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Abstract— In this paper we investigate the design of a lane-
tracking driver-assist system and, in particular, its interaction
with the well-known two-point visual perception driver model.
We present two different driver-vehicle interconnections and
two different control designs that assist the driver in the lane-
tracking task; the first design is based on linear multivariable
output regulator theory, and the second design is based on
model predictive control (MPC) theory. In the first intercon-
nection the controller is “blind” to the driver’s actions, and an
appropriate blending of the controller and driver actions is used
in order to steer the vehicle. In the second interconnection the
control design takes into consideration the driver model, and the
control steering command is shared between the lane-tracking
steering assist system and the driver. The performance of both
controllers and interconnections is compared and evaluated
using three different drivers and also against a unassisted
driver-only scenario.

I. INTRODUCTION

The idea of autonomous steering has long been a pop-

ular research area in the automotive industry due to its

applicability to passenger cars for active safety and comfort

(e.g., autonomous lane-following systems). One approach for

automatic roadway tracking is presented in [1], where the

authors introduced several design methodologies for both

lane estimation and lane tracking. In [2] and [3] differ-

ent control schemes for the design of autonomous lane-

following/tracking control systems are given, and a look-

ahead distance is used in order to calculate the offset of

the vehicle center of mass from the reference trajectory. An

alternative approach promotes the use of lateral preview con-

trol [4], [5]. Even though these techniques provide excellent

performance, their optimization-based methodology makes

them often difficult to implement on-line.

Numerous vehicle steering systems designs exist in the

literature, but works investigating the interaction between

the driver and the steering system are rather scant. In [6]

the authors present a model that mimics driver behavior

during a path following task. In [7] the author introduced the

idea of the two-level driver model, where the steering task

is divided in two levels, an anticipatory open-loop control

mode and a closed-loop compensatory mode that handles

deviations from the reference. The idea that human drivers

use a two-tier perception system while driving has also been

confirmed by several studies, especially in the pioneering
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Fig. 1. The interconnection between the different subsystems: (a) vehicle,
(b) motion and vision kinematics, (c) driver, and (d) steering column.

work of M. Land and his colleagues [8], [9]. More recently,

Salvucci [10] developed a two-point visual control model,

in order to steer the vehicle. The authors in [11] developed

a complete model for lateral steering control that integrates

many of the previously existing driver models. Additionally,

the authors in [12] presented a control design based on the

driver model by [6]. Similarly to the current paper, their

objective was assisted lane-tracking. However, they achieved

this objective with the use of active-steering and yaw moment

control, instead of a torque-based steering assist system as

is proposed in this paper. Furthermore, the authors in [12]

used a simple driver model that does not take into account

the two-point perceptual driver input. Finally, the authors

in [13] use a two-point visual driver model along with a

preview controller to perform assisted lateral steering. A

robustness analysis in terms of driver parameter uncertainty

is also provided.

In this paper we investigate the active connection between

a lane-tracking control system and an existing driver model

and evaluate their interaction. We are particularly interested

in the way the driver’s steering effort changes in the presence

of a lane-tracking steering-assist system compared to the

unassisted case after incorporating a perceptual/physiological

driver model as part of the control design. We evaluate

two different control designs, one based on multivariable

output regulator theory (ORT), and the other based on model

predictive control (MPC). Either of these two lane-tracking

assist systems operates in parallel with the driver. The

purpose of each controller is to observe driver tracking errors

and, if necessary, intervene to correct them. Our numerical

simulations using a high-fidelity vehicle simulator [14] show

the importance of the seamless interaction between the lane-

tracking assist system and the driver when compared, say,

with the case of a lane-tracking assist system that is oblivious

to the driver.



II. VEHICLE AND ROAD MODELING

The driver/vehicle system consists of four different subsys-

tems (see Figure 1), namely: (a) the vehicle, (b) the percep-

tion and vision kinematics, (c) the driver, and (d) the steering

column. In Figure 1 Tdr is the driver torque command and

Tcon is the torque command from the steering assist system.

Manual vehicle operation corresponds to Tcon = 0. The

details for the four subsystems shown in Figure 1 are briefly

discussed below.

A. Vehicle Dynamics

The vehicle model is based on the linearized single-

track model, or bicycle model [15] (see also Figure 2). The

Fig. 2. Schematic of the bicycle vehicle model.

linearized vehicle dynamics are given as follows

β̇ = −
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where β [rad] is the vehicle sideslip angle, r [rad/sec] is the

vehicle yaw rate, ψ [rad] is the vehicle yaw angle, Vx [m/sec]

is the longitudinal component of the velocity of the vehicle

center of mass expressed in the vehicle frame, m [kg] is

the vehicle mass, and Iz [kg m2] is the vehicle moment of

inertia with respect to the vehicle mass center. In addition,

δ [rad] is the front wheel steering angle, ℓF [m] and ℓR [m]

are the distances of the vehicle mass center from the front

and rear axles, respectively, and Cf > 0 [N/rad] and Cr > 0
[N/rad] are the cornering stiffnesses of the front and rear

tires, respectively, which are assumed to be constant. The

vehicle dynamics interact with the steering column dynamics

via the alignment torque Taln [Nm], which is given by

Taln = Kalnαf = Kaln

(

β +
ℓF r

Vx
− δ

)

, (1)

where Kaln = −KpCfηt, and where Kp > 0 is the manual

steering column coefficient and ηt [m] is the tire length

contact. The expression (1) has been shown to be valid for

normal operating ranges and conditions, [16].

B. Steering Column Dynamics

The steering column system plays a significant role for

capturing the interaction between the vehicle and the driver,

and hence its modeling is imperative in a driver-assist system

design. The steering column dynamics can be described by

Jsω̇s = −bsωs − T
sw
aln + Tdr + Tcon, (2)

δ̇s = ωs, (3)

where ωs [rad/s] is the steering angle rate, δs = δgs [rad]

where gs is the gear ratio, bs [Nms/rad] is the friction

coefficient of the steering column, Js [kgm2] is the steering

column moment of inertia, Tdr [Nm] is the torque provided

by the driver, Tcon [Nm] is the corrective torque provided

by the control system, and T sw
aln = Taln/gs.

Fig. 3. Several studies of human steering strategies have revealed that
drivers use a combination of a near feature point (white dot) and a far away
feature point (white cross) to establish lateral stability and lane tracking;
from [10].

C. Road Geometry and Road Kinematics

The coupling between the vehicle model and the driver

is achieved via the road model, which provides the road

geometry and the kinematics of the reference trajectory

induced by the motion of the vehicle. In the sequel it will be

convenient to use the curvature of the road, ρref = 1/Rref ,

as the input generating the reference path [3], [7], [11], [15].

The vehicle motion is modeled assuming small deviations

from a stationary circular (or straight) path. To this end, and

following [15], let the road’s state vector be given by xr =
(∆ψ,∆y)T, where ∆ψ = ψt − ψ [rad] is the angle between

the tangent to the path at point A and the vehicle heading and

∆y is the distance of a “lookahead” point at a distance ℓs
[m] in front of the vehicle center of mass from the reference

road trajectory (see Figure 5). It can be easily shown that

the rate of change of ∆y is approximately given by

∆ẏ = −Vx(β −∆ψ)− ℓsr + Vxℓsρref , (4)

while ∆ψ obeys the differential equation

∆ψ̇ = ψ̇t − ψ̇ = rt − r, (5)

where rt = vt/Rref = vtρref is the yaw rate along the path

tangent. Subsequently, and since vt ≈ Vx, it follows that

∆ψ̇ = Vxρref − r. (6)

Finally, the kinematic road model is written as

ẋr = Arxr +Br1ur +Br2ρref , (7)

yr = Crxr, (8)

where ur = (β, r)T, yr = (∆ψ,∆y)T. Note that in this

model, the road curvature ρref plays the role of an exogenous

signal.



III. TWO-POINT VISUAL TRACKING DRIVER MODEL

The internal connections of the driver model can be seen

in Figure 4. The inputs to the driver model are the two visual

angles denoted by θfar and θnear provided by the motion and

the vision kinematics, and the current steering wheel angle,

while the output of the driver model is the driver torque,

which is applied at the steering wheel. The angles θfar and

θnear roughly correspond to the two visual points tracked

by the driver’s visual system (see Figure 3). Indeed, several

psychological studies provide strong evidence that drivers

focus their attention on two “anchor” points in their visual

field of view. A faraway point, often at the periphery of the

visual field, and typically on the inner side of the road while

cornering, and a closer-by point at a small distance ahead,

approximately at the center of the visual field [10]. On the

other hand, the channel of the steering wheel angle takes into

account the reaction from the road and is used to model the

kinesthetic part of the driver model.

Fig. 4. The components of the driver model and their interconnection.

A. Driver Model

The driver model used in this study is based on the model

developed in [11]. The model has five main components.

Next, we give a brief overview of the model components.

The anticipatory control subsystem has transfer function

Ga(s) = Kα, (9)

and accounts for tracking the reference trajectory at a distant

future time. It is thus related to the far viewpoint, whose

location is determined by the angle θfar in Figure 5. The

compensatory control subsystem is used for driving correc-

tions in the near future, and it is thus related to the location

of the near reference point via the angle θnear. It is assumed

to have the transfer function

Gc(s) = Kc
TLs+ 1

TIs+ 1
, (10)

where TL [sec] and TI [sec] are lead and lag time constants,

respectively, with TL > TI . The delay with transfer function

GL(s) = e−tps, (11)

accounts for the processing delay of sensory signals in

the human brain. The neuromuscular subsystem models the

driver’s arms, and has the transfer function

Gnm(s) =
1

TNs+ 1
. (12)

The kinesthetic part that is comprised of two subsystems,

Gk1(s) and Gk2(s), and accounts for the reaction provided

to the driver by the steering system

Gk1
(s) = KD

s

s+ 1/T1
, Gk2

(s) = KG

Tk1
s+ 1

Tk2
s+ 1

. (13)

In the sequel, and for the sake of simplicity, only the sub-

systems (9)-(12) will be used for control design. Numerical

simulations have shown that the kinesthetic part has a minor

impact on the overall driver response and can be omitted

without sacrificing the overall performance. Using a first-

order Padé expansion to approximate the delay in (11) with

a rational transfer function, yields the following a state-space

representation

ẋd = Adxd +Bdud, (14)

yd = Cdxd, (15)

where the driver state vector is xd = (xd1, xd2, xd3)
T, the

input vector is ud = (θnear, θfar)
T, and the output is yd =

xd3 = T fb
dr , where the matrices Ad, Bd and Cd can be easily

calculated from (9)-(12).

B. Visual Perception Geometry

The last missing element to complete the driver model is to

define the geometric characteristics of the vision/perception

model, that is, how the driver perceives the road geome-

try and the vehicle’s relative position through visual cues,

namely the angles θfar and θnear.
These two angles can be determined from the road geom-

etry as shown in Figure 5. Specifically, θnear is related to the

near viewpoint of the driver ℓs and is given approximately

by

θnear ≈
∆y

ℓs
. (16)

The angle θfar is defined as the angle between the car heading

and the gaze direction that is approximately tangent to the

inner boundary of the road, and can be approximated by

θfar ≈
Ls

Rr

+∆ψ ≈ Lsρref +∆ψ, (17)

where for the last expression we have made the assumption

that the vehicle distance from the inner road boundary

(distance d in Figure 5) is small compared to the road

radius. Equations (16) and (17) clearly show the distinct role

these two angles play in the feedback interconnection; θnear
can be viewed as a surrogate measurement of the lateral

displacement ∆y, whereas θfar provides information about

the road curvature [7], [11], [17].

IV. LANE-TRACKING STEERING ASSIST CONTROL

DESIGN

In order to increase the lane-tracking performance of

the vehicle/driver system and compensate for possible in-

adequate driver (re)action, we investigate the benefits of

a driver steering-assist system, which injects a correction

torque Tcon to the driver torque command Tdr as shown

in Figure 1. We investigate two possible control designs.



Fig. 5. The geometric relationship between the vehicle kinematics, the
road reference trajectory and the driver’s two-point visual model.

The “traditional” approach is to design a controller without

taking into consideration the driver. In this approach, the total

control torque command input to the steering column is given

via a “blending” of the driver and control input commands

as follows

Ttot = (1− λ)Tdr + λTcon, (18)

where λ is the blending parameter taking the values 0 ≤ λ ≤
1. For λ = 0 only the driver command is active, whereas

when λ = 1 the vehicle operates completely autonomously.

In the sequel, we will refer to this controller as the BC(λ)

(“blending”) controller. The second control design takes into

account the driver model and thus operates on the combined

vehicle/driver system. In this case the total input torque is

Ttot = Tdr + Tcon. (19)

In the sequel we will refer to this controller as the DiLC

(Driver-in-the-Loop) controller. It should be noted, that the

driver commanded torque is comprised of a feedforward

term, Tff
dr, in order to compensate for the alignment moment,

and a feedback term, T fb
dr that is generated from the percep-

tion model, and therefore, Tdr = Tff
dr + T fb

dr . It is assumed

that torque blending is performed with the use of a steer-

by-wire system [18]. Consequently, at the implementation

level, one has the freedom to steer the wheels by using any

combination of the driver input torque and the steering-assist

system torque, while feeding back to the driver a “sensing”

torque that can be generated at will. Therefore, and for the

sake of simplicity, in this work we will assume that the torque

fed back to driver is equal to the alignment torque, that is,

Tff
dr = T sw

aln.

For both cases, we have designed two different controllers;

the first is based on the output regulator (ORT from now on)

theory [19], and the second is a simple Model Predictive

Control (MPC) [20] design with only input constraints.

A. Output Regulator Design

First, we re-write the state-space representation of the

overall system as follows

ẋ = Ax+ Ew +Bu, (20)

ẇ = 0, (21)

y = Cx = ∆y, (22)

where u = Tcon, and where the matrices A,E,B and C,

can be easily computed from the results of Sections II and

III. In (20)-(22) the state is x = (ωs, δs, β, r, ψ,∆ψ,∆y)
T

for the case of the system without the driver, and x =
(ωs, δs, β, r, ψ,∆ψ,∆y, xd1, xd2, xd3)

T for the case of the

system with the driver included. In both cases, w = ρref is

the (piecewise constant) exogenous signal, which is assumed

to be measurable.

The objective is to design a controller to track the center

lane at the look-ahead near point, that is, limt→∞∆y(t) =
0. It is assumed that the control input is given as a linear

combination of a feedback and a feed-forward term

Tcon = Fx+Gw. (23)

In order to compute the controller gain matrices F and G so

as to achieve the asymptotic regulation of the output of (20)-

(22) to zero, we use output regulator theory [19]. Following

the approach in [19] the matrix F is chosen so that A+BF
is Hurwitz, and G is chosen such that G = Γ − FΠ where

Π and Γ solve the following matrix equations [19]

AΠ+BΓ + E = 0, (24)

CΠ = 0. (25)
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Fig. 6. Comparison of ∆y responses for the three drivers.

A standard LQR design has been used to find the stabi-

lizing matrix F in (23) with performance index

J(u) =

∫ ∞

0

[

x(t)TQx(t) + u(t)TRu(t)
]

dt, (26)

where u = Tcon, and Q and R are the state and input

weighting matrices, respectively. The matrix R for all cases

was chosen as R = 0.1, while for BC(λ) the matrix

Q was Q = 25 · diag(1, 0, 10, 0, 0, 10, 10), and for the

case of DiLC the matrix Q was chosen as Q = 25 ·
diag(1, 0, 10, 0, 0, 10, 10, 0, 0, 0). These choices reflect our

objective to mainly regulate ∆y and ∆ψ (lane tracking),

and β (yaw stability). The steering angle rate δ̇s = ωs is

also penalized to obtain moderate steering wheel command



rates. The choice for R was made so that adequate control

authority was given to the steering-assist system in order to

compensate for the driver’s actions, while at the same time

penalize the control action in such a way that the torque

generated by the controller is of same order of magnitude as

the driver torque.
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Fig. 7. Comparison of generated driver torques, Tdr, for the three drivers.

B. MPC Design

The MPC design requires a prediction model. Since MPC

is a discrete-time control methodology, we convert the above-

mentioned model to discrete-time with sampling period ts =
50 ms. Hence, we have,

x(k + 1) = Adx(k) +Bdu(k) + Edw(k), (27a)

y(k) = Cdx(k), (27b)

where again x = (ωs, δs, β, r, ψ,∆ψ,∆y)
T for the

case of the system without the driver, and x =
(ωs, δs, β, r, ψ,∆ψ,∆y, xd1, xd2, xd3)

T for the case of the

system with the driver included. In addition, u = Tcon, and

w = ρref , and y = ∆y.

In contrast to the lateral preview control for lateral control

of vehicles where the path curvature is assumed to be

known a priori, here the path curvature is constant over the

prediction horizon, i.e., for h ∈ Z+,

ρref(h|k) = ρref(k), (28)

where ρref(k) is the curvature measured at this particular

time instant. Next, we augment the system dynamics with

the reference path curvature ρref . Hence, the MPC prediction

model is given by

xp(k + 1) = Apxp(k) +Bpup(k), (29)
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Fig. 8. Comparison of ∆y for the ORT-assisted cases of DRV2.
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Fig. 9. Time histories of Tcon, Tdr, and Ttot for the ORT assisted cases
of DRV2.

where

Ap =
[

Ad Ed

0 1

]

, Bp =
[

Bd

0

]

. (30)

The main idea of the MPC control design is that a finite

horizon optimal control problem is solved at every control

cycle. Here we enforce only input constraints, hence the

MPC scheme is as follows

min
UN (k)

N−1
∑

h=0

xp(h|k)
TQxp(h|k) + up(h|k)

TRup(h|k)(31a)

s.t. xp(h+ 1|k) = Apxp(h|k) +Bpup(h|k), (31b)

umin ≤ up(h|k) ≤ umax, h=0,...,Nu−1 (31c)

up(h|k) = 0, h=Nu,...,N−1 (31d)

where UN (k) = (up(0|k), . . . , up(N − 1|k)). It is possible

for the prediction horizon N to differ from the control

horizon Nu, the number of free control moves to be chosen.

In order to enforce tracking of the reference path, the

lateral offset ∆y needs to be minimized, thus the cost

function in (31a) is

J =
∑N−1

h=0 qr∆y
2(h|k) + quu

2(h|k). (32)

The values of the MPC parameters are the same for both

the BC(λ) and the DiLC controllers; qr = 200, qu = 0.1,

N = 21, Nu = 12, and umax = −umin = 8 Nm.

V. SIMULATIONS

Our main objective is to evaluate the performance of the

controllers developed in Section IV, and compare the driver

effort during an unassisted and an assisted lane-tracking

maneuver. Three different sets of data for the driver model

were used (see Table I) in order to test different driver styles.

All controller designs were based on the data corresponding

to DRV2. Note that during testing the full driver model

(that is, including the kinesthetic part and transport delay)

was used in all cases. Also, all numerical simulations were

performed with CarSim R© [14] using the numerical values

of the test vehicle and the steering column parameters shown



in Table II. The longitudinal speed of the vehicle is assumed

to be Vx = 15 m/s (54 km/h), and the curvature of the path is

given by a sensor on the vehicle which is provided directly by

CarSim R©. Since this signal is noisy, pre-filtering is applied

prior to its utilization by the controller.

A. Driver-only Case

Simulations of unassisted drivers were performed using

the three driver data sets shown in Table I. In Figure 6,

we observe that DRV3 manages to perform better tracking

compared to the other two drivers, and with a less oscillatory

response of ∆y. On the other hand, DRV1 has a very sluggish

response, whereas the reaction of DRV2 is somewhere in

between that of DRV1 and DRV3.

Figure 7 presents the time histories of the driver torques

for the same maneuver. All drivers provide approximately

equal magnitudes of torque but there is a difference among

the torque histories in terms of phasing, with DRV1 and

DRV2 being more oscillatory compared to the torque history

of DRV3.

TABLE I: Parameter values for the driver models.

Values DRV1 DRV2 DRV3

TN [sec] 0.12 0.12 0.12

tp [sec] 0.1 0.06 0.04

Ka 22 30 45

Kc 14 20 27

TL [sec] 1.6 2.4 3.5

TI [sec] 0.35 0.2 0.1

KD 1 1 1

T1 [sec] 2.5 4.5 5.1

KG -0.63 -0.85 -0.63

Tk1
[sec] 1.99 2.99 3.99

Tk2
[sec] 0.013 0.043 0.013

Next, we evaluate the performance of the proposed control

designs for two different scenarios. In the first scenario,

the numerical values of the driver parameters of the DiLC

controllers match those of the parameters of the actual driver,

TABLE II: Numerical values of the vehicle and steering

column parameters.

Vehicle Parameter Parameter Numerical Value

m [kg] 1653

ℓF [m] 1.402

ℓR [m] 1.646

Iz [kgm2] 2765

Cf [N/rad] 42000

Cr [N/rad] 81000

ηt [m] 0.225

Js [kgm2] 0.11

gs 16

bs [Nm/rad/sec] 0.57

Kp 0.038

namely those of DRV2, and the controllers’ performance is

evaluated against the driver-only case and against the BC(λ)

controllers. In the second scenario, the DiLC controllers are

tested using an incorrect driver model (namely, DRV1 and

DRV3).

B. Driver-Assist Case: Correct Driver Model

In this section we present the results when driver DRV2

is being assisted by the ORT-based lane-tracking controller

(Section IV-A). Figure 8 shows the error ∆y for the DiLC-

ORT, BC(0.3)-ORT and BC(0.7)-ORT cases, respectively.

The performance improvement in terms of regulating ∆y is

significant for the DiLC-ORT and the BC(0.7)-ORT cases,

compared to the BC(0.3)-ORT, and, especially, to the driver-

only case (compare with Figure 6).
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Fig. 10. Comparison of ∆y for the MPC assisted cases of DRV2.

The torques Tcon, Tdr, and Ttot for all ORT-assisted cases

are shown in Figure 9. One sees that for all the ORT-assisted

cases the amount of torque generated by the driver is greatly

decreased compared to the non-assisted case (compare with

Figure 7).
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Fig. 11. Time histories of Tcon, Tdr, and Ttot for the MPC assisted cases
of DRV2.

Next, we present the results for the MPC-assisted driver

case. The response of ∆y for DRV2 are presented in

Figure 10. Similarly to the ORT approach, the tracking

performance is significantly improved for the DiLC-MPC

and BC(0.7)-MPC designs, compared to other cases and,



in particular, the driver-only case. It is interesting to note

that with the use of this control design the BC(0.3)-MPC

controller does not enhance tracking performance to the same

extent as the BC(0.3)-ORT. Compared to the other designs,

the tracking performance of DiLC-MPC is the best one in

terms of maximum steady-state values of ∆y.

The generated torques for the MPC-based steering-assist

system for DRV2 are also shown in Figure 11. The driver

torque for the DiLC-MPC and BC(0.7)-MPC cases is again

very small compared to the driver-only case, whereas for the

BC(0.3)-MPC case the generated driver torque is higher and

is closer to the driver-only case.

C. Driver-Assist Case: Incorrect Driver Model

In this scenario we investigate the robustness of the DiLC

controllers with respect to the driver model parameter mis-

match. Both MPC-based and ORT-based DiLC controllers

(which were designed based on the parameters of DRV2)

were tested using either the DRV3 parameters. Figure 12

shows the response of ∆y for the case of driver DRV3. The

assisted-steering performance is improved for the case of

DiLC-ORT, which has a smooth and satisfactorily perfor-

mance. On the other hand, DiLC-MPC decreases ∆y, but

the oscillatory response is noticeable. Overall, we see that

the MPC design performs very well when the driver model

parameters are accurately known, but it is rather sensitive

to any change in these parameters, at least compared to the

ORT controller. These results imply that for implementing

MPC-based designs it will be probably imperative to have

accurate identification algorithms of the driver and perhaps

even adapt the MPC design “on-the-fly” to these parameters.
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Fig. 12. Comparison of the ∆y responses for DiLC-ORT, and DiLC-MPC
for DRV3.

VI. CONCLUSIONS

In this paper we have investigated the benefits of designing

a lane-tracking system with a suitable model of the driver in

the loop. By incorporating a driver model, the controller can

better predict and compensate for incorrect driver reaction.

Two different design methodologies have been used and

compared. One based on output feedback regulation theory,

and the other based on model predictive control. It was

shown that the benefits of including the driver model in

the loop can be significant, even more when using an MPC

design approach, although further investigation is required,

in order to analyze the robustness of such a control design.

The main challenge still remains on how to get good driver

model parameters that adequately reflect the current driver

capabilities, and how to design/adapt the controller “in-situ”

in order to take advantage of a known driver model. In

regards to the driver model parameter estimation or driver

classification, some recent efforts have been reported in [17],

[21] .
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