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Abstract— In this paper we address the problem of gener-
ating asymptotically stable limit cycles for a fully actuated
multibody mechanical system through a feedback control law.
Using the concept of conditional stability the limit cycle can be
designed for a lower dimensional dynamical system describing
how the original one evolves on a chosen submanifold and
the corresponding velocity space. Moreover, the controller can
be split up in two parts that can be independently designed
and analyzed in order to reach the constraint submanifold and
then produce the oscillation. Even if designed assuming a lower
dimensional system, the limit cycle implies a periodic motion
for the whole system.

I. INTRODUCTION

As shown in [1], [2], [3] walking and running can be
effectively described as periodic tasks. In these cases it is
more important to stay on a prescribed orbit in the state
space, rather than following the exact position in time along
the desired curve. For these applications tracking a trajectory
might not be the best solution, as already addressed in [4],
[3]. Moreover in the latter the need of controlling the energy
of the system to a desired value was already recognized. In
this paper we solve the problem of generating a stable limit
cycle for the system using directly the information on its
energy level.

Similar approaches to the problem of orbital stabilization
have been already shown in [5], [6], [7], [8]. In [5], [6],
[7] the authors extend the potential field controller adding
power-continuous terms, while in [8] the concepts of virtual
constraint and feedback linearization are used to obtain a
closed loop system that generates its own periodic stable
motion. In this paper we formulate the problem based on
the null space decomposition introduced in [9] and used for
nullspace compliance control in [10], [11]. In this way we
think that several advantages can be achieved. Compared
to [8] we take advantage of the passivity property of the
system and do not completely alter the original dynamics
of the system through feedback linearization. Moreover, we
completely separate the problem of producing the limit cycle
from the virtual constraints, instead of modifying the latter
for achieving the first. The input torques are split in the
ones necessary for producing the limit cycle and the ones
necessary for satisfying the virtual constraints. These, in
turn, are responsible for the subspace in which the system
will oscillate. Nevertheless it should be also mentioned
that in [8] the more complicated problem of controlling
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an underactuated system is considered, which here we do
not take into account yet. It can also be shown that for a
one-dimensional nullspace, as used in this paper, the power-
conserving nullspace decoupling from [11] is equivalent to
the nominal control law from [5], [6]. However, the approach
from [11] can also be applied in case of a higher-dimensional
nullspace. In [5], [6] a passive control action is designed
which allows to decouple the motion along a vector field
from the remaining motion. The system is then forced to
follow an integral curve of this vector field via a passive
control law. In case of a closed integral field, the system
thus converges to a closed orbit in the configuration space.
In [7] additionally a non-passive control action was proposed
to achieve regulation of the final velocity along the vector
field. In contrast to [5], [6], [7], we aim at achieving a stable
limit cycle in the state space, which is achieved by regulating
a virtual energy function in a one-dimensional submanifold
of the configuration space. This virtual energy function
consists of the physical kinetic energy and a virtual potential
energy, which represents an additional design element in the
controller. In future works, we plan to utilize the freedom in
choosing this potential for achieving energy efficient motion
in mechanical systems with compliant actuation.

The paper is organized as follows. In Section II a simple
nonlinear oscillator is presented, which produces limit cycles
based on an energy argument. Section III and Section IV are
the main contribution of the paper. There we explain our
main idea for producing a desired limit cycle for the whole
system. To this end we use a nullspace decomposition and
extend known results for conditional stability of equilibrium
points to generic invariant sets, i.e. also for limit cycles.
These results will allow us to derive in Section V the
proposed controller, where also the main advantage of a
conditional stability analysis will become clear: the two
parts of the control law can be independently derived and
analyzed, as sketched in Fig. 1. Finally, simulation results
will be presented in Section VI to validate the proposed
approach, followed by the final discussion and outline of
future work in Section VII.

II. FROM CENTER TO LIMIT CYCLE

Consider the1-DOF system

q̈ + ω2q = 0 , (1)

with equilibrium point q∗ = 0, q̇∗ = 0. This type of
equilibrium point is also called centre [12], since for each
initial condition q = q0, q̇ = q̇0 the resulting trajectory will
be a closed orbit around the equilibrium point, that is the
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Fig. 1. Conceptual illustration of the main idea of the paper. We choose
to produce an oscillation on a constraint submanifold. To this end we force
the system to reach a subset of the state space, where we produce a limit
cycle.

level setL0 of the HamiltonianH (q, q̇) = 1
2

(

q̇2 + ω2q2
)

,
defined asL0 = {q, q̇ | H (q, q̇) = H (q0, q̇0)}.

The difference between these closed orbits and limit cycles
is that they are not isolated. If we force the system to reach
always a desired value of the Hamiltonian, then we will
obtain a limit cycle. This is possible by modifying the system
as

q̈ + dH̃ (q, q̇) q̇ + ω2q = 0 , (2)

whered > 0, H̃ (q, q̇) = H (q, q̇) −Hd andHd > 0 is the
desired value of the Hamiltonian1.

Proof: We consider the Lyapunov functionV (q, q̇) =
1
2H̃

2 (q, q̇), with derivative V̇ (q, q̇) = H̃ (q, q̇) ˙̃
H (q, q̇) =

−dH̃2 (q, q̇) q̇2 ≤ 0. Applying LaSalle’s invariance the-
orem, whereΩ = {q, q̇ | H (q, q̇) > 0} is an invariant
set which excludes the equilibrium point(q∗, q̇∗), M =
{q, q̇ | q 6= 0, q̇ = 0 or H (q, q̇) = Hd} is the setM ⊂ Ω
where V̇ = 0 andLd = {q, q̇ | H (q, q̇) = Hd} is the only
invariant set inM, we can conclude that every solution
starting inΩ approachesLd as t → ∞.

From the proof it follows that the result is actually more
general, meaning that even for a multibody system we can
conclude thatH (q, q̇) → Hd as t → ∞. In fact, for
a multibody mechanical system, with kinetic energyT ,
potential energyU , non conservative forcesτ , generalized
coordinatesq and corresponding generalized velocitiesq̇, we
know that

Ḣ (q, q̇) = Ṫ + U̇ = q̇Tτ . (3)

The choiceτ = −H̃ (q, q̇)Dq̇, with D positive definite,
will always ensureH̃ (q, q̇) → 0. The difference is that

1The conditionHd > 0 excludes that the system will stop even if
T = 0, since those configurations do not correspond to equilibrium points.
In other words ifT = 0 then U = Hd and there will be a non zero
acceleration due to the conservative forces−∇U 6= 0.

for a 1-DOF system the setLd = {q, q̇ | H (q, q̇) = Hd}
is a closed orbit in the state space (corresponding to a limit
cycle), which is not true for an-DOF system.

III. SYSTEM MODEL AND COORDINATE
TRANSFORMATION

Consider a fully actuatedn-DOF system, with dynamic
equation

M (q) q̈ +C (q, q̇) q̇ + g (q) = τ , (4)

whereq, q̇ ∈ R
n is the state of the system,τ ∈ R

n is the
input,M (q) ∈ R

n×n is the mass matrix,C (q, q̇) ∈ R
n×n

is the Coriolis matrix andg (q) ∈ R
n is the gravity vector.

We want to constrain the system to evolve on a subman-
ifold and the corresponding velocity space, where we will
produce a limit cycle. To this end we consider the function

x = x (q) , (5)

wherex : Rn → R
n−1, x (q) = 0 defines the1 - dimen-

sional constraint submanifold of the configuration space and
J (q) ∈ R

(n−1)×n is the Jacobian matrix of the mapping
(5), which is assumed to be a full rank matrix. Accordingly
we can write the dynamics of the system with a new set
of coordinates, as in [9], [10], [11]. We first compute a
null space base matrix2 Z (q) ∈ R

1×n which allows us to
obtain the directions orthogonal to the submanifold, then we
useZ (q) to compute a dynamically consistent3 null space
projectorN (q), which will be part of the extended Jacobian
matrix JN (q) ∈ R

n×n, such that
[

ẋ

v

]

= JN (q) q̇ =

[

J (q)
N (q)

]

q̇ , (6)

whereN (q) =
(

Z (q)M (q)ZT (q)
)−1

Z (q)M (q) ∈

R
1×n and v is an additional null space velocity. One can

show that by this choice the extended JacobianJN (q) is
non singular and the inverse is given by

J−1
N

(q) =
[

J+M (q) ZT (q)
]

, (7)

whereJ+M (q) denotes the dynamically consistent weighted
pseudo inverse defined as

J+M (q) = M−1 (q)JT (q)
(

J (q)M−1 (q)JT (q)
)−1

.

(8)

The joint velocity can thus be computed from the Cartesian
velocity and the null space velocity via

q̇ = J+M (q) ẋ+ZT (q) v , (9)

where, unlike the usual null space projector (see e.g. [13])
defined asI − J+M (q)J (q), the matrixZT (q) has only
one independent column.

2I.e. it fulfils the conditionJ (q)ZT (q) = 0.
3I.e. it fulfils the conditionJ (q)M−1 (q)NT (q) = 0.



From (6) and (9) it is straightforward to rewrite (4) in the
extended velocity coordinates as

Λ (q)

[

ẍ

v̇

]

+ Γ (q, q̇)

[

ẋ

v

]

=

J−T

N
(q) (−g (q) + τ ) ,

(10)

with the matricesΛ (q) andΓ (q, q̇) given by4

Λ (q) = J−T

N
(q)M (q)J−1

N
(q)

=

[

Λx (q) 0
0 Λn (q)

]

Λx (q) =
(

J (q)M−1 (q)JT (q)
)−1

Λn (q) = Z (q)M (q)ZT (q)

and (omitting the dependences)

Γ (q, q̇) =

[

Γx (q, q̇) Γxn (q, q̇)
Γnx (q, q̇) Γn (q, q̇)

]

Γx = Λx

(

JM−1C − J̇
)

J+M

Γxn = Λx

(

JM−1C − J̇
)

ZT

Γnx = −ΓT

xn

Γn = Λn

(

NM−1C − Ṅ
)

ZT

From now on we will use the variables(q, ẋ, v) as the state
variables instead of(q, q̇). The relation between these two
sets of coordinates is given by (6) and (9).

Accordingly we can split our control inputτ in the
componentsτ x andτn along the two spaces

τ = JT

N (q)

[

τ x

τn

]

= JT (q) τ x +NT (q) τn , (11)

so that (omitting the dependences) the complete system can
be written in the form

q̇ = J+M ẋ+ZT v (12)

ẍ = Λ−1
x

(

−Γxẋ− Γxnv − J+MTg + τx

)

(13)

v̇ = Λ−1
n

(

ΓT

xnẋ− Γnv −Zg + τn

)

(14)

We will design the inputτx to keep the system on the
submanifold and the corresponding velocity space, while the
input τn will be responsible for producing an oscillation on
the submanifold itself.

IV. STABILITY WITH SEMIDEFINITE FUNCTIONS

Here we present the theorems used to conclude the asymp-
totic stability of the limit cycle. They extend the results for
equilibrium points that can be found in [14], [15].

Please refer to the Appendix for some useful definitions.
Consider the system

χ̇ = f (χ) , (15)

4Notice that using a dynamically consistent null space projector the
matrix Λ (q) is block diagonal.

whereχ ∈ X ⊂ R
m and f : X → R

m is a Lipschitz
continuous function, so that a unique solution exists. We
denote withχ (t;χ0) the solution of (15) starting atχ0 and
evaluated at the time instantt, with χ (0;χ0) = χ0.

Theorem 1 (Stability):Let Ω be an invariant set for (15),
and letV (χ) be aC1 function defined inBν (Ω) ⊂ X such
that V (χ) ≥ 0 ∀χ ∈ Bν (Ω), V (Ω) = 0 and V̇ (χ) ≤ 0
∀χ ∈ Bν (Ω). If Ω is asymptotically stable conditionally to
A = {χ ∈ Bν (Ω) | V (χ) = 0}, thenΩ is stable.

Proof: Suppose by contradiction thatΩ is unstable.
Then exist ǫ > 0, a sequence(χ0n)n∈N

⊂ Bǫ (Ω),
limn→∞ d (χ0n,Ω) = 0, and a sequence(tn)n∈N

⊂ R
+

in such a way that
{

d (χ (t;χ0n) ,Ω) < ǫ 0 ≤ t < tn

d (χ (tn;χ0n) ,Ω) = ǫ ∀n ∈ N
(16)

SinceSǫ (Ω) is compact,yn = χ (tn;χ0n) → y ∈ Sǫ (Ω) as
n → ∞. Moreover because of the continuity of the solutions
of (15), tn → ∞ asn → ∞.

Now we show thatV (χ (−t;y)) = 0. Let τ < 0 and
N ∈ N be such that0 < tn + τ < tn, ∀n ≥ N . BecauseV
is not increasing along the solutions of (15), we have that

0 ≤ V (χ (tn + τ ;χ0n)) ≤ V (χ0n) . (17)

From limn→∞ d (χ0n,Ω) = 0, V (Ω) = 0 and the continuity
of V , it follows

V (χ (τ ;y)) = lim
n→∞

V (χ (τ ;χ (tn;χ0n)))

= lim
n→∞

V (χ (tn + τ ;χ0n)) = 0 .
(18)

It remains to prove thatχ (−t;y) ∈ A and d (y,Ω) = ǫ

cannot hold ifΩ is asymptotically stable conditionally toA.
SinceΩ is asymptotically stable conditionally toA, ∃ T =
T (ǫ) > 0 | d (χ (T ;χ0) ,Ω) ≤ ǫ

2 , with χ0 ∈ A. If we
chooseχ0 = χ (−T ;y) ∈ A, then
ǫ

2
≥ d (χ (T ;χ0) ,Ω) = d (χ (0;y) ,Ω) = d (y,Ω) = ǫ .

Since this is a contradiction, we conclude thatΩ must be
stable.

Thanks to the properties of positive semidefinite functions
it is possible to ensure not just the stability but even the
asymptotic stability of an invariant setΩ. To this end let us
first recall two results.

Lemma 1 ([14]): Let V be a nonnegative function defined
in Bν (Ω) ⊂ X . Suppose thaṫV (χ) ≤ 0 ∀χ ∈ Bν (Ω), then
A = {χ ∈ Bν (Ω) | V (χ) = 0} is a positively invariant set

andA ⊂ M =
{

χ ∈ Bν (Ω) | V̇ (χ) = 0
}

.

Lemma 2 ([12]): If a solution χ (t;χ0) of (15) is
bounded and belongs toX for t ≥ 0, then its positive
limit set Ł+ is a nonempty, compact, invariant set. Moreover,
χ (t;χ0) approaches Ł+ as t → ∞

Theorem 2 (Asymptotic stability):Let Ω be an invariant
set for (15), and letV (χ) be a C1 function defined in
Bν (Ω) ⊂ X such thatV (χ) ≥ 0 ∀χ ∈ Bν (Ω), V (Ω) = 0
and V̇ (χ) ≤ 0 ∀χ ∈ Bν (Ω). If Ω is asymptotically stable
conditionally to the largest positively invariant setM∗ within



M =
{

χ ∈ Bν (Ω) | V̇ (χ) = 0
}

, thenΩ is asymptotically
stable.

Proof: In order to prove asymptotic stability we have
to show stability and attractiveness.

From Lemma 1 it follows thatA is a positively invariant
set andA ⊂ M, so sinceΩ is conditionally stable toM∗

and V (Ω) = 0 i.e. Ω ⊂ A, then it must be conditionally
stable toA, hence by Theorem 1Ω is stable.

We will prove the attractiveness by contradiction. Since
Ω is stable then∀ǫ > 0 ∃ δ = δ (ǫ) > 0 such that∀χ0 ∈
Bδ (Ω) ⇒ χ (t;χ0) ∈ Bǫ (Ω), ∀t ≥ 0. This means that using
also Lemma 2, then Ł+ is a positively invariant set and Ł+ ∈
Bǫ (Ω)∩M∗. Now let us assume by contradiction that Ł+ is
notΩ. SinceΩ is asymptotically stable conditionally toM∗,
then limt→∞ d (χ (t;χ0) ,Ω) = 0 if χ0 ∈ Bǫ (Ω) ∩ M∗.
Choosingχ0 = y ∈ Ł+ 6= Ω we reach a contradiction.

V. CONTROLLER DESIGN

In this section we will derive the control input for satis-
fying the n− 1 constraints and generating at the same time
a limit cycle for the ”remaining dynamics”. To this end the
results from Section II for the1-DOF case will be used to
enforce the behaviour of the system on the submanifold of
dimension1 defined by the constraints and the corresponding
velocity space. The result will be an asymptotically stable
limit cycle for the whole system.

A. Positive semidefinite function for the constraint space

Let Kx,Dx ∈ R
(n−1)×(n−1) be two positive definite

matrices. Consider theC1 positive semidefinite function

Vx (q, ẋ, v) =
1

2
ẋTΛx (q) ẋ+

1

2
xT (q)Kxx (q) . (19)

By choosing

τx = Γxn (q, ẋ, v) v + J+MT (q) g (q)−Dxẋ−Kxx ,

(20)

its derivative results inV̇x (q, ẋ, v) = −ẋTDxẋ ≤ 0 and
(13) becomes

Λx (q) ẍ+ Γx (q, ẋ, v) ẋ+Dxẋ+Kxx = 0 . (21)

The role of this control law is to force the system to evolve
onto the desired submanifold and the corresponding velocity
space.

B. Energy control for the oscillation on the submanifold

Let us considerdn > 0 and aC1 functionU (q) positive
definite on the submanifold, such thatU (qd) = 0, x (qd) =
0 and where(qd,0) defines the equilibrium around which
we will create a limit cycle5.

Assume that the system is forced to evolve on the con-
straint submanifold and the corresponding velocity space,

5Obviously the choice ofU (q) will have an influence on the shape of
the limit cycle, as we will show in Section VI.

where the system reduces to

q̇ = ZT (q) v

v̇ = Λ−1
n (q) (−Γn (q, v) v −Z (q) g (q) + τn)

s.t. x (q) = 0

(22)

so that the function

H (q, v) =
1

2
Λn (q) v

2 + U (q) , (23)

with x (q) = 0, is a C1 positive definite function for the
system. Choosing

τn = Z (q) g (q)− dnH̃ (q, v) v −Z (q)
∂U (q)

∂q

T

, (24)

whereH̃ (q, v) = H (q, v)−Hd andHd > 0, the derivative
results in

Ḣ (q, v) = −dnH̃ (q, v) v2 (25)

and (14) becomes

Λn (q) v̇ + Γn (q, v) v + dnH̃ (q, v) v+

+Z (q)
∂U (q)

∂q

T

= 0 .
(26)

From Section II it follows that using the Lyapunov func-
tion Vn (q, v) = 1

2 H̃
2 (q, v), with x (q) = 0, it is

possible to prove the asymptotic stability for the re-
stricted system of the limit cycle defined byΩ =
{(q, v) | x (q) = 0, H (q, v) = Hd}.

Remark 1:The problem of forcing the system to evolve
along the constraint submanifold and the corresponding
velocity space can be reformulated as

M (q) q̈ +C (q, q̇) q̇ + g (q) =

= JT (q) τx +NT (q) τn (27)

s.t. Λx (q) ẍ+ Γx (q, q̇) ẋ+Dxẋ+Kxx = 0 (28)

While substituting the dynamic equation (27) in the con-
straint (28) gives inputτ x needed to keep the system on the
constraint submanifold and the corresponding velocity space,
as in (20), premultiplying (27) byZ (q) and usingq̇ =
ZT (q) v gives the dynamic of the system when evolving
along them6,7, as in (22).

In other words requiring to have dynamic matrices in (28)
derived from the ones in (27) results in the control law that
we have proposed. On the other hand, if in (28) we choose
a constant inertia matrix and accordinglyΓx (q, q̇) = 0,
then the feedback linearization approach is obtained [8]. The
result is not surprising at all since, in this way, we completely
change the dynamic that describes how the system is pushed
on the constraint submanifold and the corresponding velocity
space.

6It is possible to show thatΛn

(

NM−1C − Ṅ
)

ZT =

Z
(

CZT +MŻ
T
)

7Using a null space base matrix instead of the usual null spaceprojector
allows us to obtain directly a minimum set of equation describing the
dynamics in the null space, i.e. one equation instead ofn in our specific
case.



C. Complete controller

First of all we notice that, since (12) - (14) is a complete
description of the system, compensating for the gravity in
both spaces is equivalent to compensate for it in (4) or (10).

Without altering the stability analysis that will follow,
we can add in (24) the term−ΓT

xn (q, ẋ, v) ẋ, since it has
no influence when the system has reached the constraint
submanifold and the corresponding velocity space. In this
way we compensate for the coupling terms in the Coriolis
matrix with a power conserving term8

τ d = JT

N

[

0 Γxn

−ΓT

xn 0

] [

ẋ

v

]

, (29)

whereτ T

d
q̇ = 0. However, note thatτ d is not decoupling the

dynamics in the two spaces, because the remaining blocks
of the Coriolis matrix are still function of the whole state.

Using (11), (20) and the modified (24), the complete
controller can be written as

τ = g + JT

N

(

[

−Dx Γxn

−ΓT

xn −dnH̃

] [

ẋ

v

]

−

[

Kxx

Z ∂U

∂q

T

])

,

(30)

where, for easiness, we have omitted the dependences.

D. Stability analysis

Here we prove that the closed loop system

q̇ = J+M (q) ẋ+ZT (q) v

ẍ = −Λ−1
x (q) (Γx (q, ẋ, v) ẋ+Dxẋ+Kxx)

v̇ = −Λ−1
n (q)

(

Γn (q, ẋ, v) v+

+ dnH̃ (q, ẋ, v) v +Z (q)
∂U (q)

∂q

T
)

(31)

has an asymptotically stable limit cycle. For the sta-
bility analysis we will use Theorem 2. The function
in (19) is a C1 positive semidefinite function with
negative semidefinite derivative for the system (31).
The set A = {(q, ẋ, v) | Vx (q, ẋ, v) = 0} is given
by A = {(q, ẋ, v) | x (q) = 0, ẋ = 0}. As expected
from Lemma 1 the setA is a positively invariant set
and A ⊂ M =

{

(q, ẋ, v) | V̇x (q, ẋ, v) = 0
}

=

{(q, ẋ, v) | ẋ = 0}. MoreoverA is the largest invariant set
within M, since it is an invariant set andx (q) = 0 is a
necessary condition for an invariant set withinM, i.e. if
x (q) 6= 0 we leaveM. If we prove thatΩ is asymptot-
ically stable conditionally toA, then all the requirements
of Theorem 2 are satisfied. This is exactly what we have
done in Section V-B, so we conclude that we obtain an
asymptotically stable limit cycle for the whole system.

Remark 2:Although the results of the semidefinite Lya-
punov analysis are of local nature, the limit cycle is almost
globally conditionally asymptotically stable. This was al-
ready shown in Section II and can alternatively proved using
the results in [16], which additionally allows to conclude that
the equilibrium in the origin is unstable.

8This is a generalization of the nominal control in [5], [6].
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Fig. 2. Simulation model in the start configuration.
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Fig. 3. While the last two joints reach the desired valuesqd2 = 0,
qd3 = 0, the first one will oscillate around the equilibrium position qd1 = 0.
The control parameters used in the simulation to push the system on the
submanifold and the corresponding velocity space are:Kx = 0.25I ,
Dx = 0.75I .

VI. SIMULATION

In this section we apply the results shown so far to a
simulated3-DOF planar robot. Fig. 2 shows a sketch of
the model in the starting configuration for the simulations.
The computation of all the components for the dynamics
and kinematics was performed symbolically in Maple and
exported as a C-code function, which was later used in a
Simulink model.

We have performed two types of simulations. In the first
one we analyze the problem of generating the limit cycle in
the joint space, while in the second in the Cartesian space.

A. Joint space

As first example we have chosen to make the arm oscillate
along the vertical axis in a completely stretched configura-
tion. To this end we define the constraint submanifold as

[

q2 − qd2
q3 − qd3

]

= 0 , (32)

settingqd2 = qd3 = 0 and as in [10], [11] we choose

U (q) =
1

2
knq̃

T q̃ . (33)

In Fig. 3 it is possible to check that the system reaches
the constraint submanifold and then starts to oscillate. Ac-
cordinglyH → Hd, as shown in Fig. 4.

Remark 3:The importance of the conditionx (qd) = 0
is already pointed out in [10], [11]. There the equivalent
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Fig. 4. Once the system reaches the constraint submanifold and the
corresponding velocity space,H will converge to the desired valueHd =
1J . The control parameters used in the simulation to produce the limit cycle
are:kn = 5, dn = 8.

conditionx (qd) = xd is a clear consequence of requiringqd

to be a conditionally asymptotically stable equilibrium point
to a set wherex (q) = xd holds. In our case let us assume
thatx (qd) 6= 0. ThenU (q) will have a non zero minimum
on the submanifold. This offset has the effect of changing
the desired value of the energy toH ′

d
and consequently two

cases are possible: eitherH ′

d
≤ 0 and then the system will

reach an equilibrium, orH ′

d
> 0 and then a limit cycle will

be produced.

B. Cartesian space

In this example we suppose that we want to produce an
oscillation along the vertical direction in the Cartesian space
while keeping the horizontal one and the orientation constant.
For this case the submanifold is chosen as

[

x1 (q)− xd1

x3 (q)− xd3

]

= 0 , (34)

wherex1 (q) is the horizontal position of the end effector,
x2 (q) the vertical,x3 (q) the orientation with respect to the
vertical axis and the desired values arexd1 = 0.85, xd3 = π

2 .
In order to show the effect of a different choice for the

potential function in the energy controller, we first use the
one in (33) and then we consider

U (q) =
1

2
knx̃

2
2 (q) , (35)

wherex̃2 (q) = x2−xd2, xd2 = 0.85. The results are shown
in Fig. 5, Fig. 6, Fig. 7 and in Fig. 8, Fig. 9, respectively.
Changing the potential functionU (q) we can change the
shape of the limit cycle.

VII. CONCLUSIONS

We have addressed the problem of generating asymptoti-
cally stable limit cycles, for multibody mechanical systems.
To this end first we have shown that in the special case of
1-DOF systems this type of solutions can be easily enforced
using a velocity dependent term related to the Hamiltonian
of the system. Secondly we have generalized the results for
the stability of equilibrium points with positive semidefinite

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

1.5

2

t [s]

q
[r

a
d
]

 

 

q
1

q
2

q
3

Fig. 5. Periodic behaviour of the joints in order to produce avertical
oscillation along a virtual wall. In this caseU (q) = 1

2
knq̃

T q̃.
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Fig. 6. End effector coordinates. In this caseU (q) = 1

2
knq̃

T q̃. The
control parameters used in the simulation are:Kx = 4I , Dx = 3I,
kn = 0.1, dn = 8.

functions from [14], [15], in order to study the stability of
limit cycles. The main result of the paper is that with this
approach we can force the system to evolve on a submanifold
and the corresponding velocity space where a limit cycle is
designed, which can be proven to be an asymptotically stable
invariant set for the whole system.

A possible scenario where to apply these concepts is
bipedal robotics, where often the goal is to obtain periodic
patterns. In this field another usual problem is underac-
tuation, which is also the case when dealing with elastic
actuators. In the last years this actuators are spreading
more and more, because of the possibility to achieve higher
performances and improve the efficiency of actuation. As
already mentioned in the introduction, we believe that with
an energy based approach we can exploit the benefits of
such actuators, taking into account the energy stored in
the springs. Moreover another issue in bipedal robotics are
impacts. These will cause a periodic energy loss, that we
think can fit well in our analysis. For this reasons we plan
to extend the results to underactuated hybrid systems.

APPENDIX

Here we recall some fundamental definitions applied to an
invariant setΩ of the system (15).

a) (Distance): d (χ,Ω) , miny∈Ω ‖χ− y‖
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Fig. 7. Energy error for the first example in the Cartesian space. The
system reaches the limit cycle whereH (q, q̇) = 0.1J .
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Fig. 8. End effector coordinates. In this caseU (q) = 1
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2
(q). The

control parameters used in the simulation are:Kx = 4I , Dx = 3I,
kn = 5, dn = 8.

b) (Open ball): Bǫ (Ω) , {χ ∈ X | d (χ,Ω) < ǫ}

c) (Closed ball): B̄ǫ (Ω) , {χ ∈ X | d (χ,Ω) ≤ ǫ}

d) (Sphere):Sǫ (Ω) , {χ ∈ X | d (χ,Ω) = ǫ}

e) (Stability): Ω is stable if∀ǫ > 0 ∃ δ = δ (ǫ) > 0
such that∀χ0 ∈ Bδ (Ω) ⇒ χ (t;χ0) ∈ Bǫ (Ω) , ∀t ≥ 0

f) (Asymptotic stability): Ω is asymptotically sta-
ble if ∃ δ > 0 such that ∀χ0 ∈ Bδ (Ω) ⇒
limt→∞ d (χ (t;χ0) ,Ω) = 0

g) (Conditional stability): Ω is conditionally stable to
A if Ω ⊂ A and∀ǫ > 0 ∃ δ = δ (ǫ) > 0 such that∀χ0 ∈
Bδ (Ω) ∩ A ⇒ χ (t;χ0) ∈ Bǫ (Ω) , ∀t ≥ 0

h) (Conditional asymptotic stability):Ω is condition-
ally asymptotically stable toA if Ω ⊂ A and∃ δ = δ (ǫ) > 0
such that∀χ0 ∈ Bδ (Ω)∩A ⇒ limt→∞ d (χ (t;χ0) ,Ω) = 0
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