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Abstract— This paper proposes a control algorithm for a
UAV to circumnavigate an unknown target at a fixed radius
when the location information of the UAV is unavailable. By
assuming that the UAV has a constant velocity, the control
algorithm makes adjustments to the heading angle of the UAV
based on range and range rate measurements from the target,
which may be corrupted by additive measurement noise. The
control algorithm has the added benefit of being globally smooth
and bounded. Exploiting the relationship between range rate
and bearing angle, we transform the system dynamics from
Cartesian coordinate in terms of location and heading to polar
coordinate in terms of range and bearing angle. We then
formulate the addition of measurement errors as a stochastic
differential equation. A recurrence result is established showing
that the UAV will reach a neighborhood of the desired orbit
in finite time. Some statistical measures of performance are
obtained to support the technical analysis.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have been rapidly de-
veloping in capability and hold promise for private, military,
and even commercial uses. From the transport of small goods
in rural areas to the early detection of forest fires [1], UAVs
will likely be a ubiquitous tool in coming years. However,
navigation of UAVs is heavily dependent on the use of GPS
signals for location information. Recent tests show that UAVs
are vulnerable to GPS jamming and spoofing, as evidenced
by [2], [3]. Hence, it is desirable to develop autonomous
control schemes under GPS-denied environment.

A typical application of UAVs is to gather information
from a target. In order to obtain enough information regard-
ing a target, it is often necessary to have the UAV orbit
around this target at some predetermined distance. Such a
UAV motion is often called circumnavigation. While some
study has been devoted to the circumnavigation mission,
most control techniques use some type of location informa-
tion. In [4], the GPS coordinate of the target is considered
unknown but the location information of the UAV under
some local coordinate frame is assumed to be available.
Range measurements from the target are then used to localize
the target; that is, to estimate the relative location of the
target from the UAV. A control algorithm is then designed
to produce the desired UAV motion. In [5], the dynamics
are modeled differently which allows the use of the bearing
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angle for target localization, but the location information of
the UAV under some local coordinate frame is still assumed.

In [6], Cao et al. exploited a trigonometric relationship
in the system dynamics that allows the range rate to be
used as a proxy for the bearing angle. It also enables one
to transform the UAV dynamics from Cartesian to polar
coordinates, reducing the state space from the 2D location
plus the heading angle to simply the range and bearing angle.
Control algorithms were then developed which use range and
range rate measurements to drive the UAV to the desired orbit
without the need for target localization nor the knowledge
of the UAV’s current position. Clearly, this is advantageous
in situations where GPS is unreliable or unavailable.

In this paper, we expand on the above work to develop a
control algorithm for the circumnavigation task using noisy
range and range rate measurements. In [6], two different
control algorithms were developed; one is smooth but un-
saturated, while the other is saturated but nonsmooth. Both
control algorithms were defined only outside the desired
orbit, meaning that zero control input is applied on the inside
of the desired orbit to force the UAV to fly straight until
it exits again. To improve the performance we develop a
new control algorithm which is both smooth and saturated
via introducing an appropriate control policy for inside
the desired orbit. In addition, a recurrence result can be
established; meaning that the UAV will reach a neighborhood
of the desired orbit in finite time, and return if it deviates
away from the neighborhood. We then employ numerous
examples show the robustness of the new algorithm against
measurement noise as well as wind because only range-based
measurements are needed.

The rest of the paper is organized as follows. Section II
describes the assumed dynamics and the relations used in
the development of the control. Section III motivates and
develops a new control policy based on range and range
rate measurements; first by examining when the UAV is
outside of a given ‘singular’ orbit corresponding to the
choice of one parameter in the control algorithm, and then
by examining when the UAV is inside the singular orbit.
Section IV focuses on analyzing the effect of noisy range and
range rate measurements on the proposed control algorithm
by means of stochastic differential equations (SDEs). A
recurrence result is then established, deriving an upper bound
on the time for the UAV to reach some neighborhood of
the desired orbit. Finally, Section V presents a simulation
study of the performance of the control algorithm with noise-
corrupted measurements and collect performance statistics
for varying choices of the gain size. Then the effect of
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constant wind is simulated to demonstrate the robustness
of the control algorithm when the gain is appropriately
large. Finally, Section VI summarizes the paper and outlines
directions for future work.

II. PROBEM FORMULATION

The problem set-up is as follows. Assuming the UAV
travels at a constant velocity V , the dynamics are given by

ẋ = V cos(ψ)

ẏ = V sin(ψ)

ψ̇ = u

(1)

where [x, y] is the 2D location of the UAV, ψ is the
heading angle of the UAV, and u is the heading rate to be
controlled. The objective is to design a control algorithm for
u such that the UAV orbits some unknown stationary target
at a desired radius rd. Considering limited measurements
available under GPS-denied environment, the controller has
to be constructed based on range measurement r(t) and range
rate measurement ṙ(t). Here r(t) refers to the distance from
the UAV to the target and ṙ refers to the rate of r(t).

rs

T

r

V
θ

ψ

φ

Fig. 1. Heading angle ψ vs. bearing angle θ vs. reference angle φ.

For the convenience of notation, we take the target T as the
origin of our coordinate frame. To design a control algorithm
and carry out the analysis we shall make use of the reference
angle φ to the UAV, as well as the local heading angle ψ of
the UAV and the bearing angle θ from the reference vector
to the heading vector. See Figure 1 for a depiction. We note
that

θ = π − φ+ ψ. (2)

Then observing

ṙ =
1√

x2 + y2
[xẋ+ yẏ] = cos(φ)ẋ+ sin(φ)ẏ, (3)

using the dynamics for ẋ and ẏ given by (1), and applying
φ = π − θ + ψ we arrive at

ṙ = −V cos θ. (4)

Thus there is a direct correspondence between the bearing
angle θ and the range rate ṙ. This fundamental relation will
allow us to use ṙ as a proxy for θ to design our control.

Also, θ̇ = −φ̇+ ψ̇ = −φ̇+ u, where

φ̇ =
cos(φ)ẏ − sin(φ)ẋ√

x2 + y2
= −V

r
sin θ (5)

so we can transform the system dynamics from {(x, y, φ)}
in (1) to {(r, θ)} given by

ṙ = −V cos θ

θ̇ =
V sin θ

r
+ u

(6)

The goal is to design a control u(r, ṙ) = u(r,−V cos θ) such
that the dynamics drive (r, θ) to (rd,

π
2 ).

III. THE CONTROL ALGORITHM

The designed control algorithm is composed of two cases:
(1) r ≥ rs; and (2) r < rs, where rs < ra is a positive
constant defined next. The following two subsections detail
how control algorithm is developed for the two cases.

A. Outer Control

Suppose that r ≥ rs, i.e., the UAV is outside of the black
circle as in Figure 2. The idea for the control algorithm is to
drive the UAV towards the tangent point (from the UAV) of
the black circle. There is a need to distinguish between the
black circle which is being aimed for and the ‘actual’ red
circle that is achieved, because we shall see that they are not
the same (though an explicit relationship between them can
be identified based on the controller proposed next). Letting
γ = sin−1

(
rs
r

)
, we want to adjust ψ so that θ = γ. Without

the ability to measure ψ, it is not possible to make a direct
adjustment1. If ṙ is measurable, it can serve as a proxy for
−V cos θ. Given a preference that the UAV orbit clockwise
(so that θ, γ ∈ [0, π]), cos(·) is decreasing on [0, π]. It then
can be obtained that

−(cos θ − cos γ) = cos γ − cos θ =
{ ≤ 0 θ ≥ γ
≥ 0 θ ≤ γ

and thus

− k
[
ṙ + V cos sin−1 rs

r

]
= kV [cos θ − cos γ] =

{ < 0 for θ > γ
> 0 for θ < γ

.
(7)

This motivates us to define a control for outside rs by

uo(r, ṙ) = −k
[
ṙ + V cos sin−1

(rs
r

)]
I{r≥rs},

or equivalently

uo(r, θ) =

[
kV cos θ − kV

√
r2 − r2

s

r

]
I{r≥rs}

(8)

1 Note that if we can also measure ψ (e.g. by including a magnetometer
to the UAV) in addition to r and ṙ, then we can recover coordinates from
the identity φ = π + ψ − cos−1

(
−ṙ
V

)
by

x = r cosφ = r

[
ṙ

V
cosψ − sinψ sin

(
cos−1

(
ṙ

V

))
sinψ

]
y = r sinφ = r

[
−ṙ
V

sinψ + cosψ sin

(
cos−1

(
ṙ

V

))
sinψ

]



where k is a positive constant. Note that the control is
bounded by 2kV .

ra

rs

T

r

γ

θ
V

Fig. 2. We design a control which aims at the tangent of the orbit of radius
rs, but will ‘stabilize’ at the orbit of radius ra. Here, γ = sin−1(rs/r).

Interestingly, the UAV cannot stabilize at an orbit of radius
rs. Assuming a stable circular orbit exists with its radius ra,
by definition, ṙ = 0. The nominal angular velocity | Vra | =
|ψ̇| = |u(ra, 0)|, indicating that

V

ra
= kV cos sin−1

(
rs
ra

)
= kV

√
r2
a − r2

s

ra

=⇒ 1

k2
= r2

a − r2
s .

(9)

Thus, given any desired actual orbit rd, one may choose
a gain size k ∈ [ 1

rd
,∞) and obtain the parameter rs =√

r2
d −

1
k2 for the control algorithm (8) such that a stable

orbit of radius rd is feasible. From here throughout, we set
ra = rd so that the actual orbit is equal to the desired orbit,
and take rs as defined by (9).

B. Inner Control

When r < rs, (8) is not well defined due to the term
cos sin−1

(
rs
r

)
. So a new controller is needed for inside the

black circle in Figure 2. In [6], zero control input is applied
in order to drive the UAV outside the black circle. One
disadvantage of such a control strategy (i.e., zero control
for inside the black circle) is that the UAV has to move
outside the black circle before control takes affect. As shown
in Figure 4, the performance is degraded if the UAV moves
inside the black circle quite often. This is particularly true
when range and/or range rate measurements are noisy and
rd is close to rs for large k. To keep the UAV from crossing
across the desired orbit, similar to the trajectory depicted in
Figure 3, a new control algorithm is needed for this case.

Note that the two terms in uo(r, θ) = kV cos θ −
kV

√
r2−r2s
r work separately to adjust the bearing angle and

radius. If θ < π
2 (the bearing is too acute) then kV cos θ

is positive and drive the UAV counter clockwise, and does
the reverse if θ > π

2 . And if r > rs, then −kVr
√
r2 − r2

s

adjusts the heading in such a way that the UAV rotates toward
heading the target. This suggests the following inner control
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Fig. 3. A sample trajectory under
uo with small gain: k = .2, ra =
10, rs = 8.67, V = 1, and
additive white measurement noise
σ = 0.5.
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Fig. 4. A sample trajectory un-
der uo, with large gain: k =
1 corresponding to rs = 9.95.
When measurement error nudges
the UAV past the rs threshold, it
cuts across the circle.

as

ui(r, ṙ) = −k
[
ṙ − cos sin−1

(
r

rs

)]
I{r<rs}

ui(r, θ) =

[
kV cos θ +

kV

rs

√
r2
s − r2

]
I{r<rs},

(10)

where the first component in (10) is the same as the first
component in uo, but the second component is negated with
the nominator and denominator flipped.

Again, a stable orbit of radius ri < rs is possible. If
such an orbit exists, it must satisfy | Vri | = |ui(ri, 0)|. By
computation, one can obtain

r2
i =

1

2

[
r2
s −

√
r4
s −

4

k2
r2
s

]

=
1

2

(
r2
a −

1

k2

)
± 1

2

√(
r2
a −

1

k2

)(
r2
a −

5

k2

)
.

(11)

which has no solution for k ∈ ( 1
ra
,
√

5
ra

), but otherwise has
two solutions ri− → 0 and ri+ → ra as k →∞. These will
play some role in the recurrence analysis.

Remark 3.1: We note that the UAV can only stabilize at one
of the inner stable radii ri if the initial point and heading is
exactly along the orbit with radius ri in a counter-clockwise
orientation, corresponding to (r(0), θ(0)) = (ri, 3π/2), thus
forcing the ‘θ’ (or ṙ) component of the control kV cos θ in
(10) to be 0. However, any perturbation of the inputs for
the control which force the UAV even negligibly off-course
will cause the θ component to drive the UAV’s bearing angle
towards π/2 because (ri, 3π/2) is an unstable equilibrium.
Eventually, the UAV will be driven outside the orbit with
radius rs. In the presence of measurement errors, the UAV
is driven outside the orbit with radius rs almost immediately
as evidenced by Figure 6. Other simulations demonstrate
that even if (r(0), θ(0)) = (ri, 3π/2) and no measurement
errors exist, accumulated numerical errors will eventually
drive the UAV slightly off the orbit of radius ri after which
it immediately moves outside the orbit with radius rs. Hence
the inner stable orbits are of little practical concern for the
implementation of the control algorithm.

As a summarization, the proposed control algorithm is



given by u = uo + ui; that is

u(r, ṙ) =− kṙ − kV cos sin−1
(rs
r

)
I{r>rs}

+ kV cos sin−1

(
r

rs

)
I{r<rs}

(12)

or equivalently

u(r, θ) =kV cos θ − kV

r

√
r2 − r2

sIr>rs

+
kV

rs

√
r2
s − r2I{r<rs}.

As an example, Figures 5 and 6 depict the improved perfor-
mance of the UAV under the proposed control algorithm (12)
with k = 1. Notice that the UAV will eventually stay close to
the desired orbit as opposed to the behavior seen in Figure 4
when zero control is applied for the case r(t) < rs.
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Fig. 5. A sample trajectory under
u with initial point outside the
desired orbit
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Fig. 6. Sample trajectory under u
with initial point inside the desired
orbit

IV. MEASUREMENT ERROR ANALYSIS

A. SDE Formulation

Here we formally introduce additive measurement noises
in the controller. For example, range r can be measured
accurately, but range rate measurement is noisy ˜̇r = ṙ + ν
where ν ∼ N (0, σ). This model has practicality, as the range
measurements are tremendously accurate compared to range
rate measurements regardless of what method we use for the
estimation. Then the noisy control input becomes

ũ(r, θ, ν)
∆
= u(r, ṙ + ν)

∆
= u(r, θ)− kν.

With the noisy control input, the noisy system dynamics
are modeled by the stochastic differential equation

d

[
r
θ

]
=

[
−V cos θ

V sin θ
r + u(r, θ)

]
dt+

[
0
−kσ

]
dξ (13)

where ξ is a standard Brownian motion. One can verify that
the control defined by (12) has linear growth and is Lipschitz
continuous (even at r = rs), and the other coefficients also
satisfy this property on domains bounded away from r = 0.
Hence (13) describes an Ito diffusion, and thus a unique
Markov solution exists for the trajectory as in [8, Definition
7.1.1, Theorem 5.2.1]. The associated generator L of the

diffusion is given by

LV(r, θ) = [−V cos θ]
∂

∂r
V(r, θ)

+

[
V sin θ

r
+ u(r, θ)

]
∂

∂θ
V(r, θ) + k2σ2

rr

2

∂2

∂θ2
V(r, θ).

(14)

B. A Recurrence Result

Let Z(t) be an `-dimensional diffusion process. It is said to
be regular if it does not blow up in finite time w.p.1. Suppose
that Z(t) is an `-dimensional diffusion process that is regular,
that D is an open set with compact closure, that Z(0) = z ∈
Dc the complement of D, and that σzD = inf{t : Zz(t) ∈
D}, where Zz(t) signifies the initial data z dependence of
the diffusion. The process Zz(·) is recurrent with respect
to D if P (σzD < ∞) = 1 for any z ∈ Dc; otherwise, the
process is transient with respect to D. A recurrent process
with finite mean recurrence time for some set D is said to
be positive recurrent w.r.t. D; otherwise, the process is null
recurrent w.r.t. D.

Coming back to our problem, we shall show that the tra-
jectory of the UAV under control policy (12) with dynamics
given by (13) is recurrent with respect to a neighborhood
of either r = ra or r = 0, as depicted in Figure 7. The
recurrence is in the sense that if the initial point of the UAV is
outside of the recurrent set, the UAV will enter the recurrent
set in finite time almost surely.

ra

rs

ra,ε

ri+,ε

ri−,ε

Fig. 7. The recurrent set Uk,ε.

We shall prove our result using a Lyapunov function
approach. Consider the candidate function

V(r, θ) = k

V
|r − rs|+

θ

V
sgn(r − rs) +

2π

V
(15)

which is everywhere positive on the domain r ∈ (0, rs) ∪
(rs,∞) and θ ∈ [0, 2π). Note that V by (15) is not
differentiable along r = rs. However, this will become part
of the recurrent set Uk,ε and it is only on the complement
set U ck,ε which the Lyapunov function must be smooth. On



such a domain, we have that

LV = −k cos θsgn(r − rs) +
sin θ

r
sgn(r − rs)

+ k cos θsgn(r − rs) + u(r)sgn(r − rs)

=
sin θ

r
sgn(r − rs)−

k

r

√
r2 − r2

sI{r>rs}

− k

rs

√
r2
s − r2I{r<rs}.

(16)

Theorem 4.1: For ε sufficiently small and k sufficiently
large, there exists

ri−,ε ↘ ri− ri+,ε ↗ ri+ ra,ε ↘ ra as ε ↓ 0
where
ri− ↘ 0 ri+ ↗ rs rs ↗ ra as k ↑

(17)

such that LV ≤ −ε on U ck,ε, where

Uk,ε
∆
={(0, ri−,ε)× (π, 2π)} ∪ {(ri+,ε, ra,ε)× (0, π)}.

(18)

With the above, using [7, Theorem 3.9], we can obtain the
following corollary.
Corollary 4.2 (Recurrence Time Bound): For ε sufficiently
small and k sufficiently large, the trajectory of the UAV
derived from (13) under control policy (12) is recurrent to
Uk,ε as defined in (18). Given an initial point (r0, θ0), the
expected recurrence time τε until the UAV reaches Uk,ε is
bounded by

E(r0,θ0)τε ≤
V(r0, θ0)

ε
=
k|r0 − rs|+ θ0 + 2π

V ε
. (19)

Proof of Theorem 4.1. We see that the second and third
terms of (16) are always non-positive. If r > rs and θ ∈
(π, 2π) then LV < 0. Similarly if r < rs and θ ∈ (0, π),
then LV < 0.

We note that LV ≤ 0 for r ≥ ra, regardless of θ. In
particular, considering the worst case scenario sin θ = 1 we
can solve for r > rs such that

LV(r) = 1

r

[
1− k

√
r2 − r2

s

]
≤ −ε.

This has a solution if ε ≤ k (where k can be taken in
[ 1
ra
,∞)) and leads us to define

ra,ε
∆
=
ε+

√
k2r2

a[k
2 − ε2] + ε2

k2 − ε2
. (20)

Then LV(r, θ) ≤ −ε for r ≥ ra,ε regardless of θ. As ε ↓ 0
or as k ↑ ∞, we have ra,ε ↓ ra. Thus we can force ra,ε
arbitrarily close to ra.

If r < rs, then

LV =
− sin θ

r
− k

rs

√
r2
s − r2.

Again considering the worst-case scenario sin θ = −1, we
inspect the function

g(r) =
1

r
− k

rs

√
r2
s − r2 (21)

and solve for ri such that g(ri) = 0. This reduces to (11),
which has no solutions in (0, rs) for k ∈ ( 1

ra
,
√

5
ra

), but
otherwise has two solutions ri− → 0 and ri+ → ra as
k → ∞. If ri− ≤ r ≤ ri+, then LV ≤ 0. If k <

√
5

ra
,

then LV is always positive in a neighborhood of θ = 3π/2
for all 0 < r ≤ rs.

Repeating the process to solve where g(r) = −ε, we
obtain the quartic equation

r4 +
r2
s

k2

(
ε2 − k2

)
r2 − 2ε

r2
s

k2
r +

r2
s

k2
= 0 (22)

which has two solutions ri−,ε and ri+,ε in (ri−, ri+) for
sufficiently small ε. Between ri−,ε and ri+,ε we have that
g(r) ≤ −ε , with ri−,ε ↓ ri− and ri+,ε ↑ ri+ as ε ↓ 0. Then
using ri− ↘ 0, ri+ ↗ rs, and rs ↗ ra as k ↑, the corollary
stands.

Remark 4.3 (ε Upper Bound): We note that the upper bound
on the recurrence time τε given in Corollary 4.2 is inversely
proportional to ε (corresponding to the size of the recurrent
set Uk,ε). Thus allowing for a larger neighborhood of our
desired orbit will decrease the bound for the time τε it takes
to reach said neighborhood. One may wonder how large we
may take ε to be while still being able to solve for a recurrent
set Uk,ε, off of which LV ≤ −ε. To find the maximum value
of ε which allows for the result, one may analyze the function
g(r) = 1

r−
k
s

√
s2 − r2, where s =

√
r2
a − k−2 varies with k

but is bounded between 0 and ra. Heuristically, one sees that
the minimum value of g(r) is −O(k), and thus the maximum
possible value of ε is O(k). To find the explicit bound, one
finds

g′(r) =
kr

s
√
s2 − r2

− 1

r2
= 0 =⇒ r6

∗ +
s2

k2
r∗2−

s4

k2
= 0

which has a unique real solution r∗ in (ri−, ri+) given by

r2
∗ =

3

√
9(sk)4 +

√
81(sk)8 + 12(sk)6

18k6

− 3

√
2
3s

6

9(sk)4 +
√

81(sk)8 + 12(sk)6

(23)

whose evaluation in g(r∗) gives the lower bound needed for
the analysis inside r < rs. Thus taking ε < min{g(r∗), r−1

a }
will yield a valid result.
Remark 4.4 (k ‘Practical’ Upper Bound): For a fixed value
of k, one may let ε ↘ 0 and obtain a ‘minimal’ recurrent
set

Uk = {(0, ri−)× (π, 3π/2)} ∪ {(ri+, ra)× (0, π)}.

While analytically one may take k arbitrarily large to force
ri− ↘ 0 and ri+ ↗ rs ↗ ra and tighten the minimal
recurrent set, practically one encounters problems if the gain
is too large. If the maximum control effort 2kV is larger
than π, then (in addition to clearly violating practical turning
constraints) it is possible for the UAV to spin out, resulting
in significant deviations from the desired orbit. We shall
observe this in the simulation study, e.g., Figure 10.



V. SIMULATION STUDY

A. Measurement Error, Windless

Here we simulate the performance of the control algorithm
(12) with additive measurement errors in the absence of
wind, as in (13). The desired orbit is of radius ra = 10.
We take the velocity of the UAV V = 1 and the standard
deviation of the measurement error σ = 0.5. We run the
simulation for 350 seconds, updating the control every 0.5
seconds. Figure 8 shows the trajectory of the of UAV with
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k = 0.1

Fig. 8. Trajectory with measurement
error, k = 0.1
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k = 1

Fig. 9. Trajectory with measurement
error, k = 1

gain size k = 0.1 = r−1
a corresponding to rs = 0, while

Figure 9 shows the trajectory with gain size k = 1.0
corresponding to rs = 9.95. We observe that the smaller
gain size gives a smoother trajectory but larger deviations
from the desired radius. The larger gain size adheres to the
desired orbit more closely, but at the expense of a larger
control effort.

We then run the simulation 20 times, increasing the gain
k on each iteration from the minimum value k = 0.1 by
increments of 0.15, and collect statistics its performance.
Figures 10 and 11 show the average of (r − ra)

2 and
ṙ2 respectively as the gain k increases. This supports the
observation from the trajectories that higher gain choices cor-
respond to less radial error at the expense of smoothness and
large control effort; though only to a point. If the maximum
control adjustment 2kV is larger than π (here corresponding
when k = π/2), then the UAV may turn directly around
instantaneously. Besides being quite impractical, this causes
the UAV to over-correct and spin out of control.

0 0.5 1 1.5 2 2.5 3
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Fig. 10. Average mean-square error of (r − ra)
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Fig. 11. Average mean-square error of ṙ

B. Measurement Error with Constant Wind

Here we examine the performance of the algorithm under
the influence of measurement errors (as above) and constant
wind. One may formulate the ‘windy’ system with constant
wind bias of speed Ws and direction wd as

d

 x
y
ψ

 =

 V cosψ +Ws coswd
V sinψ +Ws sinwd

u

 dt+
 0

0
−kσ

 dξ.
(24)

We simulate trajectories under such a wind model, using the
same control policy u as in (12). We take the windspeed
Ws = V/4 = 0.25 and the wind direction wd = π/4.
Figures 12 and 13 depict the windy trajectories analogous
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Fig. 12. Trajectory with measure-
ment error and wind, k = 0.1
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Fig. 13. Trajectory with measure-
ment error and wind, k = 1

to the windy case. We note that with the minimal gain size
the trajectory forms a circular orbit, but is shifted off-target
in the direction of the wind. When the gain is turned up
the UAV adjusts more dynamically and is able to adhere to
the desired radius much better. Figures 14 and 15 show the
mean-square error of (r − ra) and ṙ under the influence of
wind and measurement errors.
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Fig. 14. Average mean-square error of (r − ra) with wind
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Fig. 15. Average mean-square error of ṙ with wind

VI. CONCLUSION AND FUTURE WORK

This paper has established a robust control policy for
a UAV to circumnavigate a stationary target using noise-
corrupted range and range rate measurements, without any
use or assumption of location information for the UAV
nor the target. Assuming additive measurement errors we
established a recurrence result, bounding the time until the
UAV reaches a neighborhood of the desired orbit, via a
Lyapunov function approach. A simulation study was then
used to collect statistics of the performance of the control
policy with measurement errors, as well as with drifting bias
due to the influence of wind.

Future work may attempt to establish that the trajectory
is set-wise stable to the recurrent set, as simulations seem
to suggest. Traditional stochastic stability results as in [7]
are not applicable due to the persistence of noise (non-
zero diffusion coefficient) at the ‘stability’ point (rd, π/2).
However, pth-moment set-wise stability in the sense of [9]
may be possible.

Other research directions include formal analysis of the
system with constant wind bias as in (24). The addition of
wind terms in ẋ, ẏ prevent the reduction of the system to
(r, θ). However, assuming one can additionally measure the
heading angle ψ (by addition of a magnometer), it is possible
to formulate the current control and windy system dynamics

in terms of (r, θ, ψ). Such conversion assumes Ws and wd
are known, but it may be possible to statistically estimate
these quantities from a few revolutions of the target under the
current control. For example, one sees in Figure 12 that with
small gain there is significant bias of the orbit in direction
of the wind. One may attempt to first estimate the wind
direction wd as a statistical change-point problem from when
the radius is under-biased to when it is over-biased. One may
then try to estimate wind speed Ws by the magnitude of such
a change.

Finally, the addition of heading angle ψ measurements
may allow for other control schemes to be developed, per-
haps resulting smoother trajectories and less control effort.
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