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Credible Autocoding of Fault Detection Observers

Timothy E. Wang1, Alireza Esna Ashari2, Romain J. Jobredeaux3, and Eric M. Feron4

Abstract— In this paper, we present a domain specific process
to assist the verification of observer-based fault detection
software. Observer-based fault detection systems, like control
systems, yield invariant properties of quadratic types. These
quadratic invariants express both safety properties of the
software such as the boundedness of the states and correctness
properties such as the absence of false alarms from the fault
detector. We seek to leverage these quadratic invariants, in
an automated fashion, for the formal verification of the fault
detection software. The approach, referred to as the credible
autocoding framework [1], can be characterized as autocoding
with proofs. The process starts with the fault detector model,
along with its safety and correctness properties, all expressed
formally in a synchronous modeling environment such as
Simulink. The model is then transformed by a prototype
credible autocoder into both code and analyzable annotations
for the code. We demonstrate the credible autocoding process
on a running example of an output observer fault detector for
a 3 degree-of-freedom (3DOF) helicopter control system.

Keywords: Fault Detection, Software Verification,
Credible Autocoding, Aerospace Systems, Formal Meth-
ods, ACSL.

I. I NTRODUCTION

The safety of dynamic systems has attracted attention
over years. Many studies on fault detection of safety-critical
systems are reported in recent years [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11]. Most of those studies detection
developed observer-based fault detection methods, which are
suitable for online fault detection in the case of abrupt faults.
The observer provides analytic redundancy for the dynamics
of the system. Comparing the input-output data with the
nominal data we obtain from the model of the system, we
conclude whether or not the system is in nominal mode.
Possible faults are modeled as additive inputs to the system.
Such an additive fault changes the nominal relations between
inputs and outputs. A summary of the recent developments
in this domain can be found in [12], [13], [14]. Nowadays,
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observer-based fault detection methods are usually imple-
mented as software on digital computers. However, there
is usually a semantic gap between fault detection theory
and software implementation of those methods. Computation
errors may cause incorrect results. Also, engineers with little
or no background in control may need to test and modify
the software. Thus there is a need to express fault detection
semantics at the level of software. Additionally, such an
endeavor can help verify systematically that the software
works correctly based on the theory and the initial design.

In this paper, we present an automated process of ap-
plying control-theoretic techniques towards the verification
of observer-based fault detection software. We extend our
previous works [15], [16], [17], [1] for controller systemsto
fault detection systems. The idea of using domain-specific
knowledge in software verification is not new. However, the
application of system and control theory to control software
verification can be traced back to relatively recent works
like [18] and [19]. In these papers, the authors presented a
manual example of documenting a controller program with a
quadratic invariant set derived from a stability analysis of the
state-space representation of the controller. Since then,we
have progressed towards creating an automated framework
that can rapidly obtain and transform high-level functional
properties of the control system into logic statements thatare
embedded into the generated code in the form of comments.
The usefulness of these comments comes from their potential
usage in the automatic verification of the code. We will refer
to the logic statements as “annotations” and the generated
code with those comments as “annotated code”. We named
the frameworkcredible autocodingas it is a process to
rapidly generate the software as well as the annotations
that guarantee some functional properties of the system. The
realization of the framework is a prototype tool that we have
built and applied to control systems such as a controller for
the 3 degrees of freedom helicopter Quanser [20]. For this
paper, we have further refined the prototype to handle the
addition of a fault detection system running along with the
Quanser controller.

The paper is organized as follows: first we introduce
credible autocoding framework and the details of its imple-
mentation; this is followed by a mathematical description
of the fault detection method used in our running example;
finally, we describe the credible autocoding process that has
been further extended for fault detection systems and the
automatic verification of the annotated code produced by the
credible autocoder.
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1 /*
2 @ requires x<=0

3 @ ensures x>=0

4 */

5 {

6 x=x*x;

7 }

Fig. 1. C code with ACSL

II. CREDIBLE AUTOCODING

Credible autocoding is an automatic or semi-automatic
process that transforms a system that is initially expressed
in a language of high-level of abstraction, along with the
mathematical proofs of its good behavior, into code, an-
notated with said mathematical proof. The initial level of
abstraction could be a differential equation of the system and
the final level could be the software binary. For the prototype
implementation of our framework, we picked Simulink as the
starting point and C code as the final output. Regardless of
the input and output languages, the main contribution from
this prototype is the automatic translation of Lyapunov type
stability proofs into axiomatic semantics for the output code.

Axiomatic semantics is an approach to reason about the
correctness of program that traces back to the works of
Charlie Hoare [21]. In this approach, the semantics or
mathematical meanings of a piece of code is defined through
how the piece of code modifies certain logic predicates on
the variable(s) of the code.

The basics of axiomatic semantics are demonstrated here
using two examples. In figureII , we have a piece of C code
that computes the square ofx and assigns the answer to
the variablex. Notice in the comments or annotations that
precede the code, we have two logic predicatesx <= 0
and x >= 0, preceded by the symbols “@ requires” and
“@ ensures”. They represent properties ofx that we claim
to be true, respectively before and after the execution of
the line of code. The keywordrequires denotes apre-
conditionand the keywordensureskeyword denotes apost-
condition. The pre and post-conditions, together with the
statement they surround, form aHoare Triple: they express
a contract of sorts, namely, that for any execution of the
program, regardless of what has happened elsewhere, if the
pre-condition is true before the statement is executed, then
the post-condition will be true after its execution. In this
example, it is trivial to see that if the variablex is non-
positive before the execution ofx := x ∗ x then it will be
non-negative afterwards. However we stress here that any
such contract inserted as annotations in the code needs to be
formally proven before it is said to be valid for the code.

Consider the C implementation of a 1-dimensional linear
state-space system in figureII . The state-transition matrixA
is 0.98 and the input matrixB is 0.02. Unlike the previous
example, this piece of code contains an infinite loop. In
the case of infinite loops, the difficulty lies in finding a
property that will hold both before, throughout and after
the execution of the loop. Such properties are calledloop

1 /*
2 @ assumes input*input<1;

3 @ requires x*x<=1

4 @ ensures x*x<=1

5 */

6 {

7 while (1) {

8 x=0.98*x+0.02*input;

9 }

10 }

Fig. 2. C code with ACSL

invariants. They are closely related to invariant sets. We can
express such a property with a contract on the body of the
loop where the pre- and post- conditions need to be identical.
It is often the case, for even trivial invariant, that verifying
their correctness is a non-trivial task. Comparatively speaking
though, verifying the correctness of a given invariant in an
automatic fashion is still a more tractable task than finding
the invariants of a program automatically. For even simple
examples, it can be impossible for general automatic decision
procedures to compute invariants for the code without the
application of domain specific knowledge. In addition, there
is also an assertioninput ∗ input < 1 denoted by the
keyword assumes. The difference between assertions and
properties is that assertions are the assumptions that we
make without given any proofs for it. In this case, we
are going to assume the magnitude of the input variable
is bounded by1. Unlike the propertyx ∗ x <= 1, the
assertioninput ∗ input < 1 cannot be checked for its
correctness based only on the information available from
the code. For this example or any other linear state-space
systems, we can apply domain specific knowledge, namely
Lyapunov-based theories, to compute an ellipsoid invariant
set E (x, P ) =

{

x|xTPx ≤ 1
}

. A collection of these type
of quadratic stability results with an efficient computational
solutions can be found in [22]. For this example,E (x, 1)
forms a valid invariant set. Through the credible autocoding
framework, this invariant property can be rapidly transformed
into contracts for the code, and thus, in theory, makes the
process of automatic verification of the generated code more
feasible.

The code annotations in the two examples are expressed in
the ANSI C Specification Language (ACSL)1. In the latter
sections, the autocoded fault detection semantics are also
expressed in ACSL. For more details, interested readers can
refer to [23].

III. FAULT DETECTION PROBLEM FORMULATION

In this paper we focus on observer-based fault detection
of dynamic systems. Such methods need the system to be
modeled by differential equations. In this paper we design
the fault detection observer for a three-degrees-of-freedom
laboratory helicopter. The system is modeled by nonlinear

1The prototype credible autocoder also produces annotations in ACSL



equations. Such a model can be linearized around the oper-
ating point of the system as follows

ẋ(t) = Ax(t) +Bu(t) + Ef(t), (1)

y(t) = Cx(t), (2)

wherex(t) ∈ R
6 andu(k) ∈ R

2 are the state vector and the
known input vector at timet, respectively. Also,y(t) ∈ R

3

is the output vector .A, B andC are state transition, input
and output matrices, respectively:

A=
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C=





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0



 .

System parameters are given in [20].f(t) ∈ R
nf in (1)

represents an additive fault to the system that should be
detected. No prior knowledge on this input signal is available.
The value off(t) is zero for nominal (fault-free) system. The
aim of the fault detection is to raise an alarm whenever this
value differs significantly from zero (faulty system). For that
purpose, an observers based fault detection method is used.
Here, we do not develop new fault detection methods. Instead
we focus on the software implementation of an observer-
based fault detection method.

We consider an actuator degradation fault for this system.
Such a fault changes the behavior and the steady state of
the system, and can be modeled as additive fault. The effect
of the degradation can be modeled by replacingu(t) in (1)
with ū(t) where

ū(t) = Xu(t). (3)

Hence, we obtain the fault matrix bellow, defined in (1)

E = B(I −X). (4)

A. Output observer design for fault detection

To explain the autocoding process, we select the simplest
observer-based method [12], [14]. The detector observes the
system, received input and output data and compares the data
with the nominal response the system is suppose to have.

Consider the full-order state observer bellow

˙̂x(t) = Ax̂(t) +Bu(t) + L(y(t)− Cx̂(t)), (5)

ŷ(t) = Cx̂(t). (6)

Using this observer, we generate a residual signal, comparing
the estimated output (6) with the measured one

r(t) = y(t)− ŷ(t). (7)

We compare the residual signalr(t) against a predefined
threshold. If the threshold is reached, a fault alarm is raised.
In order to explain how the method works and how the
observer should be designed, we introduce estimation error
e(t) = x(t)− x̂(t) and calculate the error dynamics

ė(t) = (A− LC)e(t) + Ef(t), (8)

r(t) = Ce(t). (9)

From (8)–(9), r(t) goes to zero iff(t) is zero and the
observer matrixL is chosen so thatA− LC is stable. Note
that L is the only design parameter for this observer. In
practice, usually we do not to raise a fault alarm iff(t)
is too small. Hence we suppose‖f(t)‖ > σ is a fault that
must be detected. Consequently‖r(t)‖ > rth raises a fault
alarm, whererth is the threshold corresponding toσ.

IV. A FORMAL METHOD TO VERIFY FAULT DETECTION

The theory behind fault detection methods is presented in
SectionIII-A . However, there always exist a semantic gap
between theory and real implementation. The methods in
SectionIII-A should be implemented in form of software,
either in graphical environments of control design such as
Simulink or as computer codes in computer languages such
as Matlab or C. Due to the computation errors and replacing
real numbers by floating numbers in digital computers, there
exist a difference between implemented method in software
form and the ideal results in theory. We aim at annotating
the software so that an expert or a machine can track the
operation of the software and verify that the design criteria
are satisfied at software level. The idea developed in [24]
to formally document the stability of closed-loop systems is
now extended to fault detection methods.

In order to certify the fault detection software, we need to
certify particular properties of the observer

1) Stability: the error dynamics is stable, i.e.e(t) in (8) is
around origin when system is in nominal case and stays
bounded in faulty case.

2) Fault detection: the residualr(t) correctly detects the
fault. In other wordsr(t) dos not reach a predefined
threshold iff(t) is sufficiently small.

To verify these properties, we use Lyapunov theory which
was shown to be a very good mechanism to generate easy-to-
use, formal code annotations (see [24]). Note that checking
the place of observer poles is not desired for software
verification, because we need a mechanism to verify that each
line of the code keeps invariant properties we prove in theory.
Also, computer scientists and other engineers are familiar
with invariant properties while understanding the connection
between the place of system poles and convergent of control
software needs a control theory background [24]. On the
other hand, formal verification methods in computer science
work based on invariant sets. For that purpose, we start from



informal specifications in SectionIII-A and translate them
into formal specification as follows. These properties show
how the software variables can change so that the pre-defined
filter specifications are verified.

Suppose the system is in nominal mode. Considering a
Lyapunov functionV (t) = eT (t)Pe(t), whereP is a positive
definite matrix. We can show that thee(t) remains in a
predefined invariant ellipsoid

En = {e(t) ∈ R
n|eT (t)Pe(t) ≤ ζ}, (10)

for all t ∈ R if the observer is stable. Here,ζ ≥ 0 is a scalar.
For the faulty mode we can introduce a similar ellipsoid

around the new equilibrium point. However, we do not
know the new equilibrium point, as the fault is supposed
to be completely unknown. But in practice,f(t) is bounded.
Suppose that‖f(t)‖ < σ. We introduce

Ef = {e(t) ∈ R
n|eT (t)Pe(t) ≤ ζ̄}. (11)

In (11) ζ̄ is

ζ̄(t) = max
e

eT (t)Pe(t)

s.t. ė(t) = (A− LC)e(t) + Ef(t)

and ‖f(t)‖ < σ. (12)

Hence, we have two ellipsoids to which the value of the
Lyapunov function may belong. As far as∀t, V (t) ∈ En, the
system is in nominal mode and the observer is stable. On the
other hand if∀t, V (t) ∈ Ef , the system is in faulty mode
and the observer is stable. If∃t, V (t) 6∈ Ef the detector is
unstable.

Figure3 shows the nominal and faulty regions in the error
space.

Fig. 3. Blue ellipsoid showsEn and yellow ellipsoid demonstratesEf in
error space. Red ellipsoid is a fault scenario.

What remains is to relate the threshold on the residual
signal to the value ofζ. Here we do not explain the details.
However, the following Lemma (or similar Lemmas) helps
to calculateζ̄.

Lemma IV.1 given the system

ẋ(t) = Ax(t) + Ed(t), x(t) = 0, (13)

In this section, we describe the autocoding of the fault
detection semantics of a running example. The running ex-
ample is a fault detection system as specified in sectionIII-A
combined with a LQR controller that has two integrators. We
first point out that on the abstraction level of a computer pro-
gram, the notion of a continuous-time differential equation
like in (6) no longer applies. The running example, including
the plant, need to be in discrete-time. In fact, for analysis
purposes, the plant can be treated as another C program. We
have the following discrete-time linear state-space systems

xc(k + 1) = Acxc(k) +Bcy(k),
u(k) = Ccxk +Dcy(k),

(16)

x̂(k + 1) = Âx̂(k) +Bu+ Ly,

r(k) = y(k)− ŷ(k),
(17)

and
x(k + 1) = Ax(k) +Bu(k),
y(k) = Cx(k),

(18)

representing the controller, the detector, and the plant respec-
tively. After discretization, system matrices change. How-
ever, with an abuse of notation, we use the same symbols
for the discrete-time model of the system and the observer
in (17)–(18). We have also a discretized version of the error
dynamics from (6),

e(k + 1) = Âe(k) + Ef(k) (19)

wheref(k) represent sampled fault signal and̂A = A−LC.
The Simulink model of the controller and the fault detection
system is displayed in Figure4. Additionally, there are also
fault detection semantics in the model. They are expressed
using the annotation blocks as displayed in red in Figure4.
The annotation blocks are converted into ACSL annotations
for the output code. The four Ellipsoid observer blocks
represent four ellipsoid invariants. Two are for the plant states
x and two are for the detector statesx̂. The semantics of
the plants (faulty and nominal) are expressed using the Plant
annotation blocks in Figure4. We do not express the ellipsoid
sets for the error states from (10) and (11) on the input
Simulink model. The reason for this is explained in section
(V-A). However, we point out that the credible autocoding
process will generate two ellipsoid sets on the error states
e = x − x̂, one for the nominal plant and the other for
the faulty. They are just expressed in the annotations of the
generated code output. Not shown in Figure4 is the ellipsoid
observer block expressing a bound on the input signalyc.
This bound is an assumption that gets transformed into an
ACSL assertion.

A. Ellipsoid sets on the error statese

In this section, we discuss the reason behind not choosing
the the two ellipsoid sets from (10) and (11) to be expressed
in the the input Simulink model, directly (instead we approx-
imate it from the bounds on system and observer states in
the code). Consider the following two dynamics

x̂(k + 1) = Âx̂(k) +Bu(k) + LCx(k), (20)



Fig. 4. Simulink Model Input For Credible Autocoding

and

x̂(k + 1) = Ax(k) +Bu(k) + LCe(k). (21)

Note that (20), (21), and (17) are equivalent. In the credible
autocoding process, any ellipsoid invariant that is inserted
into the code from the input model is propagated forward
through the code using ellipsoid calculus [25]. Methods such
as computing the affine transformation of an ellipsoid are
very useful here, since semantically speaking, most of the
generated code is consisted of assigning affine expressions
to variables. For example, if an ellipsoid setE (x, P ) is
the pre-condition, and the ensuing block of code is seman-
tically x := Ax, then the autocoder generates the post-
condition E

(

x,
(

AP−1AT
)

−1
)

. On the actual C code, the
propagation steps are much smaller so there are a sequence
of intermediate ellipsoid invariants betweenE (x, P ) and

E
(

x,
(

AP−1AT
)

−1
)

. Let x̃ =

[

x

xc

]

be the closed-

loop system states, and assume that closed-loop stability
analysis yields an ellipsoid invariant setE (x̃, P0). Given
E (x̃, Px̃), the prototype autocoder can generatePu, Px such
that E (u, Pu) and E (x, Px). Given E (u, Pu), E (x, Px),
and the dynamics in (20), one can compute an ellipsoid
invariant E (x̂, Px̂) for the detector stateŝx by solving a
linear matrix inequality. Solving the LMI also yields the
relaxation multipliersα > 0 and γ > 0 for the quadratic
inequalities inE (u, Pu) andE (x, Px). These multipliers are
used to generate an ellipsoid invariant one in the following
way. Given the ellipsoid invariantsE (x̂, Px̂), E (x, Px), and

the error statese =
[

I −I
]

[

x

x̂

]

, a correct ellipsoid

invariant one is E (e, Pe), where

Pe =
(

[

I −I
]

P−1

x,x̂

[

I −I
]T
)

−1

(22)

with Px,x̂ =

[

γPx 0
0 (1− α− γ)Px̂

]

. By choosing to ex-

press the ellipsoid invariantsE (x̂, Px̂), E (x̃, Px̃) on the input
Simulink model, the autocoder can automatically produce
ellipsoid invariants on the error statese.

Alternatively, if we choose to instead to express the
ellipsoids one and E (x̃, Px̃) on the Simulink model, then
the autocoder encounters the problem of computing an
ellipsoid invariant forx̂ given the dynamics in (21), with
the assumptions ofE (x̃, Px̃) andE (e, Pe). This is infeasible
sinceA is not stable in this example. Without an invariant set
for x̂, there are no safety bounds on the program variables
that correspond tôx.

In the first option, the annotations generated by the credi-
ble autocoding process can guarantee both the safety property
(the ellipsoid bounds on the variables correspond toxc and
x̂) and the liveness property of the fault detection system i.e.
the two ellipsoids on the error states. In the second option,
they can only guarantee the latter.

B. Ellipsoid sets in the Simulink model

To generate the ellipsoid invariants for the credible au-
tocoding, we have

x̂(k + 1) = Âx̂(k) + B̂û(k) (23)



with B̃ = LC, Â = A − LC, û =

[

u

x

]

, and B̂ =
[

B B̃
]

. Given that the closed-loop ellipsoid setE (x̃, Px̃)
implies E (u, Pu) and E (x, Px) for some matricesPu, Px

by the affine transformation of ellipsoid set. WithE (u, Pu),
E (x, Px), and the detector dynamics in (20), we have the
following results for computing an ellipsoid invariant on̂x.

Lemma V.1 Let û =

[

u

x

]

and assume that̂u belongs to

the set
{

û|ûTP1û ≤ 1
}

. If there exist a symmetric positive-
definite matrixP and a positive scalarα that satisfies the
following linear matrix inequality

[

ÂTPÂ− P + αP ÂTPB̂

B̂TPÂ B̂TPB̂ − αP1

]

≺ 0 (24)

then the set
{

x̂|x̂TP x̂ ≤ 1
}

is invariant with respect to (23).

First we manually compute the invariant sets for the
closed-loop system. Once for the faulty plant and one more
for the nominal plant using similar techniques as lemmaIV.1.
For the closed-loop analysis, we assume the command input
yc is bounded. From the obtained closed-loop invariant sets,
the autocoder can generate two ellipsoid invariants onû.
With E (ûi, Pûi

, i = N,F ), and N,F denotes respectively
nominal or faulty. Now we apply lemmaV.1 twice to obtain
the two ellipsoid setsE (x̂i, Px̂i

) , i = N,F on x̂. As
discussed before, we insert the obtained ellipsoid invariants
E (x̃n, Px̃i

) , i = N,F and E (x̂i, Px̂i
) , i = N,F on the

detector stateŝx into the Simulink model. The ellipsoid
invariants one are automatically computed by the credible
autocoder using (22), thus does not need to be expressed on
the Simulink model.

C. Prototype Refinements and the Annotations

For the automatic transformation of the semantics of the
fault detection and controller system in Figure4 into useful
ACSL annotations, we have further refined the prototype
autocoder to be able handle the following issues:

1) Generate different sets of closed-loop semantics based
on different assumptions of the plant.

2) Formally expressing the faults to be able to reason about
them in the invariant propagation process.

The main change made to the prototype is a new capability
to generate multiple different sets of closed-loop semantics
based on the assumptions of the different plant semantics. For
example, in the generated ACSL annotated code in listing
1, there are two ellipsoid sets parameterized by the the
ACSL matrix variablesQMat 1 and QMat 2. They express
the closed-loop ellipsoid invariant setsE (x̂i, Px̂i

) , i = N,F .
The matrix variables are assigned the correct values using
the ACSL functionsmat of nxn scalar, which takes inn2

number of real-valued arguments and returns an array of size
n× n. For brevity’s sake, the input arguments to the ACSL
functions in listing1 are truncated. The ellipsoid sets are
grouped into two different set of semantics using the ACSL

keywordbehavior. One set of semantics assumes a nominal
plant and the other assumes the faulty. Each set of semantics
are linked to their respective plant models by the behavior
name. The pre-conditions displayed in listing1 are ellipsoid
invariant sets on the observer statesx̂ defined by the ACSL
variablesQMat 3 andQMat 4. The post-conditions are gen-
erated using the invariant propagation process as described in
sectionV-A. The annotation statementPROOFTACTIC is a
non-ACSL element that the prototype autocoder generates
to assist the automatic verification of the invariants. For
example, to formally prove that the post-conditions in listing
1 is true given the pre-conditions, the automatic analyzer
knows from thePROOFTACTIC statement to apply the
affine transformation strategy. SubsectionV-D has more
details on the automatic verification of the annotations.

1 /*@

2 logic matrix QMat_1=mat_of_8x8_scalar(...);

3 */

4 /*@

5 logic matrix QMat_2=mat_of_8x8_scalar(...);

6
7 */

8 /*@

9 logic matrix QMat_3 = mat_of_6x6_scalar(...)

10 */

11 /*@

12 logic matrix QMat_4 = mat_of_6x6_scalar

(...)

13 */

14
15 /*@

16 behavior nominal_ellipsoid:

17 requires in_ellipsoidQ(QMat_3,

18 vect_of_6_scalar(observer_states[0],

19 observer_states[1],observer_states[2],

20 observer_states[3],observer_states[4],

21 observer_states[5]));

22 ensures in_ellipsoidQ(QMat_41,

23 vect_of_12_scalar(observer_states[0]...,

24 _io_->xhat[0]...));

25 @ PROOF_TACTIC (use_strategy (

AffineEllipsoid));

26 */

27 /*@

28 behavior faulty_ellipsoid:

29 requires in_ellipsoidQ(QMat_4,

30 vect_of_6_scalar(observer_states[0],

31 observer_states[1],observer_states[2],

32 observer_states[3],observer_states[4],

33 observer_states[5]));

34 ensures in_ellipsoidQ(QMat_42,

35 vect_of_12_scalar(observer_states[0]..._io_->xhat

[0]..));

36 @ PROOF_TACTIC (use_strategy (

AffineEllipsoid));

37 */

38 {

39 for (i1 = 0; i1 < 6; i1++) {

40 _io_->xhat[i1] = observer_states[i1];

41 }

42 }

Listing 1. ACSL Expressing Multiple Sets of Closed-loop Semantics

The semantics of the plant models are expressed using
the C functionsfaulty plant and nominalplant in the ghost
code statements denoted by theghostkeyword. Ghost code
statements are ACSL statements that are similar to the actual
C code in every aspect except they are not executed and they



are restricted from changing the state of any variables in the
code. The semantics of the plant model are connected with
their respective set of ellipsoid invariants through the usage
of assertions. For example, in listing2, we have the plant
statesfaulty stateand nominalstate, which are declared in
the ghost code statements. They are linked to the same
variable io ->xp from the code in the two ACSL behaviors
using the equal relation symbol==.

1 /*@

2 ghost double faulty_state[6];

3 ghost double nominal_state[6];

4 */

5 /*@

6 behavior nominal_ellipsoid:

7 assumes _io_->xp==nominal_state

8 requires in_ellipsoidQ(QMat_1,

9 vect_of_8_scalar(..._));

10 ensures in_ellipsoidQ(QMat_7,

11 vect_of_14_scalar(...));

12 @ PROOF_TACTIC (use_strategy (

AffineEllipsoid));

13 */

14 /*@

15 behavior faulty_ellipsoid:

16 assumes _io_->xp==faulty_state

17 requires in_ellipsoidQ(QMat_2,

18 vect_of_8_scalar(...));

19 ensures in_ellipsoidQ(QMat_8,

20 vect_of_14_scalar(...));

21 @ PROOF_TACTIC (use_strategy (

AffineEllipsoid));

22 */

23
24 {

25 for (i1 = 0; i1 < 6; i1++) {

26 xp[i1] = _io_->xp[i1];

27 }

28 }

29 .

30 .

31 .

32 /*@

33 ghost faulty_plant(_io_->u,faulty_plant_state);

34 ghost nominal_plant(_io_->u,faulty_plant_state);

35 */

Listing 2. ACSL Expressing the Semantics of the Plants with Ccode

Finally the key property of fault detection is generated by
a special annotation block that indicates to the autocoder,
the specific ghost variable that we want to express ellipsoid
invariants for. In this case, the ghost variable of interestis
the one that corresponds to the error statese = x − x̂. The
variable is a ghost variable since the error statese do not
explicitly correspond to any variables generated in the code.
The autocoder inserts the definition of the error states in the
form of another ghost code statement as shown in listing3.
As in the previous two code snippets, there are two different
set of ellipsoid invariants on the variables errorstates[i1],
which is based on initial plant model assumptions of either
faulty or nominal.

1
2 /*@ ghost for (i1=0; i1<6; i1++) {

3 error_states[i1]=x[i1]-observer_states[i1];

4 }

5 */

6 /*@

7 behavior nominal_ellipsoid:

8 requires in_ellipsoidQ(QMat_30,

9 vect_of_12_scalar(x[0],...,observer_states

[0],...));

10 ensures in_ellipsoidQ(QMat_31,

11 vect_of_6_scalar(error_states[0],...));

12 @ PROOF_TACTIC (use_strategy (AffineEllipsoid));

13
14 */

15 /*@

16 behavior faulty_ellipsoid:

17 requires in_ellipsoidQ(QMat_32,

18 vect_of_12_scalar(x[0],...,observer_states

[0],...));

19 ensures in_ellipsoidQ(QMat_33,

20 vect_of_6_scalar(...));

21 @ PROOF_TACTIC (use_strategy (AffineEllipsoid));

22
23 */

24
25 {

26 for (i1 = 0; i1 < 6; i1++) {

27 observer_states[i1] = _state_->

observer_states_memory[i1];

28 }

29
30 for (i1 = 0; i1 < 6; i1++) {

31 x[i1] = _io_->x[i1];

32 }

33 }

Listing 3. ACSL Expressing Invariant Sets on the Error States

D. Automatic Verification

In [1], a backendto the prototype autocoder is developed.
It takes as input the annotated C code generated by the
autocoder and outputs a certificate of validity in the form of
proofs of correctness for the annotations. The Frama-C/WP
platform [26] [27] reads the annotated code and generates
logic properties which truth is equivalent to the correctness
of the annotations. The Why3 tool [28] converts these
properties into a format readable by the interactive theorem
prover PVS [29]. The annotation statementPROOFTACTIC
provides our framework with the necessary information to
generate the proof to these properties and check them in
PVS.

While the prototype autocoder needed to be extended to
handle fault detection software, the nature of the annotations
on the C code and the type of logic reasoning used to
prove them remained the same. As such, this backend is
readily available to verify the correctness of the generated
annotations. However this verification is currently done under
the assumption that computations occurring in the program
return the exact real value, and not the floating point ap-
proximation, of their result. This extension is left for future
research.

VI. CONCLUSION

In this paper, we have presented a framework that can
rapidly generate fault detection code with a formal assurance
of high-level fault detection semantics such as stability and
correct fault detection. The properties are formally expressed
using ellipsoid invariants. The framework, dubbed credible
autocoding, can generate the fault detection code as well as



the invariant properties for the code. Moreover, the gener-
ated invariant properties can be be verified in using semi-
automatic theorem prover. We have demonstrated that the
credible autocoding prototype that was previously appliedto
control systems can be extended to fault detection systems
with some additions. We applied the prototype tool to an
example of observer-based fault detection system running
with a LQR controller of a3 degrees-of-freedom helicopter.
The prototype was able to autocode the fault detection
semantics successfully. In this paper we only consider a
simple output observer for fault detection to demonstrate the
autocoding steps. However, the idea can be extended to more
complicated fault detection methods.
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