Matrix Inequalities
(LMI). Finally, simulation results are provided to confirm the
suitability of the proposed nonlinear observer.

I. INTRODUCTION

Currently, powered two-wheeled (PTW) vehicles is a mean
of transport increasingly sought after, especially for the
opportunities it offers to sidestep traffic congestion. This
increase in vehicle fleet to PTW is accompanied by the blast
of the number of accidents. For a long time, industrial soci-
eties record on their roadways thousands of deaths and other
fatalities per year. Road safety institutions have launched
several preventive actions (radar, tickets, etc.) and research
programs headed for safety systems, mainly for cars. Some
of these steps have brought their results, since the number
of fatalities recorded a significant decrease over the past few
years. However, if the number of fatalities experiences an
overall decrease, the PTW remains a particularly dangerous
transportation, [13], [2].

Development of safety systems for cars has reached a
certain maturity. Unfortunately, for motorcycles it is not
the case. The most prominent example is that of the ABS,
that exists for 20 years, but is not still standard equipment
for PTW and its use remains marginal, [7]. The direct
transposition of security systems, from cars to motorcycles,
is not obvious because of the complex motorcycle dynamics
(highly nonlinear, [5], [8]), for example. In addition, ahead of
the design of a safety system, we must ensure the availability
of the relevant dynamic states in order to quantify the risk
(loss of control, skidding, etc.). PTW dynamics can be
estimated through suitable sensors and/or observers. The first
way is generally avoided for several reasons: price, noise
measurement, feasibility, etc. On the other hand, there are
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only few works dealing with the problem of motorcycle state
observation.

In the literature, most studies have mainly concerned the
estimation of the lean dynamics unlike the steering one.
Different techniques have been proposed to estimate the
roll angle: for example, frequency separation filtering [4]or
extended Kalman filters, [18]. These techniques, performed
under restrictive assumptions (dynamic steering is neglected,
tire-road forces are linear, etc.), are not robust against the
variations of the forward velocity.

The topic of estimation of the steering angle (not the
rider’s torque reconstruction) is not well covered in literature
as the lean angle estimation problem. However, a few results
have been obtained in [6], where an LPV observer has
been used to design single-sensor control strategies for a
semi-active steering damper. The approach is a simple gain
scheduling for an LTI motorcycle model under three constant
forward velocities (50, 100 and 140 m/s). Unfortunately, no
guarantees for stability or convergence of the LPV observer
are given outwards these constant velocities.

To the best knowledge of the authors, the simultaneous
estimation of the lean and the steering dynamics (rider’s
torque) have never been addressed.

II. PROBLEM STATEMENT

Our long term objective points the identification of all
pertinent inputs and dynamic states improving the risk quan-
tification of the loss-of-control during cornering. Indeed,
inadequate cornering is responsible for most motorcycle
fatalities, especially for single motorcycle crashes. Forsafe
cornering, riders should respect: 1) a suitable speed before
starting the corner, 2) the road conditions (under weak
friction) and 3) weather conditions do not allow optimal
visibility when riding. Early warning systems are based
generally on related work carried out for standard cars
[15]. The goal is the synthesis of a function estimating the
maximum safe speed at which a vehicle can be kept stable on
the road while moving at a constant longitudinal velocity ona
circular section. This velocity depends, among other factors,
on the lateral frictionµlat whose computation involves all the
dynamic states of the PTW and a good modeling of the tire-
road contact [15]. This makes the success of such warning
systems strongly dependent on the availability of dynamic
states of the motorcycle. Correlating this fact with the highly
nonlinear dynamics, standard observation approaches are
questionable and less efficient. To answer this real challenge,
we address in this paper a nonlinear observer synthesis based
on Takagi-Sugeno approach for PTW vehicles.



Takagi-Sugeno fuzzy structure is one of the most inter-
esting approach to model nonlinear behaviors as proven in
recent years [16], [17]. Indeed, it offers a way to represent
nonlinear complex behaviors by a more tractable mathemat-
ical formulation inspired by linear models. It consists on
decomposing the operating state space on several regions
and each region is modeled by a linear model. Thanks
to nonlinear weighting functions which satisfy the convex
sum property, the overall nonlinear behavior of a system
is characterized in a compact set of the state space. In
recent years, some works are dedicated to the study of
nonlinear systems via T-S models, especially in observers
design [9], [3], [1]. The proposed observer in this paper is
inspired from the linear adaptive one in [19] and adapted
to T-S models with unmeasurable premise variables which
constitutes an open and interesting field of research. Indeed,
the most developed work in the literature are limited only to
the case of T-S models with measurable premise variables.
T-S models with unmeasurable premise variables have an
interesting properties, namely, the ability to transform a
general nonlinear model into a T-S model by the use of
nonlinear sector nonlinearity transformation with no loss
of information (see [10] and references therein), and it is
pointed out in [20] that T-S models with unmeasurable
premise variables can describe a wider class of nonlinear
systems.

The paper is organized as follows: Section III presents
the lateral dynamics model of a motorcycle and a Takagi-
Sugeno formulation of the considered model. In Section IV,
a unknown input and state observer for estimating the motor-
cycle lateral dynamics and the steering torque is synthesized.
The convergence of the observer is studied with Lyapunov
theory and an optimization problem under LMI constraints
is provided to design the observer in such a way to guarantee
the ISpS Property which illustrates the boundedness of the
state and unknown input errors. Finally, Section V provides
some simulations results and discussions on the proposed
observer.

III. M OTORCYCLE MODEL DESCRIPTION

A. Nonlinear model of the motorcycle
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Fig. 1. Geometrical representation of the Sharp’s motorcyclemodel

The lateral dynamics of a motorcycle are represented by
a model with four equations [14], [15] describing the lateral

motion, due essentially to the effect of lateral forces from
the front and rear wheels (Fy f et Fyr) and the yaw and roll
motions under rider’s steering actions. The study of such a
model aims to reconstruct the dynamic states of a motorcycle
in cornering situation.

These movements expressed by the following equations
(all the parameters are defined in Annex 2):

• Lateral motion

Mv̇y+M f kψ̈ +
(

M f j +Mrh
)

φ̈+M f eδ̈ = Fy f +Fyr (1)

• Roll motion
(

M f j +Mrh
)

v̇y+a1φ̈+a2ψ̈ +a3δ̈ +a4vxψ̇ +a4vxδ̇ =∑Mx
(2)

• Yaw motion

M f k
(

v̇y+vxψ̇
)

+a2φ̈+b1ψ̈ +b2δ̈ −b3vxφ̇−a5vxδ̇ =∑Mz
(3)

• Steering motion

M f ev̇y+a3φ̈+c1ψ̈ +c2δ̈ −a5vxφ̇+c3vxψ̇ =∑Ms (4)

where:

∑Mx =
(

M f j +Mrh
)

gsin(φ)+
(

M f eg−ηFz f
)

sin(δ)
(5)

∑Mz = l f Fy f − lrFyr − τ cos(ε) (6)

∑Ms =
(

M f eg−ηFz f
)

sin(φ)
+

(

M f eg−ηFz f
)

sin(ε)sin(δ)+ τ (7)

The lateral forcesFy f and Fyr acting, respectively, on the
front and rear wheels depend on the sideslip anglesα f and
αr and camber anglesγf andγr , are expressed by:

{

Fy f =−Cf 1α f +Cf 2γf

Fyr =−Cr1αr +Cr2γr
(8)

where 









α f =

(

vy+l f ψ̇−η δ̇
vx

)

−δ cos(ε)

αr =
(

vy−lr ψ̇
vx

)
(9)

and
{

γf = φ+δ sin(ε)
γr = φ (10)

In this work, a normal riding is considered (without taking
into account the limit situations) which justifies the linear
form of the lateral forcesFy f and Fyr with respect to both
sideslip and camber angles.

By replacing the mathematic expressions of the forces in
the dynamics model and by choosing the state vector as
x(t) = [vy ψ̇ φ̇ φ δ̇ δ]T , the system is rewritten as follows:

Eẋ(t) = A(x(t),vx)x(t)+Bτ (t) (11)

where E is a constant nonsingular matrix,B is a constant
matrix andA(x) is a nonlinear matrix given by:

A(x) =

















a11 a12(vx) 0 a14

a21 a22(vx) a23(vx) a24

0 a32(vx, φ̇) 0 a34(vx,φ)
0 0 1 0

a51(vx) a52(vx) a53(vx) a54(vx,φ)
0 0 0 0



a15(vx) a16

a25(vx) a26(vx)
a35(vx) a36(vx)

0 0
a54(vx) a56(vx)

1 0

















E =

















M e12 e13 0 e15 0
e12 e22 e23 0 e25 0
e13 e23 e33 0 e35 0
0 0 0 1 0 0

e15 e25 e35 0 e55 0
0 0 0 0 0 1

















B=
(

0 −cos(ε) 0 0 1 0
)T

The componentsai j and ei j of, respectively, the matrix
A(x) andE are given in Annex 1.

B. Exact T-S model of a motorcycle nonlinear model

In order to express the model in T-S fuzzy structure, let
us consider the following nonlinearities:

z1 = vx, z2 =
1
vx
, z3 =

sin(φ)
φ

, z4 = φ̇ (12)

It is important to notice that the motorcycle, contrarily to
a standard vehicle with four wheels, is stable only for a
range longitudinal velocitiesvx. Consequently, takingvx in
the interval where the motorcycle is stable, the bounds of
the premise variables are given by:

zmin
1 ≤ z1 ≤ zmax

1
zmin
2 ≤ z2 ≤ zmax

2
zmin
3 ≤ z3 ≤ zmax

3
zmin
4 ≤ z4 ≤ zmax

4

By following the well-known sector nonlinearity approach
(see [17] for more details), the obtained model is:

Eẋ(t) =
16

∑
i=1

µi(vx,x)Aix(t)+Bτ (t) (13)

The number 16 of sub-models comes from the fact that 4
nonlinearities are chosen (see [17] for more details). Since
the matrixE is nonsingular, its inverseE−1 exists and allows
to write the model (13) in the form:

ẋ(t) =
16

∑
i=1

µi(vx,x)Aix(t)+Bτ (t) (14)

whereAi = E−1Ai andB= E−1B.

C. Measurement equation

Sensors generally available allow to measure different state
variables, as the roll and yaw ratesφ̇, ψ̇ and both the steering
angle and the steering angle rateδ andδ̇, which leads to the
output equation:

y(t) =Cx(t) (15)

where:

C=









0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1









IV. OBSERVER DESIGN

The following lemma is used in the proof of the observer’s
convergence study.

Lemma 1:Consider two matricesX andY with appropri-
ate dimensions,G a positive definite matrix. The following
property holds

XTY+YTX ≤ XTGX+YTG−1Y G> 0 (16)
The objective of this section is to provide a new approach

in order to design observers for T-S fuzzy systems with
unmeasurable premise variables which is the case for the
considered motorcycle model. The observer aims to estimate,
simultaneously, the state variables and the rider’s torque,
especially, the lateral velocityvy, the roll angle φ and
the steering torqueτ which constitute the most important
variables in synthesizing risk function for riding assistance.

The following nonrestrictive assumptions can be made
Assumption 1:In the remaining it is supposed that

• the statex(t) is bounded (stable or stabilized motorcy-
cle)

• rank(CB) = nu (nu is the dimension of the unknown
input vector)

• the torque derivativėτ (t) is bounded byτ1max

In the case of the considered motorcycle model,dim(τ ) =
nu = 1. The third assumption is not restrictive since the
variation of the rider’s steering torque is bounded.

A. State estimation

Let us consider the T-S model given by the equations (14)
and (15). The state observer is then given by the following
equations:






















˙̂x(t) =
16
∑

i=1
µi(vx, x̂)(Ai x̂(t)+Li(y(t)− ŷ(t))+Bτ̂ (t)

ŷ(t) =Cx̂(t)
˙̂τ (t) = ΓF(ėy(t)+σey(t))
ey(t) = y(t)− ŷ(t)

(17)
Let us consider the state estimation errore(t) = x(t)− x̂(t)
and torque estimation errorseτ (t) = τ (t)− τ̂ (t). The matrices
Li , F and the scalarsΓ and σ , of the observer, are to be
determined in such a way to ensure state and unknown input
estimation errors with a minimal bound to have an accurate
estimations.

Using equations (14), (15) and (17), the state estimation
error obeys the following differential equation:

ė(t) =
16

∑
i=1

µi(vx, x̂)Φie(t)+Beτ (t)+∆(t) (18)

where:
Φi = Ai −LiC (19)

and:

∆(t) =
16

∑
i=1

(µi(vx,x)−µi(vx, x̂))Aix(t) (20)

Notice that if the state estimation errors converge to zero,the
term∆(t) converges also towards zero. In addition, since the



weighting functions are bounded and the state vectorx(t)
is also bounded (see assumption 1), the term∆(t) is then
bounded. The objective is to design the matricesLi , F and
the scalarsΓ and σ guaranteeing an accurate estimation of
the state and the unknown input by minimizing the bound
of the state and unknown estimation errors.

B. Observer’s convergence study

From Assumption 1 and the fact that the functionsµi are
bounded, the term∆(t) is bounded. Indeed, the system is
stable which provides bounded states for bounded inputτ (t).
Under bounded perturbation term∆(t), the observer (17) is
synthesized by solving the optimization problem under LMI
constraints given in the Theorem 1.

Definition 1: ([12], [11]) The system (18) verify the Input
To State Practical Stability (ISpS) if there exists aK L

function β : R6+1 ×R −→ R, a K function α : R −→ R

and a constantd such that for each input∆(t) satisfying
‖∆(t)‖∞ < ∞ and each initial conditionse(0), the trajectory
of (18) associated toe(0) and∆(t) satisfies

‖e(t)‖2 ≤ β (‖e(0)‖ , t)+α (‖∆(t)‖∞)+d (21)
Theorem 1:Under the Assumption 1, given a positive

scalarsσ and α and a ∈ [0,1], if there exists a symmetric
and positive definite matrixP, gain matricesMi and positive
scalarsG, γ, η andS solution to the following optimization
problem,i = 1, ...,16

min
P,Mi ,η ,γ

aη +(1−a)γ

s.t.
BTP= FC (22)





Ωi +αP − 1
σ ΦT

i PB−PB P
− 1

σ BTPΦi −BTP Ψ+α S
σ − 1

σ BTP
P − 1

σ PB −γ



< 0

(23)
(

αη I Q
Q αη I

)

> 0 (24)

Q≥ I (25)

where:

Ωi = AT
i P+PAi −MiC−CTMT

i (26)

Ψ = − 2
σ

BTPB+
1
σ

G (27)

Q = diag(P,
S
σ
) (28)

and Γ = S−1, then the state and torque estimation errors
are bounded. The gains of the observer are computed from
Li = P−1Mi andF is obtained directly by solving the above
optimization problem. The attenuation level of the transfer
from ∆(t) to state and unknown input estimation errors is

bounded and given by the quantity
√

λmax(Q)γ
λmin(Q)α . In addition,

If ∆(t) = 0 the state and unknown input estimation errors
(norms of errors) converge to a set around the origin with a

size defined by the quantity
√

λmax(Q)δ
λmin(Q)α where:

δ =
1
σ

τ 2
1maxλmax

(

Γ−1G−1Γ−1) (29)

The parameterΓ is then chosen sufficiently large in order to
have a minimal value ofδ which guaranteeing a more ac-
curate estimations. Otherwise, if∆(t) 6= 0, the state estimate
errors guaranty the Input To State Practical Stability (ISpS)
given by the following property

‖e(t)‖2 ≤
√

λmax(Q)

λmin(Q)

(

e−
α
2 t +

√

γ
α
‖∆(t)‖∞ +

√

δ
α

)

(30)

Proof: In order to prove the convergence of the state
and torque estimation errors, let us consider the following
Lyapunov function:

V(t) = eT(t)Pe(t)+
1
σ

eT
τ (t)Γ

−1eτ (t) (31)

where P = PT > 0 and Γ > 0. In the framework of the
motorcycle model, the dimension ofτ is 1 then the parameter
Γ is a scalar. (For more general case, we haveΓ ∈R

nu where
nu is the dimension of the unknown input vector).

According to the equation (18), the time derivative ofV(t)
is given by:

V̇(t) =
16

∑
i=1

µi(vx, x̂(t))e
T(t)

(

ΦT
i P+PΦi

)

e(t)

+
2
σ

eT
τ (t)Γ

−1ėτ (t)+2eT(t)P∆(t)+2eT
τ (t)B

TPe(t)

(32)

Knowing that ėτ (t) = τ̇ − ˙̂τ (t) and given the expression of
˙̂τ (t) (17), the time derivative of the Lyapunov function (32)
becomes:

V̇(t) =
16

∑
i=1

µi(vx, x̂(t))e
T(t)Ωie(t)

− 2
σ

eT
τ (t)F(ėy(t)+σey(t))

+
2
σ

eT
τ (t)Γ

−1τ̇ (t)+2eT(t)P∆(t)

+ 2eT
τ (t)B

TPe(t) (33)

whereΩi =ΦT
i P+PΦi . Using the output equations, we have

ey(t) = Ce(t) and ėy(t) = Cė, then, equation (33) can be
rewritten under the following form:

V̇(t) =
16

∑
i=1

µi(vx, x̂(t))(e
T(t)Ωie(t)−

2
σ

eT
τ (t)FCΦie(t))

− 2
σ

eT
τ (t)FC∆(t)−2eT

τ (t)FCe(t)+
2
σ

eT
τ (t)Γ

−1τ̇ (t)

− 2
σ

eT
τ (t)FCBeτ (t)+2eT(t)P∆(t) (34)

Using lemma 1 and the fact that the first derivative ofτ is
bounded byτ1max (assumption 1), we obtain

2
σ

eT
τ (t)Γ

−1τ̇ (t)

≤ 1
σ

eT
τ (t)Geτ (t)+

1
σ

τ̇ T(t)Γ−1G−1Γ−1τ̇ (t)

≤ 1
σ

eT
τ (t)Geτ (t)+

1
σ

τ 2
1maxλmax

(

Γ−1G−1Γ−1) (35)



and using assumption 1. It is possible to obtain matricesF
andP such thatBTP= FC holds. The time derivative of the
Lyapunov function (34) is then bounded as follows

V̇(t) ≤
16

∑
i=1

µi(vx, x̂(t))e
T(t)Ωie(t)−

2
σ

eT
τ (t)B

TPΦie(t)

− 2
σ

eT
τ (t)B

TP∆(t)−2eT
τ (t)B

TPe(t)

− 2
σ

eT
τ (t)B

TPBeτ (t)+
1
σ

eT
τ (t)Geτ (t)

+
1
σ

τ 2
1maxλmax

(

Γ−1G−1Γ−1)+2eT(t)P∆(t) (36)

Let us define ˜x(t) = [eT(t) eτ (t) ∆(t)]T . The inequality (36)
is equivalent to:

V̇(t) ≤ x̃T(t)
16

∑
i=1

µi(vx, x̂(t))Ξi x̃(t)

− αeT
a (t)Qea(t)+γ∆T(t)∆(t)+δ (37)

whereα andγ are positive scalars,Q= diag(P, Γ−1

σ ), ea(t) =
[eT(t) eτ (t)]T and

Ξi =





Ωi +αP − 1
σ ΦT

i PB−PB P

− 1
σ BTPΦi −BTP Ψ+α Γ−1

σ − 1
σ BTP

P − 1
σ PB −γ2





(38)
and

δ =
1
σ

τ 2
1maxλmax

(

Γ−1G−1Γ−1) (39)

Ψ=− 2
σ

BTPB+
1
σ

G

Ωi = ΦT
i P+PΦi

Now, if x̃T(t)
16
∑

i=1
µi(vx, x̂(t))Ξi x̃(t) < 0 then the inequality

(37) can be bounded as follows

V̇(t)≤−αeT
a (t)Qea(t)+γ∆T(t)∆(t)+δ (40)

which is equivalent to

V̇(t)≤−αV(t)+γ∆T(t)∆(t)+δ (41)

It follows

V(t) ≤ V(0)e−α t +γ
t
∫

0

e−α (t−s) ‖∆(s)‖2
2ds

+ δ
t
∫

0

e−α (t−s)ds (42)

≤ V(0)e−α t +
γ
α
‖∆(t)‖2

∞ +
δ
α

(43)

Knowing that λmin(Q)‖ea(t)‖2
2 ≤ V(t) ≤ λmax(Q)‖ea(t)‖2

2,
where:

Q=

(

P 0

0 Γ−1

σ

)

one obtains the inequality

‖ea(t)‖2
2 ≤

λmax(Q)

λmin(Q)

(

e−α t +
γ
α
‖∆(t)‖2

∞ +
δ
α

)

(44)

By using the square root on (44), on obtains

‖ea(t)‖2 ≤
√

λmax(Q)

λmin(Q)

(

e−
α
2 t +

√

γ
α
‖∆(t)‖∞ +

√

δ
α

)

(45)
According to Lyapunov formulation of Input To State Prac-
tical Stability (ISpS), the state and unknown input errors
converge to a region which will be minimized in order to
achieve a more accurate estimation of the states of the vehicle
and the torque applied on the handlebar. This ball is smaller
as the constantδ and the attenuation level of the transfer
from ∆(t) to the state estimation errors are smaller. To
enhance the performances of the observer, a minimal values
of these quantities are obtained by the following reasoning:

Let us consider the quantity
√

λmax(Q)
λmin(Q)α ≤√η whereη is a

positive scalar. It is then sufficient to minimize the termη
and assumingλmin(Q)≥ 1 (Q> I ), on obtains:

√

λmax(Q)

α
≤√

η (46)

which is transformed easily into:

(αη )2 I −QTQ> 0 (47)

Using Shur’s complement lemma:
(

αη I Q
Q αη I

)

> 0 (48)

The second quantity
√

λmax(Q)δ
λmin(Q)α is minimized by choosing

the parametersα and G sufficiently large for minimizing

the term δ and the the term
√

λmax(Q)
λmin(Q) is treated above.

Finally, the bound of this term will be
√

δ/α multiplied by
η . Always in the purpose of minimizing the two quantities,
in theorem 1, the chosen objective function is a linear
combination betweenη and γ. By choosing the change of
variablesS= Γ−1 andMi =PLi , the linear matrix inequalities
in theorem 1 are obtained.

V. SIMULATION RESULTS

The nonlinear system, including longitudinal and lateral
dynamics of two-wheeled vehicle is used. It requires three
inputs: the rider’s steering torque applied on the handlebars
τ (see Figure 2) and the angular velocities of both front
and rear wheelsωf and ωr . The observer estimating the
lateral dynamics and steering torque using only the measured
statesψ̇, φ̇ given by the inertial unit anḋδ andδ obtained
from a suitable encoder. The gains of the observer were
calculated by solving the optimization problem under LMI
constraints proposed in theorem 1. The obtained attenuation
level, from the term∆(t) to the state and unknown input
estimation errors isγ = 2.6119. The initial conditions of
the system arex(0) = [0 0 0 0 0 0]T and those of the
observer are ˆx(0) = [1 1 0.1 1 0 0.1]T . The adaptation law



providing an estimation of the steering torque is designed
in such a way to have a fast convergence ofτ̂ (t) to τ (t).
The chosen parameters areα = 1, σ = 5 and a = 0.99. If
∆(t) = 0, the state and unknown input estimation errorse(t)
and ea(t) converge to a ball around the origin having the

size
√

λmax(Q)δ
λmin(Q)α ≈ 0.1, for τ1max = 40. In the steady state

‖∆(t)‖∞ is less than 0.07, the attenuation of∆(t) is then

given by
√

λmax(Q)
λmin(Q)α ≤ √ηγ ‖∆(t)‖∞ ≈ 2.78. A satisfactory

state and unknown input estimation results are then obtained
as shown in figures 2 and 3 which is also illustrated by the
state estimation errors depicted in figure 4.
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Fig. 2. Rider’s torque (blue) and estimated torque (red)

0 5 10 15 20
−2

0
2
4
6
8

v
y
 and estimated v

y
  (m/s)

0 5 10 15 20
−0.1

0

0.1

0.2

dψ and estimated dψ  (rad/s)

0 5 10 15 20
0

0.5

1

1.5
dφ and estimated dφ   (rad/s)

0 5 10 15 20
0
1
2
3

φ and estimated φ   (rad)

0 5 10 15 20
−0.2

0

0.2
dδ and estimated dδ   (rad/s)

t(s)
0 5 10 15 20

−0.2

−0.1

0

δ and estimated δ   (rad)

t(s)

Fig. 3. Actual states (blue) and estimates states (red)

In order to test the observer in the presence of measure-
ment noise, let us consider the same observer’s parameters
and assume that the measurement signals are affected by
a centered and random noise with magnitude 5% of the
maximal values of the measured variables. The obtained
results are depicted in the figure 5, the states are then
estimated accuratly. The estimation of the steering torque
is also acceptable, but the effect of the measurement noise
is visible. This is due to the presence of a derivation in the
adaptation law leading to estimate the steering torque and
also due to the large value ofΓ. It is then possible to reduce
the effect of the measurement noise by reducing the value
of Γ. A compromize can then be obtaind by an adequateΓ
selected sufficiently large to ensure an accurate estimation of
the unknown input and sufficiently less to reduce the effect
of the measurement noise.

Of course the ISpS property is weaker than ISS or asymp-
totic stability, but the proposed observer with the estimation’s
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Fig. 4. State estimation errors on the time range[0 5](s)
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Fig. 5. Actual states (blue) and estimated states (red) in noised measure-
ment situation

torque adaptation law can only guarantee the ISpS property.
Nevertheless, the simulation results are satisfactory. Further-
more, some parameters in the proposed design approach are
fixed a priori, in future work, this will be treated in order to
take them into account in the optimization problem leading
to optimal values which give better results and less theoretic
bounds values.

VI. CONCLUSION

In this paper, an unknown input and state observer for
estimating the lateral dynamics and the steering torque in
motorcycles is proposed. A nonlinear model is then consid-
ered with some nonlinearities and time-varying longitudinal
velocity. The proposed approach is based on the transfor-
mation of the nonlinear lateral dynamics model using sector
nonlinearity transformation in Takagi-Sugeno structure,the
specificity of this part is that the weighting functions of
the T-S model depend on the state variables which are not
totally measured. The study of this type of model is more
difficult compared to T-S models with measured premise
variables. Based on the obtained model, an adaptive observer
is then proposed. The observer’s convergence is studied using
Lyapunov theory and LMI conditions are given to ease the
design of the observer with dedicated softwares. It is pointed
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out that this observer guaranty the ISpS property. Simulation
results are provided which illustrate the effectiveness of
the proposed observer in estimating both the states and
the steering torque. In future work, the T-S model will
be refined by taking into account some other nonlinear
behaviors, namely, the nonlinear form of the lateral forces
(Pacejka’s or Dugoff’s model) and taking into account the
longitudinal motion. The observer will be then redesigned
for more accuracy. In addition, the lateral and longitudinal
forces estimation will be considered in order to estimate the
road adhesion. This is in the perspective to synthesis risk
functions which inform the rider on dangerous situations.
Some validation results in real situations will be published
in future papers.

VII. A NNEX 1

The components of the matrixA(x(t)) are defined as
follows:

a11 = −Cf 1−Cr1 (49)

a12(vx) =
1
vx

(

−Cf 1L f +Cr1Lr
)

−Mvx (50)

a14 = Cf 2+Cr2 (51)

a15(vx) =
1
vx

ηCf 1 (52)

a16 = Cf 1 cos(ε)+Cf 2sin(ε) (53)

a21 = −Cf 1L f +Cr1Lr (54)

a22(vx) =
1
vx

(

−Cf 1L2
f −Cr1L2

r

)

−M f kvx (55)

a23(vx) =

((

i f y

Rf

)

+

(

iry
Rr

))

vx (56)

a24 = Cf 2L f −Cr2Lr (57)

a25(vx) =
1
vx

ηL fCf 1+

(

i f y

Rf

)

sin(ε)vx (58)

a26 = L fCf 1 cos(ε)+L fCf 2 sin(ε) (59)

a32(vx, φ̇) = − 1
vx

(

M f j +Mrh+

(

i f y

Rf

)

+

(

iry
Rr

))

(60)

+ (M f j2+Mrh
2+ I f y+ Iry − Irz− I f zcos(ε)2

− I f y sin(ε)2)φ̇ (61)

a34(φ) =
(

M f j +Mrh
)

g
sin(φ)

φ
(62)

(63)

a35(vx) =

(

i f y

Rf

)

cos(ε)vx (64)

a36 = M f eg−ηFz f (65)

a51(vx) =
1
vx

ηCf 1 (66)

a52(vx) =
1
vx

ηL fCf 1−vx
(

M f e
)

(

i f y

Rf

)

sin(ε) (67)

a53(vx) =

(

i f y

Rf

)

cos(ε)vx (68)

a53(φ) = (M f eg−ηFz f)
sin(φ)

φ
−ηCf 2 (69)

a55(vx) =
η 2Cf 1

vx
(70)

a56 = −ηCf 1cos(ε)−ηCf 2sin(ε)+
(

M f eg−ηFz f
)

sin(ε)
e12 = M f k (71)

e13 = M f j +Mrh (72)

e15 = M f e (73)

e22 = M f k
2+ Irz+ I f x sin(ε)2+ I f zcos(ε)2 (74)

e23 = M f jk+Crxz+(I f z+ I f x)cos(ε)sin(ε) (75)

e25 = M f ek+ I f zcos(ε) (76)

e33 = M f j2+Mrh
2+ Irx + I f x cos(ε)2+ I f zsin(ε)2 (77)

e35 = M f e j+ I f zsin(ε) (78)

e55 = M f e
2+ I f z (79)

VIII. A NNEX 2
M f Mass of front frame
Mr Mass of rear frame
j Distance between the center of gravity

of the front frame and ground
k Distance between the centers of gravity

of each frame
L f Distance between the center of gravity

and the front wheel
Lr Distance between the center of gravity

and the rear wheel
e Distance between the fork and the center

of gravity
h Height of the center of gravity
ε Steering head angle
i f y Polar moment of inertia of front wheel
iry Polar moment of inertia of rear wheel
Irz Camber inertia of rear wheel.
Rf radius of the front wheel
Rr radius of the rear wheel
g Acceleration due to gravity.
σ f σr Front and rear tire relaxation lengths respectively
M total mass of the motorcycleM = M f +Mr
Cf 1 Cf 2 Front and rear tire cornering

stiffnesses respectively
Cr1 Cr2 Front and rear tire camber stiffnesses respectively
η Pneumatic trail
vx Forward speed
σr , σ f Front and rear tyre relaxation lengths respectively
Zf Front wheel load
ρ road’s curvature
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