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Decentralized formation control with connectivity
maintenance and collision avoidance under limited
and intermittent sensing

Teng-Hu Cheny Zhen Karl, Joel A. Rosenfeld and Warren E. Dixoh?

Abstract—A decentralized switched controller is developed static and dynamic graphs. However, these applicationstdid
for dynamic agents to perform global formation configuration  consider the problem of collision avoidance. Both network

convergence while maintaining network connectivity and awiding connectivity and collision avoidance were addressedi]
collision within agents and between stationary obstaclegjsing but onl fixed network t | . idered !
only local feedback under limited and intermittent sensing Due ut only a fixed network topology IS considered.

to the intermittent sensing, constant position feedback ma not
be available for agents all the time. Intermittent sensing an . S .
also lead to a disconnected network or collisions between agts. In some formatlor_1 control problems, communlcat_lon IS

Using a navigation function framework, a decentralized swiched NOt necessary, but in these cases local feedback informa-

controller is developed to navigate the agents to the deside tion from sensors is required. Moreover, due to environ-

positions while ensuring network maintenance and collisio  ment factors or limitations in the field-of-view of sensors,

avoidance. the interaction graphs can be intermittent and time-vayyin
|. INTRODUCTION Intermittent sensing problems were considered for foromati

ontrol problems using graph-theoretic methods[in [20] and

Multi-agent systems have found applications in a wid h bl ived based h .
range of situations. These include problems of consen - These problems were solved based on the existence

[M-[3], rendezvous[[4]6], and formation and flocking of' & globally reachable node, but they didn't account for

multiple agent 0]. In these applications, a decized connectivity or collision avoidance problems. A switched
ultiple agents[7}[10] ppicat control scheme is developed inl [9] for formation problems,

control structure has advantages over a centralized strict -
g but the controller neglects network connectivity. [n1[22],

including: computational efficiency, robustness, and Hixy. o ! . .
various decentralized approaches ( & [11]2[15]) havmbegoordmatmn algorithm was designed to stabilize the shape
of the formation in a way that it was robust to the sensing

developed to perform cooperative objectives for a mulérag - K fail but {ivit d collisi ”
system; however, network connectivity problems are oftéwt auur_(ei, lél (i:onne3c ity -and co |5|otr_1 avol i?ce \wer
neglected. The loss of connectivity can arise through &chit not considered. n[[33] swarm aggregation problems were

communications and limited sensing ranges and angles,tanf‘fest'ghated W'tril'n fixed f"“,]d dy(r:ilamlici:_ network_dtopologil)es
can result in collisions as well as the loss of the formation &oF POth network connectivity and collision avoidance, but

A the dynamic topologies only resulted from link additions to

individual agents. h o 44l d lized I
The broad applicability of dynamic network topologie§ e_networ - In[H] andll24], ecentra_|_ze controllers ever
designed to address network connectivity. Unfortunatslg,

helps explain a recent increase in its popularity. In paldc . o
the issues surrounding network connectivity has been wimcontrol strategies were specific to rendezvous problems, an

more focus. IN[[16] and[17], decentralized schemes adtdi@sscon's'on avoidance was not considered.
connectivity issues for dynamic topologies of formatiordan
rendezvous problems were approached with a graph theoretiThis paper considers formation control problems under lim-
method. In these papers, the authors used a convergegg and intermittent sensing. Based on a navigation foncti
analysis based on LaSalle’s invariant theorem with comm@amework, a decentralized hybrid controller is developed
Lyapunov functions. In[[18], the network connectivity issuensure network connectivity and collision avoidance while
was handled with a navigation function based controllengisi controlling the formation. Nonsmooth navigation functare
bounded control inputs for a formation problem using botlised which result in the use of a common Lyapunov function,
1 . - . so the formation error of the entire configuration converges
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Il. PROBLEM FORMULATION potential collision setV; : [0, o) — V is defined as

Consider N dynamic po_int—mass agents in the f_inite Nt 2 eV|la—qll <61} (4)
workspaceF C R? with motion governed by the following
kinematics Since only; € le in (@) are required to maintain the
Gi=ui,i=1,...,N (1) neighborhood with agent in the desired formation[2) can

be modified as
where¢; € R? represents the position of agenin a two-
dimensional space, and; € R? denotes the control input

of agenti. The subsequent development is based on the|, symmary, the objective is to asymptotically achieve a
assumption that each agent has a limited sensing rangeh Whig-mation configuration as in[(3), while ensuring network

is encoded by a disk centered at the agent. Position feedbggknectivity as in[(5) and collision avoidance between &en
is only available for agents within the interior of the diskgng stationary obstacles, os, .

Moreover, the sensing is assumed to be intermittent (i.e.,

existing links within the disk region may fail), which imp Assumption 1. The sensing link failures between agents

that two agents do not have continuous state feedback evefiappen a finite number of times in a finite time interval, (i.e.

they remain within the sensing zone of each other. the switching signab has finite switches in any finite time
Since sensing is intermittent, the set of neighbor nod¥erval.) Specifically, given any non-overlapping timeeirval

that can be successfully sensed by agert ¢t € Rsq [tk tet1), B = 0, 1L -, then0 < 7 < dpyy — &y < T,

is denoted as the time-varying se¥’(t), where N : Whe_r_eT € R is the non-vanlsh_mg dw_ell-tlme, aflc Ris a

[0,00) — V, whereV 2 {1,2,---, N} is an index positive constant. The graggh, is invariant fort € [tx, txy1),

set of all agents in the system. As a result, the sensof = 0,1,2,---, and the switching sequence of is

graph of the network system is an undirected, time-varyir@gbitrary.

graph that can be modeled &&¢) = (V, £(t)), where  assumption 2. The desired formation neighbor set of agent

E(t) = {(i,J) eV xV][j e N3 (t),i €V, i#j}, wherei jginitially inside its sensing zongy! < N (t), Vi € V, and

and; represent nodes located@tandg;, di; € Ry denotes e neighboring agents are not initially located at any ainist
the distance between two nodes definedigs= |l¢; — g¢;]| . equilibria.

and R, is the maximal sensing radius for every agent. To

include all the time-varying graphs, a switched graph ismtisfi ASsumption 3. The desired relative position described &y
as G,(;), where o : [0,00) — P is a switching signal, iS achievable (i.e.d; < |c;j|| < Rs — 2, whered, € R*
and P € {1,2,..., P} is a finite index set such thatdenotes a buffer distance for connectivity maintenanceh8o

{G, : p e P} includes all possible graphs G(t). relative position would not result in a partition of the gnap
20 or cause collision of any two agents.) and the agents do not
t

Netwq k_conr_wect_ivity maintenance is. ensured by preserving(e certain pathological configurations. One example @oul
every existing link in the network. Particularly, the ageate be all of the agents and goals being co-linear. However tids a

considered connected if they stay within the sensing zone . . )
. . ) . . ..~ ather such configurations are assumed to constitute a Lebesg
the desired neighboring agents (even if there are integntitt . : .
measure zero set in the space of all configurations, and are

sensing link failures), if they are neighbors initiallyg.i. practically resolved by small perturbations.

dij (1) < Ry, ¥t >0, je N/ ieV. (5)

.oy Om.

dij (t) < R, ¥t 2 0. 2) IIl. CONTROL DEVELOPMENT

The objective in this paper is to maintain network connéigtiv. Based on[[19], a navigation functiop; : F — [0, 1] for
while also achieving a desired formation, which is specifieghch agent is designed as,
by -
0= ———, (6)
lgi —q; —cijll = 0ast w00, jeN/, ieV, (3) (vk+B8:)*

where j\/;f is the set of preassigned agents, and € R?, wherek € R is an adjustable positive constamj,: R2 — R>o
satisfyingc;; = —c;;, describes the desired relative positiofs a goal function, and3; : R>o — [0, 1] is a constraint
between nodé and the adjacent nodec N/ . Different from  function for agenti. Based on the objective ifl(3), the goal
N (t) which is time-varying due to the intermittent sensingunction; in (6) is designed as

N/ is time-invariant.

A 2
Consider stationary obstacles, os,..., 0,, in the 7i4i 45) = Z llgi — a5 — ei5I” )
workspaceF, which are represented by a set «f points jent
indexed byM = {1, 2,---, m}. To prevent collisions among The constraint functiors; is defined as
agents and obstacles, a disk region centered at ageith
radiusd; < R, is defined. Any agent or obstacle in this region Bi & H bij H Bix, 8)

is considered as a potential collision with agentand the JENT  RENUM;



which enables collision avoidance and connectivity maint€onsider
nace. To maintain network connectivity, the nonsmooth func

tion b;; : R>o — [0, 1] in (8) is designed as Va0 = Z ZGHf bi (V. bin) H Bir
| y heN! L kENUM,
1, dij < Rg — 62, ’
by (d) & —L(dij + 26, — R,)? e o n + > 11 iy, M, Bit (Vo Bin).
R +%(dij + 202 — Ry), e heNiUMijen I#h
0, dij > R, Provided only ageni is near the boundary (i.elg; — ¢;|| —

R7), V,. B; has only one dominant term:
where b;; is not differentiable atR,. Specifically, b;; is ) Va S y

designed to prevent nodefrom leaving the communication ValBi = 11 by (Vg bij) H B, + O (bi5)

region of its formation neighboj € /\/f. Let M; denote the lENz;f’ EEN;UM,;

set of stationary obstacles within the collision region otla 7

i. In @), for each nodé € N; UM;, By : R — [0, 1] is where O(-) is the Big O notation, which vanishes asg;

defined as approachesk,. The other term in the numerator &7, ;

o~ Edy, 0<dy <6y, in @) is k3;Vy,vi = O (bsj), henceV,,¢; in () can be

Biy (dix) = { 1, P expressed as

Therefore,3; — 0 when nodei enters the constraint region, Vi =

(i.e. when node approaches other nodes, stationary obstacles, _%lelj:l/f bilke/\/l_{JM.Bik (Vg:bij) + O (bis)

or tries to leave the sensing range of their adjacent ngdes 145 e

N, vt > 0). P )
Based on Assumptiohl 3y; and 3; will not be zero at . g ! _
the same time, and the navigation functign reaches its Note that the gradient df;; w.r.t. ¢; can be determined as

maximum atl when 3; = 0 and its minimum at0 when di; < Ry — 69 01
1] S

" gu(()e. to the intermittent sensing, consider the two 35tg) Vaibij = " dij > B,
g, _ 2(dij+02—Rs)(qi—9qj) R, — 69 < dij < R,,

and V,(t), where V¢, V, : [0, 0) — V are defined as 62d;; ) 12)

AN f_ s f A
Vi(t) = {’ € V|.N1- =N (NN } andV,(t) = VA\Vy(1). where~;, by, Bk, k, 52, and R, are positive constants. Thus,
The setV(t) includes agents that can sense all of the _ —T'V,, ¢; points in the direction of; — ¢;, which forces
formation neighbor:A/Z:f att € R>o. Otherwise, agentwillbe  nodes; to move toward node.

inV,(t) at some € Rx. Using the navigation function ii{6), case 2.Now suppose several agents jo, . .., js € N
the decentralized switched controller for agens designed are near the boundary of the sensing region. Thadjis, is
as . near R, for eachm = 1,2, ..., s. For this caseV,¢; =
) TVgei, i€ Ve(t), S T—[ by 1 B Y R
UZ(t) B { O, 1€ Vu(t)v (10) ! mlEN{, lkENiUMi k( % JM)
I#jm . H
whereI" € R* is a positive constant gain, ard,, (-) = k(yk4B:) k1 +0 wam - The first

a% (:). In @J), the control switching scheme of agenis term above inV,,¢; tends to zero, however since tig,

based on the sensing condition at timéf all neighbor agents terms are quadratic nedt,, the order of the zero contributed

; f ’ _ . .

in N can be sensed by agentu;(t) = —I'Vy,pi, and py the first term is one degree less than( [[bi;, |, so
u;(t) = 0 otherwise. , , mo )
the first term dominantes as eadly,, — Rs. Henceg; =

IV. CONNECTIVITY ANALYSIS —I'V,, i is approximately a linear combination of the vectors
Lemma 1. If the initial graph of the multi-agent system is%j — i» 4> — i - - -+ 4j. — ¢i» Where the largest contribution
connected, then the controller ififf) ensures agent and j COMes from thosg,,, closest to the sensing boundary. Thus,
remain connected for all time. nodei moves almost towarg,, resulting in a largest decrease

) . in d;j,,, so the connectivity can be maintained.
Proof: Consider an agernitc V located aty, € 7, where  cage 3.Consider a nodé € V, (or more than one node

the sensing link is about to break, which implieE[fbij =0, in the set ofV,). The controller will beu; = 0 based on
JEN; (10). Since both nodé and its neighborj € Mf are in the

then three cases must be considered. indirected graph. nods can't sense node S0 € V.. thus
Case 1.As agentj € J\/f approaches the sensing regiorn graph, nogg J us

(i.e., |4 — q;]| approachest, from the left), thens, tends to uj = 0. Since bothi, 5 nodgs have no control input, the
zero. The gradient of; is distance between them remains the same.

By Assumption(2,N;/ < N3(to), i € V. Furthermore,
kBiV g, vi — ViV, Bi (11) from Case 1Case 3the decentralized switched control policy
k(vF + Bi)*+1 in (IJ) ensures the distances between agesat V and its

ti Yi =



formation neighborg € J\/Z.f never increase under intermit-value of0 when the desired formation is achieved. Based on
tent sensing conditions. As a result, the formation neighbodlrheoren{lL,

j € j\/if remain inside the sensing region of agerfor all d we - . .
. o —Vi(g(t)) €V 2 N K. 17
time. Specifically, 7V (@) (9) EGBV(m(t))g (] a7
dij (t) < Ry, j €N}, i €V, vt >0, (13) The finite sums property of the generalized gradient defined
m N [27] gives
T T ™7T
V. CONVERGENCEANALYSIS oV C [8q1V » Ogo V7o OgyV ] ’ (18)

Definition 1. [25] Consider the following differential equa-Using [1T) and[(I8), the generalized time derivativelofn

tion with a discontinuous right-hand side: (I7) can be expressed as
&= f(@), (14) i c (mgT K [q-i]) . (19)
iezv &

where f : R® — R™ is measurable and essentially locally
bounded, andi € N is a finite constant. The vector functionwhere¢; € d,, V. To turn the generalized gradient into the gra-
z is called a solution of{d)) on [ty, t1] if = is absolutely dient, the points at whicl’ is not differentiable and Lebesgue

continuous ont, ¢;] and for almost alk € [to, ¢1] measure zero need to be considered. From the inequality in
. ([@3), d;; never takes on the valué,; = R, j € N/, i eV,
i€ K[f](z) at the nonsmooth point df;;, sob;; is differentiable w.r.tg;
— long the solution of the closed-loop system. Sifgg and-~y;
K & B N 15) 2ong . © closed-s :
[f1(@) ago uz\rflo o f (B(w, )\ N), (15) are differentiable functionsy is differentiable w.r.tg; along

where N denotes the intersection over all selé of the squ'uon_ of the cl_osed—loop system foe V. Therefore,
uN=0 the generalized gradient can be expressed as

Lebesgueimeasure zero.
. 0.,V =1{V,V ; . 20
To prove the convergence of the agents to the desired forma- wV (@) ={VaV{a}, i€V (20)
tion, an invariance principle for switched systems is agpto Based on[(20)[{19) can be rewritten as
a common Lyapunov function candidate: R2Y — R given

by Ve (Vo VIK i) (21)
N ey
a .
Vig) _Z;‘p“ (16) By segregating) into the sets,V; and V,, (ZI) can be

rewritten as
whereq is the stack state vector, and reaches its minimum B — S
value of0 if the desired formation is achieved. Ve (VaVIK[@) + > (Vo VIK[G]) . (22)

=y =

Theorem 1. [26] Let z (-) be a Filippov solution ta: = f(z) ! ) o o
on an interval containing and V : R* — R be a Lipschitz From Assumptiori]i, the switching graph, ;) is invariant
and regular function. Theil (z (¢)) is absolutely continuous, fOr ¢ € [tk tk11) , SO the sed’y is also invariant during that
4V (x(t)) exists almost everywhere (a.e.) and time period. Based on the switched control schemein (10),

the second term on the RHS 6f(22) will be zero, therefore,
d a.e. *~ N T B
5V (@) € V(z)= Eeavfgm(t))f K[f](x (1)) VS (VaVIK[G]) .t € [te, trsr) (23)
. . i€Vy
Based on Definitiof]1 and Theordmh 1 , the main result of
this paper is provided as follows. In addition, by the definition ofX [¢;] in (IH), the switched

) _ ) » controller in [I0) can be expressed as
Theorem 2. Given [I0), the maximum relative position errors

of any two formation neighbors of thce network syste@n (1) K[g] cm {_qui o { 0 ] } . (24)
converges tamax |lg; — q; — ci;|| = 4/ Max ; € V provided 0

FEN; - , oo . . .
that the adjustable gairk in (8) is selected sufficiently large AISO based on Assumptidd 1, the switching time instance is

and every agent can sense all its formation neighbors in tﬁ@b?SQ‘Je measure zero, §01(24) can be further expressed as
finite time interval U (Nif U {i}) —V,wherene N K [d:) € {~T'Vq, i} . Thus, by using the gradient &, (I7)

t€[th, thin) and [23B) can be used to conclude that
is finite. .
N
Proof: Consider the common Lyapunov function candi- . e
. . C < — O i |,
date V' defined in [[IB), wherd’ can be minimized at the Vs ; r (; VQ*%) Vai# (25)
) f =

critical points as shown in_[19], and reaches its minimum



wheret € [t,, tn+1), n € N. An equivalent way to prove
- a.e. . T
V < Oistoshow) ., (T (Z;V:l Va soj) Vgpi | >0,

V1. SIMULATION

To validate the proposed switched controller, we performed

and based on the development in the appendix, its sufficightsimulation with 5 dynamic agents and 3 obstacles. The

condition is
2
P1,i P2,
> (48] ¥ g -] >0
i€Vy jGNif
(26)

fort € [ty, tnt+1) . In @8), p1,i, p2.; € R are functions defined
2
N
aspi; £ C1ivi + €2, + ¢ (Zkzl %) y P2, £ caiv? +

5, (fozl %)27 wherec,; € R, p = 1 — 5, are positive

constants. To develop a further sufficient condition faf) (26

exploit the facts from([28] tha¥,,v; =2 > (¢ — qj — ¢ij)
jenN/

and ||V, v|| > 2%, where R £ max |lg; — ¢;| , ¢i, 45 € F,

Vj € N/. Hence, from[[IB)

190l = 2 (27)

S

and a sulfficient condition fof (26) can be developed as
> <g > > 0.

’iGVf
By solving [28) for 4; and using [(I7), a further sufficient
condition for [26) is

P2,i
2k2

2k

(28)

2 .
> llai — a5 — cijll* > emax i € Vy, (29)

.

B (g_llc + %)7 andﬁlv P2, ﬁ € R>O are

positive constants defined @ = maxp, Dy = maxps i,
1€ 1€

where cmax £

2
s

parameters used in the simulation are given By = 20,

51 = 8, 62 = 2, k= 1, I'= 10, Cl2 = [0, 5]T, Co3 — [—5, 5]T,

czs = [-5, =57, cs5 = [0, —5]T. Initially the agents are
located within the sensing region of their formation neigtsh
Fig. [ illustrates that the agents avoid collisions withesth
agents and stationary obstacles. Moreover, they evepntuall
achieve an approximation of their goal formation under ar-
bitrary switching sequence that satisfigs] (30).

@ Agents

Il Obstacles
20+
............. K
15+ $ e
L
[} e [
;.
10 } q2 ._.Nm
o R B
5l _— e
qs\
®
0 L

-10 10 15

Figure 1. Trajectories of dynamic agents achieving foramtionfiguration.

As indicated in Fig.[2,d;; can increase during opera-
tion. However, these distances always remain smaller than

and3 = min f;3;. Additionally, 3;, 3; # 0 due to the the sensing range?; (i.e., remain connected). Recall that
fact th tjef\ff,iev ¢ of initial soluti be attractethéo the relative distance in our goal formations are given by
act that no open set of initial solutions can be attracte ezl = lleasll = 5, and ||eas|| = |lesa]| = 5v/2. Fig. 2

maxima ofy; (i.e., 8; = 0) along the negative gradient motion

—%—2’;_ [29]. Recall _thaFV ir_1 (@g) is a common Lyapunov
function, so the switching signal of the time-varying graphs

indicates that the final distances approximate these vadinels
the position errors remain sufficiently small.

G, can have arbitrary sequence provided tHafl (29) holds.

Additionally, (29) can be extended to global (i.é..c V)

formation configuration convergence if the switching signa

o switches in the way that satisfies the following condition

U (30)

tE€[tk, thtn)

VfZV,TLEN,

wheren is a finite positive constant. Based dnl(29), and the
ultimate maximum formation error for the entire switched

system can be expressed as

cmax .
max ”ql —4q; — Cij” - , 1€ Va (31)
JjeN/ N
where N £ min ‘J\/Zf : ]
iev

25

Distance

L L
20 25 30

Figure 2. d;; and R



VII. CONCLUSION Next we apply the Cauchy—Schwarz inequality, and bolind (34)

as
A switched controller is developed to achieve convergence

of a network formation using only local feedback under both

2

- . . . : 2
limited and intermittent sensing. At the same time, network E Xj|| < E 116 E 1
connectivity is maintained and collisions between agents a jeN{ JjeNT .
obstacles are avoided. A common Lyapunov function approach f 2
. . 10 < IV YT R (35)
is used to ensure convergence under an arbitrary switching "

je i

sequence. Moreover the entire formation configuration con-
verges globally, if the switching signal satisfids1(30). Th@ye can bound A||2 by using [35) to establish Property m
neighborhood of convergence can be made arbitrarilly small '
with sufficiently large gains. Finally, the effectivenedstioe Property 2. ||B|| < ; (’J\/f % + N U M;| %) .

Proof: Given the definition: B = ~;(Vy/06) =

proposed controller is verified by simulation results.

il X (Vabi)by+ X (Ve Bix) Bi | - where we
jeny kEN;UM;

APPENDIX

This section develops a sufficient condition for o B, & ) B ) / 4B
T N : . take B;, = i ih, SINCE 0;; anlb;, <
T'(Vgei) (Zj:1 tigoj) > 0, so that V in k jel}/.f JheMul;I%h# h j k

(25) is negative deéfinite almost everywhere. Wﬁ), 1], then by, By, € [0,1]. Thus, we can develop the

. . T N
consider the equation (Vy, ;) (ijl Vqﬁpj) = following inequality for || B||:
Bi(Va )= (a8) \ SN A(Tun) - (Vush)
(et =1 )i

(vf:+8) ’
and decompose this into smaller pieées. Usingl [19] as|

inspiration, it is sufficient to ensure the term

Bl <% | D IVabyll+ D> IVaBul |- (36)
Jer keN;UM;

By using [I2), |Vgbyll < £ In a similar
>0, (32) mannet|V,, B < #. Property 2 is proven by applying
these inequalities term by term {0 {36). [ |

(BIHICH + [1AILD Bl
k k2

ATC -

where A, B, C, D € R? are from the numerator terms of
(Vo) (ijzl Vi gaj) and are defined ag £ 3; (Vi) »
B 2 4 (VuB), C & Zj_vzl B; (Vyv;), and D & N Proof: Recall that C is defined asC
S 175 (Va.B;). We now proceed to find upper bounds—j—1 5i (Va,7i) = J%;ﬁj (Vav) = _%fﬁj (V) +
for [|A|*, ||BI*, ||C|I*, and ||D||* so that we can satisfy 5, (v , _IEN;

o2 2 2] 2 2 2 R i .7;) - Since the graph is undirected, whenever
AT _ 1BIE+lC] QJ;HAH +IDI2 _ HBIIQLHDH > 0, which is jeVX\:/\/if JATa
the upper bound of(32). jin N/, we havei in /. Therefore, for any ageritin A/

Property 3. ||C||* < 4 ‘Nif %i.

4L

Property 1. ||A||* < 452 [N/ | ~;.
perty L A7 = 457 A} Va7 = Va, (”Clj —qi—Cji||2)
Proof: By definiton A = 3;(Vgy) =
fl2 2 @mg =) | = 20 X fa= g =), Vo | Y Ml —an el
jeN/ jeN/ e
from which it follows that| A||* = hots
2
AP =482 | Y (@i — a5 —cij)| - (33) =V | Y llgy—a —cill
N ieNd
JEN; J

=-2(q; — ¢ —cji) =2(q — g5 — ¢cij) - (37)
Taking X; = [2;1, zj2]7 we can bound the sum, first by using

the triangle inequality as By using [37)
2 2 2 > B (Vo) = Y B (2(ai — g5 — cij))
ieNT ieNT
YN < ) = XXl FeNs TEN;
jent jent jent =2> Bilei—q—cy). (38

(34) jeNt



On the contrary, ifj is not in A7, then V,y; = LELHIDIE < y7o_ UBICIHIANDD _ JIBIIDI gy ysing

the upper bounds established in Property 1-4, we find:

Vo | 3 llgj—ai—¢ill>] = 0, which indicates that 2 2 2 2 2 2
1N | | AT I1BII” + €] ;ZHAH + D17 1Bl 27]:2HDH
> B (Vg;) = 0. Finally, using [(38) )
JEVINY Z pLi P2,
>4p (6 — a5 —cij)|| — 5= — 555 (39)
— 2k 2k2
C=> Bi(Var))= Y. B (2(a—q; —cij))- jen!
jeny jeny where p, ; and p, ; are defined below(26). In other words,

; ‘ . if the right hand side of[(39) is positive, thed”C —
According to8; € [0, 1], V4§ € V, ||C|| can be bounded by (HBIIIICIIJIQIAIIIIDII) - HBMDII = 0. 1n addition, we would have

ICl < 2| 3 (¢i—q; —ciy)||, and |C||* can be further a sufficient condition fofV, ¢;)" (Z;V:l tigoj) > 0. Thus

jent by (39) it suffices to show
bounded by )
2 PLi P2
) 4@ Z (Qi —q; — Cij) - 2ll€ - 2;2 > 0. (40)
IC1* <4l (6 —a— i) - jent
.

Based on Properfyl 5; can be bounded above by a constant,
- 2 which means, ; andp, ; both have upper bounds pf and
By using [33),|C||" can be bounded by Py defined below[(29). In addition, il (#@) € R is a positive

2 f constant defined belo 9).
> e — s =)l = 4]V 7 ML9)
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