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Abstract: In this work we study the problem of rope sway dynamics control for elevator
systems, with time-varying rope lengths. We formulate this problem as a nonlinear control
problem and propose nonlinear controllers based on Lyapunov theory for time-varying systems.
We study the stability of the proposed controllers, and test their performances on a numerical
example.

1. INTRODUCTION

Fast and high performance elevator systems are becoming
a necessity in this world of high-rise buildings. This rises
the question of safety in elevator systems. One of the
common safety problems is the rope sway effect. Indeed,
even slight external disturbances on a high-rise building,
e.g. wind gust or earthquake, can lead to large rope sway
within the elevator shaft. Considering the length of the
ropes and their heavy weight, it is clear that the rope sway
can damage the equipments that are installed in the eleva-
tor shaft and can also cause damages to the elevator shaft
structure itself, without mentioning the potential danger
caused for the elevator passengers. For these reasons, it is
very important to be able to control the rope dynamics
within the elevator shaft. Furthermore, due to cost con-
straints, it is preferable to be able to do so, with minimum
actuation capabilities. Several papers have been dedicated
to the problem of modelling and control of long elevator
ropes, e.g. Kaczmarczyk [2011], Kaczmarczyk et al. [2009],
W.D.Zhu and Xu [2003], W.D.Zhu and Teppo [2003],
W.D.Zhu and Chen [2006], Fujino et al. [1993]. In Fujino
et al. [1993], a simple model of a cable attached to an
actuator at its free end is used to investigate the stiffening
effect of the control force on the cable. An energy analysis
is used to tune an open-loop sinusoidal force applied to
the cable. In W.D.Zhu and Teppo [2003], a scaled model
for high-rise, high-speed elevators is developed. The model
is used to analyze the influence of the car motion profiles
on the lateral vibrations of the elevator cables. An active
stiffness control of the transverse vibrations of elevator
ropes is presented in Kaczmarczyk [2011]. The author
propose a nonlinear modal feedback to drive an actuator
pulling on one end of the rope. The control performance
is investigated by numerical tests. In W.D.Zhu and Chen
[2006], the authors proposed a novel idea to dissipate
the transversal energy of an elevator rope. The authors
used a passive damper attached between the car and the
rope. Numerical analysis of the transverse motion average
energy was conducted to find the optimal value of the
damper coefficient. In Benosman and Fukui [2014], the au-
thors presented preliminary results on nonlinear Lyapunov
control of the elevators rope sway problem, but only the
case of static elevators, i.e., constant rope lengths, was
studied there.
In this work we propose to extend the results of Benosman
and Fukui [2014] to the case of time-varying rope lengths,
i.e., controlling the rope sway when the elevator car is

moving, which is a more challenging problem, due to the
fact that the closed-loop model becomes in this case a
time-varying nonlinear system. Similarly to Benosman and
Fukui [2014], we use an active actuator to pull on one-
side of the ropes. We show that in this case the model
of the elevator rope together with its actuator writes as
a nonlinear time-varying model, which we use to develop
nonlinear Lyapunov-based feedback controllers to stabilize
the rope sway dynamics. We study the stability of the
closed-loop dynamics, and show the performances of these
controllers on a numerical example.

The paper is organized as follows: We start the paper with
some preliminaries in Section 2. In Section 3, we recall the
model of the system. Next, in Section 4, we present the
main results of this work, namely, the nonlinear Lyapunov-
based controllers, together with their stability analysis.
Section 5 is dedicated to some numerical results. Finally,
we conclude the paper with a brief summary of the results
in Section 6.

2. NOTATIONS AND PRELIMINARIES

Throughout the paper, R, R+ denotes the set of real,
and the set of nonnegative real numbers, respectively. For

x ∈ R
N we define |x| =

√
xTx, we denote by Aij , i =

1, ..., n, j = 1, ...,m the elements of the matrix A, and
denote by sgn(.) the signum function.

3. ELEVATOR ROPE MODELLING

In this section we first recall the infinite dimension model,
i.e., partial differential equation (PDE), of a moving hoist
cable, with non-homogenous boundary conditions. Sec-
ondly, to be able to reduce the PDE model to an ODE
model using a Galerkin reduction method, we introduce a
change of variables and re-write the first PDE model in
a new coordinates, where the new PDE model has zero
boundary conditions. Let us first enumerate the assump-
tions under which our model is valid.
- The elevator ropes are modelled within the framework of
string theory.
- The elevator car is modelled as a point mass.
- The vibration in the second lateral direction is not
included.
- The suspension of the car against its guide rails is
assumed to be rigid. Under the previous assumption, fol-



Fig. 1. Schematic representation of an elevator shaft show-
ing the different variables used in the model

lowing W.D.Zhu and Xu [2003], Kaczmarczyk [2011], the
general PDE model of an elevator rope, depicted on Figure
1, is given by

ρ(
∂2

∂t2
+ v2(t)

∂2

∂y2
+ 2v(t)

∂

∂y∂t
+ a

∂

∂y

)

u(y, t)

− ∂

∂y
T (y, t)

∂u(y, t)

∂y
+ cp

( ∂

∂t
+ v(t)

∂

∂y
)u(y, t) = 0

(1)

where u(y, t) is the lateral displacement of the rope. ρ is
the mass of the rope per unit length. T is the tension in the
rope, which varies depending on which rope in the elevator
system we are modelling, i.e., main rope, compensation
rope, etc. cp is the damping coefficient of the rope per

unit length. v = ∂l(t)
∂t

is the elevator rope velocity, where

l : R → R is a function (at least C2 ) modelling the

time-varying rope length. a = ∂2l(t)
∂t2

is the elevator rope
acceleration.
The PDE (1) is associated with the following two boundary
conditions:

u(0, t) = f1(t)
u(l(t), t) = f2(t)

(2)

where f1(t) is the time varying disturbance acting on the
rope at the level of the machine room, due to external
disturbances, e.g. wind gust. f2(t) is the time varying
disturbance acting at the level of the car, due to exter-
nal disturbances. In this work we assume that the two
boundary disturbances acting on the rope are related via
the relation:

f2(t) = f1(t)sin
(π(H − l)

2H

)

, H ∈ R (3)

where H is the height of the building. This expression
is an approximation of the propagation of the boundary
disturbance f1 along the building structure, based on the
length l, it leads to f2 = f1 for a length 0 (which is
expected), and a decreasing force along the building until
is vanishes at l = H, f2 = 0 (which makes sense, since
the effect of any disturbance f1, for example wind gusts,
is expected to vanish at the bottom of the building). As
we mentioned earlier the tension of the rope T (y) depends
on the type of the rope that we are dealing with. In the
sequel, we concentrate on the main rope of the elevator,
the remaining ropes are modelled using the same steps by
simply changing the rope tension expression.
For the case of the main rope, the tension is given by

T (y, t) = (me+ρ(l(t)−y))(g−a(t))+0.5Mcsg+U(t) (4)

where g is the standard gravity constant, me,Mcs are the
mass of the car and the compensating sheave, respectively,
and U(t) is the control tension applied by an actuator
attached to the compensation sheave (the same actuator
placement has been considered in Kaczmarczyk [2011]).
Next, we reduce the PDE model (1) to a more tractable
model for control, using a projection Galerkin method or
assumed mode approach, e.g. Meirovitch [1967].
To be able to apply the assumed mode approach, let us
first apply the following one-to-one change of coordinates
to the equation (1)

u(y, t) = w(y, t) +
l(t) − y

l(t)
f1(t) +

y

l(t)
f2(t) (5)

One can easily see that this change of coordinates implies
trivial boundary conditions

w(0, t) = 0
w(l(t), t) = 0 (6)

After some algebraic and integral manipulations, the PDE
model (1) writes in the new coordinates as

ρ
∂2w
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(7)
where G(t) = ρa(t)− ∂T

∂y
+ cpv(t), and the si variables are

defined as
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(8)

associated with the two-point boundary conditions

w(0, t) = 0, w(l(t), t) = 0. (9)

Now instead of dealing with the PDE (1) with non-zero
boundary conditions, we can use the equivalent model,
given by equation (7) associated with trivial boundary
conditions (9).
Following the assumed-modes technique, the solution of
the equation (7), (9) writes as

w(y, t) =

j=N
∑

j=1

qj(t)φj(y, t), N ∈ N (10)

where N is the number of bases (modes), included in the
discretization, φj , j = 1, ..., N are the discretization bases
and qj , j = 1, .., N are the discretization coordinates.
In order to simplify the analytic manipulation of the
equations, the base functions are chosen to satisfy the
following normalization constraints
∫ l(t)

0

φ2
j (y, t)dy = 1,

∫ l(t)

0

φi(y, t)φj(y, t)dy = 0, ∀i 6= j

(11)
To further simplify the base functions, we define the nor-
malized variable, e.g. W.D.Zhu and Chen [2006], W.D.Zhu
and Xu [2003]

ξ(t) =
y(t)

l(t)
(12)



and the normalized base functions

φj(y, t) =
ψj(ξ)
√

l(t)
, j = 1, ..., N (13)

In these new coordinates the normalization constraints
(11) write as

∫ 1

0

ψ2
j (ξ)dξ = 1,

∫ 1

0

ψi(ξ)ψj(ξ)dξ = 0, ∀i 6= j (14)

After classical (e.g. refer to W.D.Zhu and Xu [2003])
discretization of the PDE-based model (7), (9), we can
write the reduced ODE-model based on N -modes as

Mq̈ + C(t)q̇ + (K(t) + β(t)U)q = F (t), q ∈ R
N , F ∈ R

N

(15)
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0, i 6= j
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(16)
where si, i = 1, 2, 3, 4 are given in (8).
If we use the classical definition of the state vector z =
(q, q̇)T , then it is easy to see that the obtained ODE model
is a time-varying bilinear(because of the term Uq) model
in the state z and the control vector U .

4. MAIN RESULT: LYAPUNOV-BASED
CONTROLLERS

In this section we present Lyapunov-based feedback con-
trollers designed to stabilize the rope sway dynamics, for
the case of time-varying ropes lengths, satisfying the fol-
lowing assumption.

Assumption 1. The time varying length function l :
R+ → R+ is C

2, and satisfies: l(t) ∈ [lmin, lmax],

l̇(t) ∈ [0, l̇max], l̈(t) ∈ [0, l̈max], ∀t ∈ R+, where

lmin, lmax, l̇max, l̈max are given constants.

The first controller deals with the case where the building,
hosting a moving elevator, sustains a brief (impulse-like)
external disturbance. For example, an earthquake impulse
with a sufficient force to make the top of the building
oscillate, or a strong wind gust that happens over a short
period of time, exciting the building structure and imply-
ing residual vibrations of the building even after the wind
gust interruption. In these cases, the elevator ropes will
vibrate, starting from a non-zero initial conditions, due
to the impulse-like external disturbances (i.e., happening
over a short time interval), and this case correspond to
the model (15), (16) with non-zero initial conditions and
zero external disturbances. We can now state the following
theorem.

Theorem 1. Consider the rope dynamics (15), (16), with
non-zero initial conditions, with no external disturbances,
i.e., f1(t) = f2(t) = 0,∀t, and with time-varying length l
satisfying Assumption 1, then the feedback control

U(z) = umax
q̇T β̃q|q|2

√

1 + (q̇T β̃q)2
(17)

where z = (qT , q̇T )T , implies that q(t) → 0, for t → 0,
furthermore |U | decreases with the decrease of |q|2.

Proof:
We define the time-varying control Lyapunov function as

V (z, t) =
1

2
q̇T (t)Mq̇(t) +

1

2
qT (t)K(t)q(t) (18)

where z = (qT , q̇T )T .
First we compute the derivative of the Lyapunov function
along the dynamics (15), without disturbances, i.e., F (t) =
0, ∀t
V̇ (z, t) = q̇T (−Cq̇ −Kq − βUq) + qTKq̇ +

1

2
qT K̇(t)q

= −q̇TCq̇ − q̇TβqU +
1

2
qT K̇(t)q

(19)
Next, based on Assumption 1, we can write

∃c > 0, s.t. K̇(t) ≤ cIn×n, ∀t
which leads to

V̇ (z, t) ≤ −q̇TβqU +
1

2
c|q|2 (20)

using U defined in (17), we have

V̇ (z, t) ≤ −umaxl−2 (q̇T β̃q)2|q|2
√

1 + (q̇T β̃q)2
+

1

2
c|q|2

≤ (
1

2
c− umaxl

−2 (q̇T β̃q)2
√

1 + (q̇T β̃q)2
)|q|2

(21)

this shows that V̇ (z, t) decreases along (15), as long

as, (q, q̇) satisfies 1
2c − umaxl

−2 (q̇T β̃q)2√
1+(q̇T β̃q)2

< 0, and

when (q, q̇) enters the set {(qT , q̇T )T ∈ R
2N , s.t. 1

2c −
umaxl

−2 (q̇T β̃q)2√
1+(q̇T β̃q)2

≥ 0}, it stays in it, which makes

V (z, t) bounded.
Next from (21), we can write

V̇ (z, t) ≤ 1

2
qT cq (22)

thus

+∞ > V (z(0), 0) − V (z(t), t) ≥ −1

2

∫ t

0

qT cqdt

⇒
∫ t

0

qT cqdt is bounded.

(23)

Since the boundedness of V implies boundedness of q̇, we
conclude about the uniform continuity of q and finally
using Barbalat’s Lemma, e.g. Khalil [1996], we conclude
that limt→+∞q(t) = 0. The fact that |U | decreases with
the decrease of |q|2, is concluded from the upper-bound

|U | ≤ umax|q|2
2

Next, we present a controller which deals with the case
of a moving elevator in a building under sustained exter-
nal disturbances, e.g. sustained wind forces. In this case
F (t) 6= 0 over a non-zero time interval, and satisfies the
following assumption.
Assumption 2. The time varying disturbance functions
f1, f2 are such that, the function F (t) is bounded, i.e.,
∃Fmax, s.t. |F (t)| ≤ Fmax, ∀t.



Under this assumption, we propose the following result.

Theorem 2. Consider the rope dynamics (15), (16), under
non-zero external disturbances, i.e., f1(t) 6= 0, f2(t) 6= 0
satisfying Assumption 2, and with time-varying length l
satisfying Assumption 1, then the feedback control

U(z) =
umaxq̇

T β̃q
√

1 + (q̇T β̃q)2
+ k1(q̇

T β̃q)(Fmax + ε)|q̇|

+k2(q̇
T β̃q)|q|2,

k1 > 0, k2 > 0, ε > 0

(24)

where z = (qT , q̇T )T , ensures that the state vector x con-
verges to the ω-limit set S1 = {(qT , q̇T )T ∈ R

2N , s.t. c2 −
k2l

−2(q̇T β̃q)2 → 0} or the invariant set {(qT , q̇T )T ∈
R

2N , s.t. l−2(q̇T β̃q)2 ≤ 1
k1
} if c

2k2
> 1

k1
, and converges

to the ω-limit set S2 = {(qT , q̇T )T ∈ R
2N , s.t. 1 −

k1l
−2(q̇T β̃q)2 → 0} or the invariant set {(qT , q̇T )T ∈

R
2N , s.t. l−2(q̇T β̃q)2 ≤ c

2k2
} if c

2k2
≤ 1

k1
, where c is such

that K̇(t) < cIn×n, ∀t.

Proof:
Let us consider again the time-varying Lyapunov function
(18). Its derivative along the dynamics (15), with non-zero
disturbance F (t) writes as

V̇ (z, t) = q̇T (−Cq̇ −Kq − βUq) + qTKq̇

+qT K̇(t)q + q̇TF (t)
= −q̇TCq̇ − q̇TβqU + qT K̇(t)q + q̇TF (t)

(25)

under Assumption 1, we can write

V̇ (z, t) ≤ −q̇TβqU + q̇TF (t) +
1

2
cq2

which under Assumption 2, gives

≤ −q̇TβqU + |q̇|Fmax +
1

2
cq2

substituting U by the controller (24), leads to

≤ −k1l
−2(q̇T β̃q|)2ε|q̇| + |q̇|Fmax(1 − k1l

−2(q̇T β̃q)2)

+|q2|( c
2
− k2l

−2(q̇T β̃q)2)

≤ |q̇|Fmax(1 − k1l
−2(q̇T β̃q)2)

+|q2|( c
2
− k2l

−2(q̇T β̃q)2)

- Case 1: c
2k2

> 1
k1

In this case as long as (q̇T β̃q)2 > c
2k2

> 1
k1

, then V̇ < 0,
which makes x decreasing until it enters the invariant set
{(qT , q̇T )T ∈ R

2N , s.t. l−2(q̇T β̃q)2 ≤ c
2k2

}, which makes

V (z, t) bounded. Here we have to distinguish two cases:
1- First, the trajectories keep decreasing until they reach
the invariant set

{(qT , q̇T )T ∈ R
2N , s.t. l−2(q̇T β̃q)2 ≤ 1

k1
}

2- Second, the trajectories are stuck in the domain where
(q̇T β̃q)2 ≤ c

2k2l−2 and (q̇T β̃q)2 > 1
k1l−2 . Since in this set

we have |q̇|Fmax(1 − k1l
−2(q̇T β̃q)2) ≤ 0, we can write

V̇ (z, t) ≤ |q2|( c
2
− k2l

−2(q̇T β̃q)2)

which together with the boundedness of V gives
+∞ > V (z(0), 0) − V (z(t), t)

≥ −

∫ t

0

q2(t)(
c

2
− k2l−2(q̇(t)T β̃q(t))2)dt

⇒

∫ t

0

q2(t)(
c

2
− k2l−2(q̇(t)T β̃q(t))2)dt is bounded.

Parameters Definitions Values

n Number of ropes 8[−]
me Mass of the car 3500[kg]
ρ Main rope linear mass density 2.11[kg/m]
l Rope maximum length 390[m]
H Building height 402.8[m]
cp Damping coefficient 0.0315[N.sec/m]

Table 1. Numerical values of the mechanical
parameters

Now, due to the boundedness of V we conclude about the
boundedness of q, q̇, furthermore, using Assumption 1 and
the system equations (15), we conclude about the bound-
edness of q̈. Boundedness of q̇ and q̈ implies that q2(t)( c2 −
k2l

−2(q̇(t)T β̃q(t))2) is uniform continuous. Finally, using
Barbalat’s Lemma we conclude that limt→∞q

2(t)( c2 −
k2l

−2(q̇(t)T β̃q(t))2) = 0. Next, by examining the system
equations (15), we can conclude that limt→∞q

2(t) = 0
cannot be a solution of (15), since there is no assumption
on F (t) converging to zero when t → 0. Thus, we finally
conclude that in this second case, the solution q, q̇ satisfies
limt→∞

c
2 − k2l

−2(q̇(t)T β̃q(t))2 = 0.

- Case 2: c
2k2

≤ 1
k1

: Following the same reasoning as in case
1, we can conclude that the solution q, q̇ either converges
to the invariant set {(qT , q̇T )T ∈ R

2N , s.t. l−2(q̇T β̃q)2 ≤
c

2k2
} or satisfies limt→∞1− k1l

−2(q̇T β̃q)2 = 0. 2

Remark 1. The controllers (17), (24) are state feedbacks
based on q, q̇, these states can be easily computed from
the sway measurements atN given positions y(1), ..., y(N),
via equation (10). The sway w(y, t) can be measured by
laser displacement sensors placed at the positions y(i), i =
1, 2, ...N , along the rope, e.g. Otsuki et al. [2002], subse-
quently q can be computed by simple algebraic inversion
of (10), and q̇ can be obtained by direct numerical differ-
entiation of q.

5. NUMERICAL EXAMPLE

The case of an elevator system with the mechanical pa-
rameters summarized on Table 1 has been considered for
the tests presented hereafter. We write the controllers
based on the model (15), (16) with one mode, but we
test them on a model with three modes. The fact is that
one mode is enough since when comparing the solution of
the PDE (7) to the discrete model (15) the higher modes
shown to be negligible, and a discrete model with one
mode showed a very good match with the PDE model,
but to make the simulation tests more realistic we chose
to test the controllers on a three modes model. Further-
more, to make the simulation tests more challenging we
added a random white noise to the states fed back to
the controller (equivalent to about ±1 cm of error on
the rope sway measurement from which the states are
computed, see Remark 1), and we filtered the control
signal with a first order filter with a cut frequency of
10 hz and a delay term of 5 sampling times, to simulate
actuator dynamics and delays due to signal transmission
and computation time. We first start with the validation
of Theorem 1. The controller (17) has been implemented
with umax = 1500 N , starting the simulation with non-
zero initial condition q(0) = 4, q̇(0) = 1, and with zero
external disturbances f1(t) = f2(t) = 0. We also fixed
the damping coefficient cp to zero, to see the damping
effect of the controller alone. Following W.D.Zhu and Chen
[2006], the tested time-varying rope length is depicted on
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Fig. 2. Time-varying rope length
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Fig. 3. Rope sway at y = 195 m: No control (thin line)-
With controller (17) (bold line)

Figures 2. The sway signal is depicted on Figures 1 3 and
4, where both the controlled and the uncontrolled sway
signals are reported. The corresponding control signal is
reported on Figures 5, and 6. These numerical results are
in concordance with the asymptotic convergence results of
Theorem 1.

Eventually, we report the numerical results corresponding
to Theorem 2. We tested the controller (24), with the
gains: umax = 150, Fmax = 1, k1 = 3000, k2 = 15, ε =
0.1. Figures 7, and 8, show the sway without control vs.
the sway with control at half-rope length. The effect of the
controller (24) is clear, i.e., the maximum sway in transient
phase is reduced from 0.8 m to about 0.3 m, and the
steady state sway is reduced by half. The corresponding
continuous control signal is shown on Figures 9 and 10.

6. CONCLUSION

In this paper we have studied the problem of active control
of elevator rope sway dynamics occurring due to external
force disturbances acting on the elevator system with time-
varying rope lengths. We have selected one actuation con-
figuration, namely, a force actuator placed at the bottom
of the elevator shaft pulling on the compensation sheave.

1 The figures’ zoom is included for the reader to have a better idea
about the signals shape.
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Fig. 4. Zoom of rope sway at y = 195 m: No control (thin
line)- With controller (17) (bold line)
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Fig. 5. Output of controller (17)
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Fig. 6. Output of controller (17)- Zoom

For the selected actuation configuration, we have proposed
nonlinear controllers based on Lyapunov theory. We have
presented the stability analysis of these controllers and
shown their efficiency using numerical tests. The numerical
results reported here shown a very good performance of the
proposed controllers when using a force actuator pulling
on the ropes via the compensation sheave. However, other
actuation methods might be feasible, therefore, one future
research direction is to compare on the same test-case the
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Fig. 7. Rope sway at y = 195 m: No control (thin line)-
With controller (24) (bold line)
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Fig. 8. Zoom of r sway at y = 195 m: No control (thin
line)- With controller (24) (bold line)
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Fig. 9. Output of controller (24)

performance of different controllers designed for different
actuation configurations.

REFERENCES

M. Benosman and D. Fukui. Lyapunov-based control of
the sway dynamics for elevator ropes. 2014. Submitted
to IEEE American Control Conference 2014.

Y. Fujino, P. Warnitchai, and B.M. Pacheco. Active
stiffness control of cable vibration. ASME Journal of
Applied Mechanics, 60:948–953, 1993.

580 590 600 610 620
−6000

−4000

−2000

0

2000

4000

6000

Time [sec]

C
on

tr
ol

 [N
]

Fig. 10. Output of controller (24)- Zoom

S. Kaczmarczyk. Nonlinear sway and active stiffness con-
trol of long moving ropes in high-rise vertical trans-
poration systems. In Springer Proceedings in Physics,
editor, The 10th International Conference on Vibration
Problems, pages 183–188, 2011.

S. Kaczmarczyk, R. Iwankiewicz, and Y. Terumichi. The
dynamic behavior of a non-stationary elevator com-
pensating rope system under harmonic and stochastic
excitations. In Journal of Physics: Conference Series
181, pages 1–8. IOP Publishing, 2009.

H.K. Khalil. Nonlinear systems. New York Macmillan,
second edition, 1996.

L. Meirovitch. Analytical methods in vibrations. Applied
Mechanics. Collier Macmillan publishers, Fred Landis
edition, 1967.

M. Otsuki, K. Yoshida, K. Nagata, S. Fujimoto, and
T. Nakagawa. Experimental study on vibration control
for rope-sway of elevator of high-rise building. In
American Control Conference, pages 238–243, 2002.

W.D.Zhu and Y. Chen. Theoretical and experimental
investigation of elevator cable dynamics and control.
Journal of Sound and Vibration, 128:66–78, 2006.

W.D.Zhu and L.J Teppo. Design and analysis of a scaled
model of a high-rise high-speed elevator. Journal of
Sound and Vibration, 264:707–731, 2003.

W.D.Zhu and G.Y. Xu. Vibration of elevator cables with
small bending stiffness. Journal of Sound and Vibration,
263:679–699, 2003.


	Title Page
	Title Page
	page 2


	Lyapunov-Based Control of the Sway Dynamics for Elevator Ropes with Time-Varying Lengths
	page 2
	page 3
	page 4
	page 5
	page 6


