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Abstract— We investigate the problem of optimizing the
shape and location of sensors and actuators for evolution sys-
tems driven by distributed parameter systems or partial differ-
ential equations (PDE), like for instance the wave equation, the
Schrödinger equation, or a parabolic system, on an arbitrary
domain Ω, in any space dimension, and with suitable boundary
conditions if there is a boundary, which can be of Dirichlet,
Neumann, mixed or Robin. This kind of problem is frequently
encountered in applications where one aims, for instance, at
maximizing the quality of reconstruction of the solution, using
only a partial observation. From the mathematical point of
view, using probabilistic considerations we model this problem
as that of maximizing the so-called randomized observability
constant, over all possible subdomains of Ω having a prescribed
measure. The spectral analysis of this problem reveals intimate
connections with the theory of quantum chaos. More precisely,
we provide a solution to this problem when the domain Ω
satisfies suitable quantum ergodicity assumptions.

I. INTRODUCTION

Our objective is to model and solve the problem of
optimizing the shape and location of sensors and actuators
for processes modeled by a PDE on any open bounded
connected subset of a Riemannian manifold, with various
possible boundary conditions. Unexpectedly, our results re-
veal intimate connections with quantum ergodicity issues.
Less surprisingly, our results strongly depend on the nature
of the PDE under consideration.

A. The context

The literature on optimal observation or sensor location
problems is abundant in engineering applications (see, e.g.,
[3], [8], [11], [12], [20], [22], [23], [24] and references
therein), where the aim is often to optimize the number,
the place and the type of sensors in order to improve the
estimation of the state of the system. Fields of applications
are very numerous and concern for example active structural
acoustics, piezoelectric actuators, vibration control in me-
chanical structures, damage detection and chemical reactions,
just to name a few of them. In most of these applications the
method consists in approximating appropriately the problem
by selecting a finite number of possible optimal candidates
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and of recasting the problem as a finite-dimensional combi-
natorial optimization problem. In many of these contributions
the sensors have a prescribed shape (for instance, balls with
a prescribed radius) and then the problem consists of placing
optimally a finite number of points (the centers of the balls)
and thus is finite-dimensional, since the class of optimal
designs is replaced with a compact finite-dimensional set.

In the present paper our objective is to run the search over
all possible subsets, in other words we optimize not only the
placement but also the shape of the sensors or actuators.

Among the existing approaches, the closest one to ours
consists of considering truncations of Fourier expansion
representations. Adopting such a Fourier point of view, the
authors of [9], [10] studied optimal stabilization issues of the
one-dimensional wave equation and, up to our knowledge,
these are the first articles in which one can find characteri-
zations of the optimal set whenever it exists, for the problem
of determining the best possible shape and position of the
damping subdomain of a given measure. In [5] the authors
investigate the problem modeled in [20] of finding the best
possible distributions of two materials (with different elastic
Young modulus and different density) in a rod in order
to minimize the vibration energy in the structure. For this
optimal design problem in wave propagation, the authors
of [5] prove existence results and provide convexification
and optimality conditions. The authors of [1] also propose a
convexification formulation of eigenfrequency optimization
problems applied to optimal design. In [7] the authors
discuss several possible criteria for optimizing the damping
of abstract wave equations and derive optimality conditions
for a certain criterion related to a Lyapunov equation.

From the mathematical point of view, the issue of studying
a relaxed version of optimal design problems for the shape
and position of sensors or actuators has been investigated in
a series of articles. In [14], the authors study a convexified
version of the optimal location of controllers for the heat
equation problem, noticing that such problems are often ill-
posed. In [2], the authors consider a similar problem and
study the asymptotic behavior as the final time T goes to
infinity of the solutions of the relaxed problem; they prove
that optimal designs converge to an optimal relaxed design
of the corresponding two-phase optimization problem for the
stationary heat equation. We also mention [13] where, for
fixed initial data, numerical investigations are used to provide
evidence that the optimal location of null-controllers of the
heat equation problem is an ill-posed problem. In [18] we
proved that, for fixed initial data as well, the problem of
optimal shape and location of sensors is always well-posed
for heat, wave or Schrödinger equations, and we solved it,



showing that the complexity of the optimal set depends on
the regularity of the initial data; in particular we showed that,
even for smooth initial data the optimal set can be fractal.

A huge difference between these works and the approach
developed here is in the fact that all criteria introduced in
the sequel take into consideration all possible initial data,
and moreover the optimization will run over all possible
measurable subsets in UL. It is the idea developed in [16],
[15], [17], [19] where the problem of the optimal location of
an observation subset ω among all possible subsets of a given
measure or volume fraction of Ω was addressed and solved
for wave and Schrödinger equations and also for general
parabolic equations. A relevant spectral criterion, viewed as
a measure of eigenfunction concentration and not depending
on the initial conditions was considered, in order to design
an optimal observation or control set in an uniform way,
independent of the data and solutions under consideration, as
explained next. Such a kind of uniform criterion was earlier
introduced for the one-dimensional wave equation in [9], [10]
in view of investigating optimal stabilization issues.

B. Problem formulation

To begin with, let us focus on a particular case of our
study, starting from a practical problem. Assume that Ω is a
given bounded open subset of IRn, representing for instance
a cavity in which some signals are propagating according to
the wave equation

∂tty = 4y, (1)

with Dirichlet boundary conditions. Having for example in
mind some reconstruction inverse problem, assume that one
is allowed to place some sensors in the cavity, in order to
make some measurements of the signals propagating in Ω
over a certain horizon of time. We assume that we have the
choice not only of the placement of the sensors but also of
their shape. Let us address the question of knowing what is
the best possible shape and location of sensors, achieving the
best possible observation, in some sense to be made precise.
This problem of optimal observability, inspired by control
theoretical considerations, is intimately related to those of
optimal controllability and stabilization.

At this step, the question is too much informal and a first
challenge is to settle it properly in the mathematical world,
so that the resulting problem will be both mathematically
solvable and relevant in view of practical issues.

A first obvious but important remark is that, for any
problem consisting of optimizing the observation, certainly
the best policy consists of observing the solutions over the
whole domain Ω. This is however clearly not reasonable and
in practice the domain covered by sensors is limited, due
for instance to cost considerations. From the mathematical
point of view, we model this basic limitation by considering
as the set of unknowns, the set of all possible measurable
subsets ω of Ω that are of Lebesgue measure |ω| = L|Ω|,
where L ∈ (0, 1) is some fixed real number. Any such subset
represents the sensors put in Ω, and we assume that we are
able to measure the restrictions of the solutions of (1) to ω.

II. MODELING

Let us model the notion of best observation. For all
(y0, y1) ∈ L2(Ω,C) × H−1(Ω,C), there exists a unique
solution y ∈ C0(0, T ;L2(Ω,C)) ∩ C1(0, T ;H−1(Ω,C)) of
(1) such that y(0, ·) = y0(·) and yt(0, ·) = y1(·). Let T > 0.
We say that (1) is observable on ω in time T if there exists
C > 0 such that

C‖(y0, y1)‖2L2×H−1 6
∫ T

0

∫
ω

|y(t, x)|2 dxdt, (2)

for all (y0, y1) ∈ L2(Ω,C)×H−1(Ω,C). This inequality is
called an observability inequality, and is of great importance
in view of showing the well-posedness of some inverse
problems. It is well known that within the class of C∞
domains Ω, this observability property holds if the pair
(ω, T ) satisfies the Geometric Control Condition in Ω (see
[4]), according to which every ray of geometrical optics that
propagates in the cavity Ω and is reflected on its boundary
∂Ω intersects ω within time T . The observability constant
CT (χω) is defined as the infimum of the quantities∫ T

0

∫
Ω

χω(x)|y(t, x)|2 dx dt / ‖(y0, y1)‖2L2×H−1

over all initial data (y0, y1) ∈ L2(Ω,C) × H−1(Ω,C) \
{(0, 0)}. It is the largest possible constant for which (2)
holds. It depends both on the time T (the horizon time of
observation) and on the subset ω on which the measurements
are done.

A priori, it might appear natural to model the problem
of best observability as that of maximizing the functional
χω 7→ CT (χω) over the set

UL = {χω | ω ⊂ Ω measurable, |ω| = L|Ω|}. (3)

However, this choice of model leads to a mathematical
problem that is difficult to handle from the theoretical point
of view, and more importantly, it is not relevant in view of
practical issues. Let us explain these two difficulties.

First of all, a spectral expansion of the solutions shows
the emergence of crossed terms that are difficult to treat.
Indeed, let (φj)j∈IN∗ be a Hilbert basis of L2(Ω) consisting
of eigenfunctions of the Dirichlet-Laplacian operator on Ω,
associated with the negative eigenvalues (−λ2

j )j∈IN∗ . Then
any solution y of (1) can be expanded as

y(t, x) =

+∞∑
j=1

(
aje

iλjt + bje
−iλjt

)
φj(x), (4)

where the coefficients aj and bj account for initial data.
It follows that 2C

(W )
T (χω) is the infimum of the quan-

tities
∫ T

0

∫
ω

∣∣∣∑+∞
j=1

(
aje

iλjt + bje
−iλjt

)
φj(x)

∣∣∣2 dx dt over
all possible sequences (aj) and (bj) of `2(C) such that∑+∞
j=1(|aj |2 + |bj |2) = 1. Then, maximizing this functional

over UL appears to be very difficult from the theoretical point
of view, due to the crossed terms

∫
ω
φjφk dx measuring the

interaction over ω between distinct eigenfunctions.



The second difficulty with this model is its lack of
relevance in practice. Indeed, the observability constant
CT (χω) is deterministic and provides an account for
the worst possible case. Hence, in this sense, it is a
pessimistic constant. In practice when realizing a large
number of measures, it may be expected that this worst
case does not occur so often, and one would like that
the observation be optimal for most of experiments. This
leads us to consider rather an averaged version of the
observability inequality over random initial data. In few
words, we define what we call the randomized observability
constant 2CT,rand(χω) as the infimum of the quantities
E
∫ T

0

∫
ω

∣∣∑+∞
j=1

(
βν1,jaje

iλjt + βν2,jbje
−iλjt

)
φj(x)

∣∣2 dx dt
over all possible sequences (aj) and (bj) of `2(C) such that∑+∞
j=1(|aj |2 + |bj |2) = 1, where (βν1,j)j∈IN∗ and (βν2,j)j∈IN∗

are two sequences of (for example) i.i.d. Bernoulli random
laws on a probability space (X ,A,P), and E is the
expectation over the X with respect to the probability
measure P. It corresponds to an averaged version of the
observability inequality over random initial data. We refer
to [17] for more details and properties of the randomization
procedure. The following result gives a characterization of
the randomized observability constant.

Theorem 1 ([17]): For every measurable subset ω of Ω,
there holds 2CT,rand(χω) = T infj∈IN∗

∫
ω
φj(x)2 dx.

It is interesting to note that there always holds CT (χω) 6
CT,rand(χω), and that the strict inequality holds for instance
in each of the following cases:
• in 1D, with Ω = (0, π) and Dirichlet boundary condi-

tions, whenever T is not an integer multiple of π;
• in multi-D, with Ω stadium-shaped, whenever ω con-

tains an open neighborhood of the wings (in that case
there even holds C(W )

T (χω) = 0).
Taking into account the fact that, in practice, it is expected

that a large number of measurements is to be done, we finally
model the problem of best observability in the following
more relevant way:

Maximize the functional

J(χω) = inf
j∈IN∗

∫
ω

φj(x)2 dx (5)

over the set UL.

The functional J appears as a criterion giving an account
for eigenfunctions concentration properties.

III. SOLVING

In view of solving the uniform optimal design prob-
lem supχω∈UL J(χω), we first consider a convexified ver-
sion, by considering the convex closure of the set UL
for the L∞ weak star topology, that is UL = {a ∈
L∞(Ω, [0, 1]) |

∫
Ω
a(x) dx = L|Ω|}. The convexified prob-

lem then consists of maximizing the functional J(a) =
infj∈IN∗

∫
Ω
a(x)φj(x)2 dx over UL. Clearly there exists a

maximizer, but since the functional J is not lower semi-
continuous it is not clear whether or not there may be a
gap between the problem (5) and its convexified version.

The following result shows that under appropriate quantum
ergodicity assumptions there is no gap.

Theorem 2 (No-gap, and optimal value of J , see [17]):
Assume that there exists a subsequence of the sequence of
probability measures µj = φ2

j (x) dx converging vaguely
to the uniform measure 1

|Ω| dx (Weak Quantum Ergodicity
assumption), and that the sequence of eigenfunctions φj is
uniformly bounded in L∞(Ω). Then

sup
χω∈UL

J(χω) = max
a∈UL

J(a) = L,

for every L ∈ (0, 1). In other words, there is no gap between
the problem (5) and its convexified version.

At this step, it follows from Theorems 1 and 2 that, under
quantum ergodicity assumptions, the maximal possible value
of CT,rand(χω) (over the set UL) is equal to TL/2.

Remark 1: The quantum ergodicity assumptions of the
above result hold true in any hypercube with Dirichlet
boundary conditions when one considers the usual Hilbert
basis made of products of sine functions.

Remark 2: They are sufficient but not necessary to derive
such a no-gap statement: indeed we can prove that it still
holds true if Ω is a two-dimensional disk (with the usual
eigenfunctions parametrized by Bessel functions), although
the eigenfunctions do not equidistribute as the eigenfrequen-
cies increase, as illustrated by the well-known whispering
galleries effect.

Remark 3: We are not aware of any example in which
there is a gap between the problem (5) and its convexified
version. It is interesting to note that, since the spectral
functional J defined by (5) depends on the specific choice
of the orthonormal basis (φj)j∈IN∗ of eigenfunctions of the
Dirichlet-Laplacian, one can consider an intrinsic version of
the problem, consisting of maximizing the spectral functional
Jint(χω) = infφ∈E

∫
ω
φ(x)2 dx over UL, where E denotes

the set of all normalized eigenfunctions of the Dirichlet-
Laplacian. For this problem we have a result similar to the
one above (see [17]), but we are moreover able to provide
an explicit example where a gap occurs between the problem
and its convexified formulation, by considering for instance
the unit half-sphere with Dirichlet boundary conditions, and
certain quantum limits of a Dirac type.

Remark 4: Under the stronger assumption that the whole
sequence of µj = φ2

j (x) dx converges vaguely to the uniform
measure 1

|Ω| dx (Quantum Unique Ergodicity assumption),
and assuming that the φj’s are uniformly bounded in some
Lp(Ω) with p > 2, we can prove that the supremum of J
over the set of Jordan measurable subsets of measure L|Ω| is
equal to L. The proof is constructive and builds a maximizing
sequence of subsets, showing that it is possible to increase
the value of J with subsets having an increasing number of
connected components.

Our results eventually show intimate connections between
domain optimization and quantum ergodicity properties of
Ω. Such a relation was suggested in the early work [6]
concerning the exponential decay properties of dissipative
wave equations.



IV. NONEXISTENCE OF AN OPTIMAL SET AND
REMEDIES

The maximum of J over UL is clearly reached (in general,
in an infinite number of ways). The question of the reacha-
bility of the supremum of J over UL, that is, the existence of
an optimal classical set, is a difficult question in general. In
particular cases it can however be addressed using harmonic
analysis. For instance in dimension one, we can prove that
the supremum is reached if and only if L = 1/2 (and there
is an infinite number of optimal sets). In higher dimension,
the question is completely open, and we conjecture that, for
generic domains Ω and generic values of L, the supremum is
not reached and hence there does not exist any optimal set. It
can however be noted that, in the two-dimensional Euclidean
square, if we restrict the search of optimal sets to Cartesian
products of 1D subsets, then the supremum is reached if and
only if L ∈ {1/4, 1/2, 3/4} (see [17]).

In view of that, it is then natural to study a finite-
dimensional spectral approximation of the problem, namely:

Maximize the functional

JN (χω) = min
16j6N

∫
ω

φj(x)2 dx

over the set UL.

The existence and uniqueness of an optimal set ωN is
then not difficult to prove, as well as a Γ-convergence
property of JN towards J for the weak star topology of L∞.
Moreover, the sets ωN have a finite number of connected
components, expected to increase in function of N . The

Fig. 1. Ω = (0, π)2. Row 1: L = 0.2; row 2: L = 0.4; row 3: L = 0.6.
From left to right: N = 2 (4 eigenmodes), N = 5 (25 eigenmodes),
N = 10 (100 eigenmodes),N = 20 (400 eigenmodes). The optimal domain
is in green.

numerical simulations of Fig. 1 show the shapes of these
sets; their increasing complexity which can be observed as
N increases is in accordance with the conjecture of the
nonexistence of an optimal set maximizing J . It can be noted
that, in the one-dimensional case, for L sufficiently small,
loosely speaking, the optimal domain ωN for N modes is the

worst possible one when considering the truncated problem
with N + 1 modes (spillover phenomenon; see [10], [15]).

This intrinsic instability is in some sense due to the fact
that in the definition of the spectral criterion (5) all modes
have the same weight, and the same criticism can be made
on the observability inequality (2). Due to the increasing
complexity of the geometry of highfrequency eigenfunctions,
it could indeed be expected that the optimal shape and
placement problem would be complicated. This leads to the
intuition that lower frequencies should be more weighted
than the higher ones, and then it seems relevant to introduce
a weighted version of the observability inequality (2), by
considering the (equivalent) inequality

CT,σ(χω)
(
‖(y0, y1)‖2L2×H−1 + σ‖y0‖2H−1

)
6
∫ T

0

∫
ω

|y(t, x)|2 dx dt,

where σ > 0 is some weight. There holds CT,σ(χω) 6
CT (χω), and considering as before an averaged version
of this weighted observability inequality over random ini-
tial data leads to 2C

(W )
T,σ,rand(χω) = TJσ(χω), where the

weighted spectral criterion Jσ is defined by

Jσ(χω) = inf
j∈IN∗

σj

∫
ω

φj(x)2 dx,

with σj = λ2
j/(σ+λ2

j ) (increasing sequence of positive real
numbers converging to 1; see [17] for details). The truncated
criterion Jσ,N is then defined accordingly, by keeping only
the N first modes. We then have the following result.

Theorem 3 ([17]): Assume that the whole sequence of
probability measures µj = φ2

j (x) dx converges vaguely to
the uniform measure 1

|Ω| dx (Quantum Unique Ergodicity
assumption), and that the sequence of eigenfunctions φj is
uniformly bounded in L∞(Ω). Then, for every L ∈ (σ1, 1),
there exists N0 ∈ IN∗ such that

max
χω∈UL

Jσ(χω) = max
χω∈UL

Jσ,N (χω) 6 σ1 < L,

for every N > N0. In particular, the problem of maximizing
Jσ over UL has a unique solution χωN0 , and moreover the
set ωN0 has a finite number of connected components.

It has to be noted that the assumptions of the above
theorem (usually referred to as L∞-QUE) are strong ones.
Up to now, except in the one-dimensional case where these
assumptions obviously hold, in the multi-dimensional case
no domain is known where they are satisfied, and it is one
of the deepest open problems in mathematical physics to
exhibit such a domain. We are however able to prove that
the conclusion of Theorem 3 holds true in a hypercube with
Dirichlet boundary conditions when one considers the usual
Hilbert basis made of products of sine functions, although
QUE is not satisfied in such a domain (see [17]).

The theorem says that, for the problem of maximizing
Jσ,N over UL, the sequence of optimal sets ωN is stationary
whenever L is large enough, and ωN0 is then the (unique)
optimal set, solution of the problem of maximizing Jσ . It
can be noted that the lower threshold in L depends on the



chosen weights, and the numerical simulations that we will
provide indicate that this threshold is sharp in the sense that,
if L < σ1 then the sequence of maximizing sets loses its
stationarity feature.

As a conclusion, this weighted version of our spectral
criterion can be viewed as a remedy for the spillover phe-
nomenon. Note that, of course, other more evident remedies
can be discussed, such as the search of an optimal domain
among a set of subdomains sharing nice compactness prop-
erties (such as having a uniform perimeter or BV norm),
however our aim is here to investigate domains as general as
possible (only measurable) and rather to discuss the math-
ematical, physical and practical relevance of the criterion
encoding the notion of optimal observability.

Let us finally note that all our results hold for wave
and Schrödinger equations on any open bounded connected
subset of a Riemannian manifold (then replacing 4 with
the Laplace-Beltrami operator), with various possible bound-
ary conditions (Dirichlet, Neumann, mixed, Robin) or no
boundary conditions in case the manifold is compact without
boundary. The abstract framework and generalizations are
described in details in [17].

V. THE CASE OF PARABOLIC PDE’S

Instead of dealing with a general parabolic model, for the
sake of simplicity we consider the heat equation

∂ty −4y = 0, (t, x) ∈ (0, T )× Ω, (6)

with Dirichlet boundary conditions. For any measurable
subset ω of Ω, we observe the solutions of (6) restricted
to ω over the horizon of time [0, T ], that is, we consider the
observable z(t, x) = χω(x)y(t, x), where χω denotes the
characteristic function of ω.

For a given measurable subset ω of Ω, the heat equation
(6) is said observable on ω in time T whenever there exists
C > 0 such that

C

∫
Ω

y(T, x)2 dx 6
∫ T

0

∫
ω

y(t, x)2 dx dt, (7)

for every solution of (6) such that y(0, ·) ∈ D(Ω). It
is well known that, if Ω is C2 or rectangular then this
observability inequality holds (see [21]). The observability
constant CT (χω) is defined as the largest possible constant
such that (7) holds, that is the infimum of the quanti-
ties

∫ T
0

∫
ω
y(t, x)2 dx dt/

∫
Ω
y(T, x)2 dx over all y(0, ·) ∈

D(Ω) \ {0}. As before, randomizing the initial data leads to
the definition of the randomized observability constant

CT,rand(χω) = inf
j∈IN∗

e2λjT − 1

2λj

∫
ω

φj(x)2 dx, (8)

with the significant difference that every integral is multiplied
by the weight e2λjT−1

2λj
. This implies completely different

results. As before, instead of considering as a criterion the
deterministic observability constant, we find more relevant
to model the problem of best observation domain as that of
maximizing the functional CT,rand(χω) over the set UL.

Theorem 4 ([19]): Assume that ∂Ω is piecewise C1.
There exists a unique optimal observation set ω∗, solution of
the problem of maximizing the functional CT,rand(χω) over
the set UL. Moreover, CT (χω∗) < CT,rand(χω∗).

Here, it is understood that the optimal set ω∗ is unique
within the class of all measurable subsets of Ω quotiented
by the set of all measurable subsets of Ω of zero measure.

Note that this existence and uniqueness result holds for
every orthonormal basis of eigenfunctions of the Dirichlet-
Laplacian, but the optimal set depends on the specific choice
of the Hilbert basis.

It is remarkable that the optimal observation set ω∗ can
be built from a finite-dimensional spectral approximation, by
keeping only a finite number of modes. The precise result is
the following.

Theorem 5 ([19]): For every N ∈ IN∗, there exists a
unique set ωN such that χωN ∈ UL maximizes the functional

χω 7→ inf
16j6N

e2λjT − 1

2λj

∫
ω

φj(x)2 dx

over UL. Moreover ωN is semi-analytic, and thus, in par-
ticular, it has a finite number of connected components.
Furthermore, the sequence of optimal sets ωN is stationary,
and there exists N0 ∈ IN∗ such that ωN = ω∗ if N > N0.

In particular, it follows that the optimal set ω∗ of Theorem
4 is semi-analytic as well and hence has a finite number of
connected components. This property is in strong contrast
with the results established for wave and Schrödinger equa-
tions. For the latter equations, the fact that all frequencies
have the same weight causes a strong instability of the
optimal sets ωN , in particular the spillover phenomenon
mentioned previously. For parabolic equations this instability
phenomenon does not occur, and the sequence of maximizers
ωN is constant as soon as N is large enough, equal to ω∗.
This property is of particular interest in view of designing
the best observation set ω∗ in practice.

On Figure 2, we compute the optimal domain ωN in the
case Ω = (0, π)2, L = 0.2 and T = 0.05, for N = 1, . . . , 6.
We can observe the expected stationarity property of the
sequence of optimal domains ωN from N = 4 on (i.e., 16
eigenmodes).

Fig. 2.

These results can be established as well for more gen-
eral parabolic equations (see [19]), involving in particular



anomalous diffusion equations and Stokes equations. Let us
mention in particular an interesting feature occuring for the
anomalous diffusion equation ∂ty+(−4)αy = 0 in Ω, where
(−4)α is some positive power of the Dirichlet-Laplacian,
with arbitrary boundary conditions implying y|∂Ω = 0. It is
proved in [19] that:
• in the Euclidean square Ω = (0, π)2, when considering
the usual Hilbertian basis of eigenfunctions consisting of
products of sine functions, for every α > 0 there exists a
unique optimal set (as in Theorem 4), which is moreover
open and semi-analytic;
• in the Euclidean disk Ω = {x ∈ IR2 | ‖x‖ < 1},
when considering the usual Hilbertian basis of eigenfunctions
parametrized in terms of Bessel functions, we have the
following surprising result:

- if α > 1/2 then there exists a unique optimal set (as in
Theorem 4), which is moreover semi-analytic and thus
has a finite number of connected components;

- if α < 1/6 then any optimal set must have an infinite
number of connected components.

VI. CONCLUSION

We have presented our results for the optimal shape and
placement of sensors. Similar results can be derived for
actuators (see [16], [17], [19]). Our main contribution is to
have highlighted a precise relation between those kinds of
shape optimization problems and concentration properties of
eigenfunctions (quantum ergodicity issues). Many interesting
open questions remain to be investigated, such as:

• Generic nonexistence of an optimal set.
• Other relevant shape optimization problems avoiding

the spillover phenomenon.
• Control theoretical consequences for random initial

data.
• Optimal stabilization and optimal choice of dampers.
• Optimization of the deterministic observability constant.
• Discrete versions of optimization problems above.

The latter issue might be particularly important in applica-
tions both because discrete models are often employed, and
also because numerical approximation schemes necessarily
end up becoming of discrete nature. In particular, the follow-
ing type of questions arise as discrete versions of those we
have considered in this paper in the continuous setting. Let
A be a real symmetric matrix. The problem of the optimal
choice of an observation operator B over a certain class B
can be formulated as

sup
B∈B

inf

{
〈Bx, x〉
‖x‖2

| ∃λ, Ax = λx

}
.

In the context of our paper, B is the (infinite-dimensional)
Gramian of observation over ω. But the problem can be
generalized in the above more abstract form, allowing us
in particular to formulate in an appropriate context the
following open question: under which assumptions do the
optimal designs commute with discretization schemes?
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[17] Y. Privat, E. Trélat, E. Zuazua, Optimal observability of the multi-
dimensional wave and Schrödinger equations in quantum ergodic
domains, Preprint Hal (2013).
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