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Abstract— In this paper we address the problem of gener- an underactuated system is considered, which here we do
ating asymptotically stable limit cycles for a fully actuated not take into account yet. It can also be shown that for a
multibody mechanical system through a feedback control law one-dimensional nullspace, as used in this paper, the power

Using the concept of conditional stability the limit cycle @n be - . . .
designed for a lower dimensional dynamical system describg conserving nullspace decoupling from [11] is equivalent to

how the original one evolves on a chosen submanifold and the nominal control law from [5], [6]. However, the approach
the corresponding velocity space. Moreover, the controllecan  from [11] can also be applied in case of a higher-dimensional

be split up in two parts that can be independently designed nulispace. In [5], [6] a passive control action is designed
and analyzed in order to reach the constraint submanifold ad ypich allows to decouple the motion along a vector field
then produce the oscillation. Even if designed assuming aer from the remaining motion. The system is then forced to
dimensional system, the limit cycle implies a periodic motin . C k ) ’
for the whole system. follow an integral curve of this vector field via a passive
control law. In case of a closed integral field, the system
I. INTRODUCTION thus converges to a closed orbit in the configuration space.
As shown in [1], [2], [3] walking and running can be In [7] additionally a non-passive control action was progmbs
effectively described as periodic tasks. In these cases it o achieve regulation of the final velocity along the vector
more important to stay on a prescribed orbit in the statéield. In contrast to [5], [6], [7], we aim at achieving a stbl
space, rather than following the exact position in time glonlimit cycle in the state space, which is achieved by regugati
the desired curve. For these applications tracking a ti@jgc a virtual energy function in a one-dimensional submanifold
might not be the best solution, as already addressed in [4]{ the configuration space. This virtual energy function
[3]. Moreover in the latter the need of controlling the enyerg consists of the physical kinetic energy and a virtual paaent
of the system to a desired value was already recognized. @nergy, which represents an additional design elementin th
this paper we solve the problem of generating a stable lim@ontroller. In future works, we plan to utilize the freedom i
cycle for the system using directly the information on itschoosing this potential for achieving energy efficient rooti
energy level. in mechanical systems with compliant actuation.
Similar approaches to the problem of orbital stabilization The paper is organized as follows. In Section Il a simple
have been already shown in [5], [6], [7], [8]. In [5], [6], nonlinear oscillator is presented, which produces limdley
[7] the authors extend the potential field controller addingased on an energy argument. Section Il and Section IV are
power-continuous terms, while in [8] the concepts of viftuathe main contribution of the paper. There we explain our
constraint and feedback linearization are used to obtainraain idea for producing a desired limit cycle for the whole
closed loop system that generates its own periodic stabstem. To this end we use a nullspace decomposition and
motion. In this paper we formulate the problem based o@éxtend known results for conditional stability of equilion
the null space decomposition introduced in [9] and used fg@oints to generic invariant sets, i.e. also for limit cycles
nullspace compliance control in [10], [11]. In this way weThese results will allow us to derive in Section V the
think that several advantages can be achieved. Comparei@posed controller, where also the main advantage of a
to [8] we take advantage of the passivity property of th€onditional stability analysis will become clear: the two
system and do not completely alter the original dynamicgarts of the control law can be independently derived and
of the system through feedback linearization. Moreover, wanalyzed, as sketched in Fig. 1. Finally, simulation result
completely separate the problem of producing the limiteyclwill be presented in Section VI to validate the proposed
from the virtual constraints, instead of modifying the datt approach, followed by the final discussion and outline of
for achieving the first. The input torques are split in thduture work in Section VII.
ones necessary fqr p_roducmg _the limit cycle_: and the ones Il EROM CENTER TO LIMIT CYCLE
necessary for satisfying the virtual constraints. These, i }
turn, are responsible for the subspace in which the systemConsider thel-DOF system
will oscillate. Nevertheless it should be also mentioned So2
. . : §+wq=0, (1)
that in [8] the more complicated problem of controlling
with equilibrium point ¢* = 0, ¢* = 0. This type of
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for a 1-DOF system the sef, = {q,¢ | H (q,9) = Ha}
is a closed orbit in the state space (corresponding to a limit
cycle), which is not true for a-DOF system.

1. SYSTEM MODEL AND COORDINATE
TRANSFORMATION

Consider a fully actuatee-DOF system, with dynamic
equation

M(q)g+C(q,q9)q+g(q) =T, (4)

wheregq, ¢ € R" is the state of the systemr, € R™ is the
input, M (q) € R™*™ is the mass matrixC (g, q) € R"*"
is the Coriolis matrix angy (¢) € R™ is the gravity vector.

We want to constrain the system to evolve on a subman-
ifold and the corresponding velocity space, where we will
produce a limit cycle. To this end we consider the function

Fig. 1. Conceptual illustration of the main idea of the pape choose
to produce an oscillation on a constraint submanifold. Te émd we force
the system to reach a subset of the state space, where weceradimit z=z(q) , )
cycle. ] )
wherez : R® — R"7!, z(q) = 0 defines thel - dimen-

sional constraint submanifold of the configuration spaa# an
level set£, of the HamiltonianH (¢, ¢) = 3 (¢*> +w?¢?), J(g) € RC™~D*" s the Jacobian matrix of the mapping
defined asCy = {q,¢ | H (¢,9) = H (g0, ¢o0)}- (5), which is assumed to be a full rank matrix. Accordingly
The difference between these closed orbits and limit cyclege can write the dynamics of the system with a new set
is that they are not isolated. If we force the system to reacdf coordinates, as in [9], [10], [11]. We first compute a
always a desired value of the Hamiltonian, then we wilnhull space base matfixZ (g) € R'*" which allows us to
obtain a limit cycle. This is possible by modifying the syate obtain the directions orthogonal to the submanifold, then w

as use Z (q) to compute a dynamically consisténtull space
. . o 5 projectorN (g), which will be part of the extended Jacobian
G+dH (¢.4)¢+w'q¢=0, @) matrix Jx (g) € R**", such that

whered > 0, H (¢,4) = H (¢,4) — Hy and H; > 0 is the :b J(q)

desired value of the Hamiltonian [v] =Jn(g)qg= [N (q)] q, (6)

Proof: We consider the Lyapunov function (¢, ¢) =

LH2 (¢,4), with derivativeV (¢,q) = H (¢,4) H (¢,q) = _ T

e (¢.4)¢%> < 0. Applying LaSalle’s invariance the- where IV (q) (Z (9) M (q) 2 (Q)) Z(q) M (q) €
orem, whereQ = {q,¢ | H(q,¢) >0} is an invariant
set which excludes the equilibrium poiiig*, ¢*), M =
{641 q#0,¢g=00r H(q,q) = Ha} is the setM C Q

R'™"™ and v is an additional null space velocity. One can
show that by this choice the extended Jacobian(q) is
non singular and the inverse is given by

whereV =0 andL; = {q,q | H (q,q) = Hg} is the only I (q) = [T+ (q) 7T (@)] . @)
invariant set in M, we can conclude that every solution
starting in§2 approache€; ast — oc. B whereJ ™ (q) denotes the dynamically consistent weighted

From the proof it follows that the result is actually morepseudo inverse defined as
general, meaning that even for a multibody system we can .
conclude thatH (¢,q) — Hq ast — oo. In fact, for g+ (q) = M~ (q)J7 (q) (J (@ M~ (q)J7T (q)) ,
a multibody mechanical system, with kinetic energ@y 8)
potential energy/, non conservative forces, generalized
coordinateg; and corresponding generalized velociiesve  The joint velocity can thus be computed from the Cartesian

know that velocity and the null space velocity via
H(q.q)=T+U=q"7. ©) q=J (@& + 27 (q)v, )
The choicer = —H (q,4) Dg, with D positive definite, \yhere, unlike the usual null space projector (see e.g. [13])

will always ensureH (q,q) — 0. The difference is that gefined asf — J** (q) J (g), the matrixZ” (g) has only
iy _ .. one independent column.

1The condition H; > 0 excludes that the system will stop even if P
T = 0, since those configurations do not correspond to equilibbnints. ) ) -
In other words ifT = 0 then U = H, and there will be a non zero ?|.e. it fulfils the condition.J (¢) Z" (q) = 0.
acceleration due to the conservative foreeS¥’U # 0. 3].e. it fulfils the conditionJ (q) M~! (q) NT (q) = 0.



From (6) and (9) it is straightforward to rewrite (4) in thewherex € X ¢ R™ and f : X — R™ is a Lipschitz

extended velocity coordinates as continuous function, so that a unique solution exists. We
& i denote withy (t; Xp) th.e solutiop of (15) starting at, and
A (q) [] +T(q,q) [ ] = evaluated at the time instantwith x (0; x,) = Xo-
;) v (10) Theorem 1 (Stability)Let ©2 be an invariant set for (15),
Jy (@) (-g(q)+T7) , and letV (x) be aC! function defined inB, () C X such

that V (x) > 0V¥x € B, (Q), V(Q) =0andV (x) <0

with the matrices (¢) andT" (¢, ¢) given by Vx € B, (). If Q is asymptotically stable conditionally to

A(q) =I5 (@ M(q) TN (q) A={x€B,(Q) | V(x) =0}, thenQ is stable.
A, (q) 0 Proof: Suppose by contradiction th& is unstable.
= [ IO A, (q)} Then existe > 0, a sequence&(Xo,),cy < Be (),
. limy, o0 d (Xon, 2) = 0, and a sequencél,), .y C R
Ac(a) = (T (@M (@) T (g)) in such a way that
An(q)=Z(q) M (q) Z" (q) {d(x (tXon) Q) <€ 0<t<ty, (16)
and (omitting the dependences) d(x (tn; Xon) ) =€ VneN

T.(q,q) Tun(q,q) SinceS. () is compacty,, = x (tn; Xon) = Y € S () as
T, (q’ q) Tnlq 7('1) ] n — oco. Moreover because of the continuity of the solutions
’ . N of (15),t, — oo asn — oo.
I, =A, (JM C- J) Jtu Now we show thatV (x (—t;y)) = 0. Let 7 < 0 and
. N € N be such that < ¢, + 7 <t,, Vn > N. Because/
_ -1 T n ns =
Pan = As (JM - J) Z is not increasing along the solutions of (15), we have that

F(q,Q)Z[

r,,=-It .

_ 1/ 7 T
T = An (NM ¢ N) z Fromlim, o d (X, 2) = 0, V (€2) = 0 and the continuity

From now on we will use the variablég, &,v) as the state ©f V. it follows

variables instead ofg, ¢). The relation between these two  V (x (1;9)) = lim V (x (7; X (t2; Xon)))
sets of coordinates is given by (6) and (9). nree

Accordingly we can split our control input in the = Jim V' (x (tn + 7 x0n)) =0 -
components-, andr, along the two spaces

(18)

It remains to prove thai (—t;y) € A andd(y,Q) = ¢
e T, . . cannot hold ifQ2 is asymptotically stable conditionally td.
T=Jy(9) {TJ =J (@7 + N (@7, (A1) ginceqis asymptotically stable conditionally td, 3 7' =
. T(e) > 0] dx(T;xo),Q) < 5, with x, € A. If we
so that (omitting the dependences) the complete system @bosex, = x (~T;y) € A, then
be written in the form

52 d(x(Tixo) . Q) = d(x (0:9).2) = d(y.9) =c.

g=J"e+ 2z (12)

i A (—I‘m:i: I Jﬂ,Tg_i_Tw) (13) Since this is a contradiction, we conclude tlfatmust be
stable. [ |

v=A"! (I‘fnw —T,v—Zg+ Tn) (14) Thanks to the properties of positive semidefinite functions

it is possible to ensure not just the stability but even the
We will design the inputr, to keep the system on the asymptotic stability of an invariant s€&. To this end let us
submanifold and the corresponding velocity space, white tHirst recall two results.
input 7,, will be responsible for producing an oscillation on  Lemma 1 ([14]): Let V' be a nonnegative function defined
the submanifold itself. in B, (Q) C X. Suppose that’ (x) < 0 Vx € B, (Q), then
V. STABILITY WITH SEMIDEFINITE FUNCTIONS 7, (X € Br (D) 1V (x) =0} Is a positively invariant set
: andAcM:{xeB,,(Q)w(x):o}.

Here we present the theorems used to conclude the asympy e inma 2 ([12]):If a solution x (t;x,) of (15) is
totic stability of the limit cycle. They extend the results'f 5,nded and belongs t& for ¢ > 0’ t?len its positive

equilibrium points that can be found in [14], [15]. it set £+ is a nonempty, compact, invariant set. Moreover,
Pleas_e refer to the Appendix for some useful def|n|t|onsx (t;x,) approaches £ ast — oo
Consider the system Theorem 2 (Asymptotic stability)-et Q be an invariant
. 1 i i i
x=Ffx) (15) set for (15), and lefV (x) be aC' function defined in

B, () € X such thatV (x) > 0Vx € B, (), V(Q2)=0

“Notice that using a dynamically consistent null space tojethe andV_(X) <0Vx e B, (Q) ”. Q is ?—SymptOtically §tqble
matrix A (q) is block diagonal. conditionally to the largest positively invariant set* within



M = {x €B,(Q) | V(x) = O}, then(2 is asymptotically where the system reduces to

stable. qg=27(q)v
Proof: In order to prove asymptotic stability we have . a1
to show stability and attractiveness. v=4A, () (-Tu(q,v)v—~Z(q)g(q) +7) (22)

From Lemma 1 it follows thatd is a positively invariant ~ S:t. (@) =0
set andA C M, so sincef) is conditionally stable toM* 5o that the function
andV (©2) = 0 i.e. Q C A, then it must be conditionally 1 )
stable to.A, hence by Theorem @ is stable. H(g,v) = 5An (@) v" +U(q) , (23)
Wi ill the attracti b tradiction. Si . . . - .
Q0 isestv:bleprtﬁ\elzive i% ;ag Yegﬁgs>%iiggatﬁgt§); Emc%wth x(q) = 0, is aC* positive definite function for the
= 0 '
Bs () = x (t;xo) € B (), Vt > 0. This means that using system. Choosing
also Lemma 2, thent is a positively invariant set and't.c . U (q)"
B. (2)NM*. Now let us assume by contradiction thatts = = Z (@) 9(q) — dutl (q,v)v — Z (q) oq (24)
not ). Since? is asymptotically stable conditionally t&1*, . L
then lim_,oc d (x (£ X)) = 0 if xo € Be (2) N M*. whereH (g,v) = H(q,v) — Hy and H; > 0, the derivative
Choosingy, = y € L= # © we reach a contradiction. m  "€Sults in

H(q,v) = —d, H (g, v) v? (25)

. ) ) . ) ~and (14) becomes
In this section we will derive the control input for satis-

V. CONTROLLER DESIGN

fying the n — 1 constraints and generating at the same time An (@) 0+ T (g, v) v+ dnH (g, v) v+
a limit cycle for the "remaining dynamics”. To this end the U (q) " (26)
results from Section Il for thé-DOF case will be used to +Z(q) oq =Y

enforce the behaviour of the system on the submanifold grom Section II it follows that using the Lyapunov func-
dimensionl defined by the constraints and the correspondin

. . . fon Vv, (q,v) = LH2(q,v), with =(q) = 0, it is
velocity space. The result will be an asymptotically Stabl%ossible(qto)provthhe(an)zmptotic s(tgijility for the re-
limit cycle for the whole system.

stricted system of the limit cycle defined by =
A. Positive semidefinite function for the constraint space {lgv) | = @ =0, H(q,v) = H‘i.}'
N - Remark 1:The problem of forcing the system to evolve
Let K,,D, € RM™=Dx("=1) be two positive definite along the constraint submanifold and the corresponding
matrices. Consider th€"! positive semidefinite function velocity space can be reformulated as

. 1. o1 ; 7 ¢ -
Vi (g.@.0) = 53"A, ()@ + 52" (@) K. () . (19) M(@93+Clad)a+sa)
) = JT ((I) Tz + NT (Q) Tn (27)
By choosing st. Ay (@)@ +T,(q.q)&+ D,z + K,z =0 (28)

Ty =Dan (g, &,0)v+ JtuT (9)g(q)— D,z — K,z , While substituting the dynamic equation (27) in the con-
(20) straint (28) gives input, needed to keep the system on the
. o . constraint submanifold and the corresponding velocitgepa
its derivative results iV, (q,%,v) = —&' D,z < 0 and g5 in (20), premultiplying (27) byZ (q) and usingg =
(13) becomes Z" (q)v gives the dynamic of the system when evolving

. N . B along therfi’, as in (22).
As (@)@ +Ts(q2,0) @+ Do + Ko =0 (21) In other words requiring to have dynamic matrices in (28)

The role of this control law is to force the system to evolvélerived from the ones in (27) results in the control law that

onto the desired submanifold and the corresponding vglociveé have proposed. On the other hand, if in (28) we choose
space. a constant inertia matrix and accordingly, (g,q) = 0,

then the feedback linearization approach is obtained [B¢ T
B. Energy control for the oscillation on the submanifold resultis not surprising at all since, in this way, we comgliet
change the dynamic that describes how the system is pushed
on the constraint submanifold and the corresponding ugloci
space.

Let us considerl,, > 0 and aC' functionU (q) positive
definite on the submanifold, such that(q,;) = 0, x (g,;) =
0 and where(g,,0) defines the equilibrium around which
we will create a limit cyclé. bt is possible to show thatA, (NM*C - N) zT =
Assume that the system is forced to evolve on the con; CzT+MZT>
straint submanifold and the corresponding velocity space, 7Using a null space base matrix instead of the usual null spajector
allows us to obtain directly a minimum set of equation ddsog the

5Obviously the choice of/ (g) will have an influence on the shape of dynamics in the null space, i.e. one equation insteaad d@f our specific
the limit cycle, as we will show in Section VI. case.



C. Complete controller

First of all we notice that, since (12) - (14) is a complete
description of the system, compensating for the gravity in
both spaces is equivalent to compensate for it in (4) or (10).

Without altering the stability analysis that will follow,
we can add in (24) the termT. (q,,v) &, since it has
no influence when the system has reached the constraint
submanifold and the corresponding velocity space. In this
way we compensate for the coupling terms in the Coriolis
matrix with a power conserving tefm

Fig. 2. Simulation model in the start configuration.

0 r T
o T Trn
neily WL e : —
wherer?'q = 0. However, note that,; is not decoupling the LS, s

dynamics in the two spaces, because the remaining blocks
of the Coriolis matrix are still function of the whole state.

Using (11), (20) and the modified (24), the complete
controller can be written as

[
1F v
S

-D r x K.,z
T T rn
T = J it - T
g ([—rzn ) [ z%2 ) |
(30)
,1 ‘ ‘ ‘ ‘ ‘
where, for easiness, we have omitted the dependences. ’ ’ R R “ *
D. Stability analysis
Fig. 3.  While the last two joints reach the desired valygs = 0,
Here we prove that the closed loop system qas = 0, the first one will oscillate around the equilibrium positig;; = 0.
. 4 . T The control parameters used in the simulation to push themsysn the
g=J"(q)x+Z" (q)v submanifold and the corresponding velocity space &®&; = 0.251,
&=-A."(q) (T (q,#,0) @+ Dyib + K, ) Do =051
b= =0 (a) (To (@, ,0) vt (31)
VI. SIMULATION

T
+dnH (q,&,v)v + Z (q) U () ) In this section we apply the results shown so far to a
9q simulated 3-DOF planar robot. Fig. 2 shows a sketch of

has an asymptotically stable limit cycle. For the stathe model in the starting configuration for the simulations.
bility analysis we will use Theorem 2. The functionThe computation of all the components for the dynamics
in (19) is a C' positve semidefinite function with and kinematics was performed symbolically in Maple and
negative semidefinite derivative for the system (3l)exported as a C-code function, which was later used in a
The set A = {(q,z,v) | Vz(q,z,v) =0} is given Simulink model.
by A = {(q,%,v) |x(q) =0, ©=0}. As expected We have performed two types of simulations. In the first
from Lemma 1 the setd is a positively invariant set one we analyze the problem of generating the limit cycle in
and A ¢ M = (q,%,v) | Vp(q,&,v) = 0} = the joint space, while in the second in the Cartesian space.

{(gq,z,v) | & = 0}. MoreoverA is the largest invariant set o  jgint space
within M, since it is an invariant set and(q) = 0 is a
necessary condition for an invariant set withM, i.e. if
x(q) # 0 we leave M. If we prove thatQ is asymptot-
ically stable conditionally ta4, then all the requirements

As first example we have chosen to make the arm oscillate
along the vertical axis in a completely stretched configura-
tion. To this end we define the constraint submanifold as

of Theorem 2 are satisfied. This is exactly what we have |:QQ - de} —0, (32)

done in Section V-B, so we conclude that we obtain an 43 — qd3

asymptotically stable limit cycle for the whole system. settinggqs = gq3 = 0 and as in [10], [11] we choose
Remark 2: Although the results of the semidefinite Lya- 1

punov analysis are of local nature, the limit cycle is almost U(q) = §kni]T¢j . (33)

globally conditionally asymptotically stable. This was al
ready shown in Section Il and can alternatively proved usintg?1
the results in [16], which additionally allows to concludiat
the equilibrium in the origin is unstable.

In Fig. 3 it is possible to check that the system reaches
e constraint submanifold and then starts to oscillate. Ac
cordingly H — Hg, as shown in Fig. 4.

Remark 3:The importance of the conditiom (q;) = 0
8This is a generalization of the nominal control in [5], [6]. is already pointed out in [10], [11]. There the equivalent
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Fig. 5. Periodic behaviour of the joints in order to produceestical

Fig. 4. Once the system reaches the constraint submanifudd tiee 9 ' . A -
oscillation along a virtual wall. In this cadé (g) = 5knq" q.

corresponding velocity spacé! will converge to the desired valud,; =
1.J. The control parameters used in the simulation to produedirttit cycle

are:kn, =5, dn = 8. 1 :

Eo.aﬁ

S 0.6F
conditionz (g,) = x4 is a clear consequence of requiriqg 04 s m s 2 » o
to be a conditionally asymptotically stable equilibriuminto 1 ‘ ‘ i ‘ ‘
to a set wherer (g) = x4 holds. In our case let us assume E“-BW
thatx (g,) # 0. ThenU (q) will have a non zero minimum § oo ' ]
on the submanifold. This offset has the effect of changing * 5 io s © S %
the desired value of the energy iy, and consequently two ?”L‘ ‘ ‘ ‘ ‘
cases are possible: eithéf;, < 0 and then the system will Zas
reach an equilibrium, off;, > 0 and then a limit cycle will S ‘ ‘ ‘ ‘ ‘

0 5 10 15 20 25 30

be produced. t1s]

B. Cartesian space , ) ]
Fig. 6. End effector coordinates. In this cae(q) = Sk.g”q. The
=3

1
In this example we suppose that we want to produce abdntrol parameters used in the simulation afé; = i, D, I,
oscillation along the vertical direction in the Cartesipace k» = 0.1, dn = 8.
while keeping the horizontal one and the orientation carista

For this case the submanifold is chosen as functions from [14], [15], in order to study the stability of

{161 (q) - xdl} _ (34) limit cycles. The main result of the paper is that with this
23 (q) — Ta3 approach we can force the system to evolve on a submanifold

wherez; (g) is the horizontal position of the end effector,and_ the corre_sponding velocity space where a Iimit cycle is
25 (g) the vertical,es (g) the orientation with respect to the ple&g_ned, which can be proven to be an asymptotically stable
vertical axis and the desired values arg = 0.85, z43 = 2.  nvanant set for the whole system. _
In order to show the effect of a different choice for the A POSsible scenario where to apply these concepts is
potential function in the energy controller, we first use th&iPedal robotics, where often the goal is to obtain periodic

3

one in (33) and then we consider patterns. In this field another usual problem is underac-
1 tuation, which is also the case when dealing with elastic
Ul(q) = §knfg§ (q) , (35) actuators. In the last years this actuators are spreading

more and more, because of the possibility to achieve higher
wherez; (q) = 2 — x4z, 42 = 0.85. The results are shown performances and improve the efficiency of actuation. As
in Fig. 5, Fig. 6, Fig. 7 and in Fig. 8, Fig. 9, respectively.already mentioned in the introduction, we believe that with
Changing the potential functiofy (g) we can change the an energy based approach we can exploit the benefits of
shape of the limit cycle. such actuators, taking into account the energy stored in
the springs. Moreover another issue in bipedal robotics are
VII. CONCLUSIONS impacts. These will cause a periodic energy loss, that we
We have addressed the problem of generating asymptofirink can fit well in our analysis. For this reasons we plan
cally stable limit cycles, for multibody mechanical sysem to extend the results to underactuated hybrid systems.
To this end first we have shown that in the special case of
1-DOF systems this type of solutions can be easily enforced APPENDIX
using a velocity dependent term related to the Hamiltonian Here we recall some fundamental definitions applied to an
of the system. Secondly we have generalized the results fowariant set(? of the system (15).
the stability of equilibrium points with positive semidefa a) (Distance):d (x, Q) £ mingeq [|[x — v
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Fig. 8. End effector coordinates. In this ca8gq)
control parameters used in the simulation af€;
kn =5, dn = 8.

b) (Open ball): B, (Q) £ {x € X | d(x,Q) < ¢}

c) (Closed ball): B, () £ {x € X | d(x,Q) < ¢}

d) (Sphere):S. () £ {x € X | d(x.Q) = ¢}

e) (Stability): Q is stable ifVe > 035 = d(e) > 0
such thatvx, € Bs () = x (t;x0) € B (), ¥t >0

f) (Asymptotic stability): Q is asymptotically sta-

ble if 3 6 > 0 such thatVx,
limy o0 d (X (t5x0) ,€2) =0

€ Bs (Q) =

g) (Conditional stability): €2 is conditionally stable to

Aif Q C AandVe > 03§ =0 (e) > 0 such thatvy, €
Bs () NA= x(tixo) € Be(Q), V>0

h) (Conditional asymptotic stability)f2 is condition-

ally asymptotically stable tol if 2 C Aand36=4(e) >0
such that'x, € Bs (2)NA = limy_,00 d (X (5 X) ,§2) =0
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