
ar
X

iv
:1

31
0.

03
71

v1
  [

cs
.S

Y
]  

1 
O

ct
 2

01
3

Decentralized formation control with connectivity
maintenance and collision avoidance under limited

and intermittent sensing
Teng-Hu Cheng1, Zhen Kan1, Joel A. Rosenfeld1, and Warren E. Dixon1,2

Abstract—A decentralized switched controller is developed
for dynamic agents to perform global formation configuration
convergence while maintaining network connectivity and avoiding
collision within agents and between stationary obstacles,using
only local feedback under limited and intermittent sensing. Due
to the intermittent sensing, constant position feedback may not
be available for agents all the time. Intermittent sensing can
also lead to a disconnected network or collisions between agents.
Using a navigation function framework, a decentralized switched
controller is developed to navigate the agents to the desired
positions while ensuring network maintenance and collision
avoidance.

I. I NTRODUCTION

Multi-agent systems have found applications in a wide
range of situations. These include problems of consensus
[1]–[3], rendezvous [4]–[6], and formation and flocking of
multiple agents [7]–[10]. In these applications, a decentralized
control structure has advantages over a centralized structure
including: computational efficiency, robustness, and flexibility.
Various decentralized approaches ( cf. [11]–[15]) have been
developed to perform cooperative objectives for a multi-agent
system; however, network connectivity problems are often
neglected. The loss of connectivity can arise through limited
communications and limited sensing ranges and angles, and it
can result in collisions as well as the loss of the formation or
individual agents.

The broad applicability of dynamic network topologies
helps explain a recent increase in its popularity. In particular
the issues surrounding network connectivity has been gaining
more focus. In [16] and [17], decentralized schemes addressing
connectivity issues for dynamic topologies of formation and
rendezvous problems were approached with a graph theoretic
method. In these papers, the authors used a convergence
analysis based on LaSalle’s invariant theorem with common
Lyapunov functions. In [18], the network connectivity issue
was handled with a navigation function based controller using
bounded control inputs for a formation problem using both
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static and dynamic graphs. However, these applications didn’t
consider the problem of collision avoidance. Both network
connectivity and collision avoidance were addressed in[19],
but only a fixed network topology is considered.

In some formation control problems, communication is
not necessary, but in these cases local feedback informa-
tion from sensors is required. Moreover, due to environ-
ment factors or limitations in the field-of-view of sensors,
the interaction graphs can be intermittent and time-varying.
Intermittent sensing problems were considered for formation
control problems using graph-theoretic methods in [20] and
[21]. These problems were solved based on the existence
of a globally reachable node, but they didn’t account for
connectivity or collision avoidance problems. A switched
control scheme is developed in [9] for formation problems,
but the controller neglects network connectivity. In [22],a
coordination algorithm was designed to stabilize the shape
of the formation in a way that it was robust to the sensing
link failure, but connectivity and collision avoidance were
not considered. In [23] swarm aggregation problems were
investigated within fixed and dynamic network topologies
for both network connectivity and collision avoidance, but
the dynamic topologies only resulted from link additions to
the network. In [4] and [24], decentralized controllers were
designed to address network connectivity. Unfortunately,the
control strategies were specific to rendezvous problems, and
collision avoidance was not considered.

This paper considers formation control problems under lim-
ited and intermittent sensing. Based on a navigation function
framework, a decentralized hybrid controller is developedto
ensure network connectivity and collision avoidance while
controlling the formation. Nonsmooth navigation functions are
used which result in the use of a common Lyapunov function,
so the formation error of the entire configuration converges
globally with sufficiently small error (i.e. converges to the
neighborhood of the critical points) under arbitrary switching
sequence. This paper is organized as follows. In Section II,the
dynamics of the agents and the problem are formulated. Then
the navigation function based controller is proposed in Section
III. We perform a connectivity analysis in Section IV and
a convergence analysis in Section V. Finally, the simulation
results are presented in Section VI.
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II. PROBLEM FORMULATION

Consider N dynamic point-mass agents in the finite
workspaceF ⊂ R

2 with motion governed by the following
kinematics

q̇i = ui, i = 1, . . . , N (1)

where qi ∈ R
2 represents the position of agenti in a two-

dimensional space, andui ∈ R
2 denotes the control input

of agent i. The subsequent development is based on the
assumption that each agent has a limited sensing range, which
is encoded by a disk centered at the agent. Position feedback
is only available for agents within the interior of the disk.
Moreover, the sensing is assumed to be intermittent (i.e.,
existing links within the disk region may fail), which implies
that two agents do not have continuous state feedback even if
they remain within the sensing zone of each other.

Since sensing is intermittent, the set of neighbor nodes
that can be successfully sensed by agenti at t ∈ R≥0

is denoted as the time-varying setN s
i (t), where N s

i :
[0, ∞) → V , where V , {1, 2, · · · , N} is an index
set of all agents in the system. As a result, the sensor
graph of the network system is an undirected, time-varying
graph that can be modeled asG(t) = (V , E(t)), where
E(t) , {(i, j) ∈ V × V| j ∈ N s

i (t), i ∈ V , i 6= j}, where i

andj represent nodes located atqi andqj , dij ∈ R≥0 denotes
the distance between two nodes defined asdij , ‖qi − qj‖ ,
and Rs is the maximal sensing radius for every agent. To
include all the time-varying graphs, a switched graph is defind
as Gσ(t), where σ : [0, ∞) → P is a switching signal,
and P ∈ {1, 2, . . . , P} is a finite index set such that
{Gp : p ∈ P} includes all possible graphs∪

t≥0
G(t).

Network connectivity maintenance is ensured by preserving
every existing link in the network. Particularly, the agents are
considered connected if they stay within the sensing zone of
the desired neighboring agents (even if there are intermittent
sensing link failures), if they are neighbors initially, i.e.,

dij (t) < Rs, ∀t ≥ 0. (2)

The objective in this paper is to maintain network connectivity
while also achieving a desired formation, which is specified
by

‖qi − qj − cij‖ → 0 ast → ∞, j ∈ N f
i , i ∈ V , (3)

whereN f
i is the set of preassigned agents, andcij ∈ R

2,

satisfyingcij = −cji, describes the desired relative position
between nodei and the adjacent nodej ∈ N f

i . Different from
N s

i (t) which is time-varying due to the intermittent sensing,
N f

i is time-invariant.
Consider stationary obstacleso1, o2, . . . , om in the

workspaceF , which are represented by a set ofm points
indexed byM = {1, 2, · · · , m}. To prevent collisions among
agents and obstacles, a disk region centered at agenti with
radiusδ1 < Rs is defined. Any agent or obstacle in this region
is considered as a potential collision with agenti, and the

potential collision setNi : [0, ∞) → V is defined as

Ni (t) , {j ∈ V | ‖qi − qj‖ ≤ δ1} . (4)

Since only j ∈ N f
i in (2) are required to maintain the

neighborhood with agenti in the desired formation, (2) can
be modified as

dij (t) < Rs, ∀t ≥ 0, j ∈ N f
i , i ∈ V . (5)

In summary, the objective is to asymptotically achieve a
formation configuration as in (3), while ensuring network
connectivity as in (5) and collision avoidance between agents
and stationary obstacleso1, o2, . . . , om.

Assumption 1. The sensing link failures between agents
happen a finite number of times in a finite time interval, (i.e.,
the switching signalσ has finite switches in any finite time
interval.) Specifically, given any non-overlapping time interval
[tk, tk+1), k = 0, 1, · · · , then 0 < τ < tk+1 − tk < T,

whereτ ∈ R is the non-vanishing dwell-time, andT ∈ R is a
positive constant. The graphGσ is invariant fort ∈ [tk, tk+1) ,
∀ k = 0, 1, 2, · · · , and the switching sequence ofσ is
arbitrary.

Assumption 2. The desired formation neighbor set of agenti

is initially inside its sensing zone,N f
i ⊂ N s

i (t0), ∀i ∈ V , and
the neighboring agents are not initially located at any unstable
equilibria.

Assumption 3. The desired relative position described bycij
is achievable (i.e.,δ1 < ‖cij‖ < Rs − δ2, whereδ2 ∈ R

+

denotes a buffer distance for connectivity maintenance. Sothe
relative position would not result in a partition of the graph
or cause collision of any two agents.) and the agents do not
take certain pathological configurations. One example would
be all of the agents and goals being co-linear. However this and
other such configurations are assumed to constitute a Lebesgue
measure zero set in the space of all configurations, and are
practically resolved by small perturbations.

III. C ONTROL DEVELOPMENT

Based on [19], a navigation functionϕi : F → [0, 1] for
each agenti is designed as,

ϕi =
γi

(

γk
i + βi

)
1
k

, (6)

wherek ∈ R is an adjustable positive constant,γi : R
2 → R≥0

is a goal function, andβi : R≥0 → [0, 1] is a constraint
function for agenti. Based on the objective in (3), the goal
function γi in (6) is designed as

γi(qi, qj) ,
∑

j∈N f
i

‖qi − qj − cij‖2 . (7)

The constraint functionβi is defined as

βi ,
∏

j∈N f
i

bij
∏

k∈Ni∪Mi

Bik, (8)



which enables collision avoidance and connectivity mainte-
nace. To maintain network connectivity, the nonsmooth func-
tion bij : R≥0 → [0, 1] in (8) is designed as

bij (dij) ,















1, dij < Rs − δ2,

− 1
δ2
2

(dij + 2δ2 −Rs)
2

+ 2
δ2
(dij + 2δ2 −Rs),

Rs − δ2 ≤ dij ≤ Rs,

0, dij > Rs,
(9)

where bij is not differentiable atRs. Specifically, bij is
designed to prevent nodei from leaving the communication
region of its formation neighborj ∈ N f

i . Let Mi denote the
set of stationary obstacles within the collision region of node
i. In (8), for each nodek ∈ Ni ∪ Mi, Bik : R → [0, 1] is
defined as

Bik (dik) ,

{ − 1
δ2
1

d2ik + 2
δ1
dik, 0 ≤ dik ≤ δ1,

1, dik > δ1.

Therefore,βi → 0 when nodei enters the constraint region,
(i.e. when nodei approaches other nodes, stationary obstacles,
or tries to leave the sensing range of their adjacent nodesj ∈
N f

i , ∀t ≥ 0).
Based on Assumption 3,γi and βi will not be zero at

the same time, and the navigation functionϕi reaches its
maximum at1 when βi = 0 and its minimum at0 when
γi = 0.

Due to the intermittent sensing, consider the two setsVf (t)
and Vu(t), where Vf , Vu : [0, ∞) → V are defined as

Vf (t) ,
{

i ∈ V|N f
i = N s

i (t) ∩ N f
i

}

andVu(t) , V \Vf (t).

The set Vf (t) includes agents that can sense all of the
formation neighborsN f

i at t ∈ R≥0. Otherwise, agenti will be
in Vu(t) at somet ∈ R≥0. Using the navigation function in (6),
the decentralized switched controller for agenti is designed
as

ui(t) =

{

−Γ∇qiϕi, i ∈ Vf (t),
0, i ∈ Vu(t),

(10)

where Γ ∈ R
+ is a positive constant gain, and∇qi (·) ,

∂
∂qi

(·) . In (10), the control switching scheme of agenti is
based on the sensing condition at timet. If all neighbor agents
in N f

i can be sensed by agenti, ui(t) = −Γ∇qiϕi, and
ui(t) = 0 otherwise.

IV. CONNECTIVITY ANALYSIS

Lemma 1. If the initial graph of the multi-agent system is
connected, then the controller in (10) ensures agenti and j

remain connected for all time.

Proof: Consider an agenti ∈ V located atq0 ∈ F , where
the sensing link is about to break, which implies

∏

j∈N f
i

bij → 0,

then three cases must be considered.
Case 1.As agentj ∈ N f

i approaches the sensing region
(i.e., ‖qi − qj‖ approachesRs from the left), thenβi tends to
zero. The gradient ofϕi is

∇qiϕi =
kβi∇qiγi − γi∇qiβi

k(γk
i + βi)

1
k
+1

. (11)

Consider

∇qiβi =
∑

h∈N f
i

Π
l∈N f

i ,

l 6=h

bil (∇qibih)
∏

k∈Ni∪Mi

Bik

+
∑

h∈Ni∪Mi

∏

j∈N f
i

bij Π
l∈Ni∪Mi,

l 6=h

Bil (∇qiBih) .

Provided only agentj is near the boundary (i.e.,‖qi − qj‖ →
R−

s ), ∇qiβi has only one dominant term:

∇qiβi = Π
l∈N f

i ,

l 6=j

bil (∇qibij)
∏

k∈Ni∪Mi

Bik +O (bij) ,

where O (·) is the Big O notation, which vanishes asbij
approachesRs. The other term in the numerator of∇qiϕi

in (11) is kβi∇qiγi = O (bij) , hence∇qiϕi in (11) can be
expressed as

∇qiϕi =

−γi Π
l∈N f

i ,

l 6=j

bil
∏

k∈Ni∪Mi

Bik (∇qibij) +O (bij)

k(γk
i + βi)

1
k
+1

.

Note that the gradient ofbij w.r.t. qi can be determined as

∇qibij =











0,
dij < Rs − δ2 or

dij > Rs,

− 2(dij+δ2−Rs)(qi−qj)

δ2
2
dij

, Rs − δ2 ≤ dij < Rs,

(12)
whereγi, bil, Bik, k, δ2, andRs are positive constants. Thus,
q̇i = −Γ∇qiϕi points in the direction ofqj − qi, which forces
nodesi to move toward nodej.

Case 2.Now suppose several agentsj1, j2, . . . , js ∈ N f
i

are near the boundary of the sensing region. That is,dijm is
nearRs for eachm = 1, 2, . . . , s. For this case,∇qiϕi =
−γi

∑

m

∏

l∈N
f
i

,

l 6=jm

bil
∏

k∈Ni∪Mi

Bik(∇qi
bijm)

k(γk
i +βi)

1
k

+1
+ O

(

∏

m

bijm

)

. The first

term above in∇qiϕi tends to zero, however since thebijm
terms are quadratic nearRs, the order of the zero contributed

by the first term is one degree less thanO

(

∏

m

bijm

)

, so

the first term dominantes as eachdijm → Rs. Hence q̇i =
−Γ∇qiϕi is approximately a linear combination of the vectors
qj1 − qi, qj2 − qi, . . . , qjs − qi, where the largest contribution
comes from thosejm closest to the sensing boundary. Thus,
nodei moves almost towardjm resulting in a largest decrease
in dijm , so the connectivity can be maintained.

Case 3.Consider a nodei ∈ Vu (or more than one node
in the set ofVu). The controller will beui = 0 based on
(10). Since both nodei and its neighborj ∈ N f

i are in the
undirected graph, nodej can’t sense nodei, so j ∈ Vu, thus
uj = 0. Since bothi, j nodes have no control input, the
distance between them remains the same.

By Assumption 2,N f
i ⊂ N s

i (t0), i ∈ V . Furthermore,
from Case 1-Case 3, the decentralized switched control policy
in (10) ensures the distances between agenti ∈ V and its



formation neighborsj ∈ N f
i never increase under intermit-

tent sensing conditions. As a result, the formation neighbors
j ∈ N f

i remain inside the sensing region of agenti for all
time. Specifically,

dij (t) < Rs, j ∈ N f
i , i ∈ V , ∀t ≥ 0. (13)

V. CONVERGENCEANALYSIS

Definition 1. [25] Consider the following differential equa-
tion with a discontinuous right-hand side:

ẋ = f(x), (14)

where f : R
n → R

n is measurable and essentially locally
bounded, andn ∈ N is a finite constant. The vector function
x is called a solution of(14) on [t0, t1] if x is absolutely
continuous on[t0, t1] and for almost allt ∈ [t0, t1]

ẋ ∈ K [f ] (x)

K [f ] (x) , ∩
δ>0

∩
µN=0

co f (B (x, δ) \N) , (15)

where ∩
µN=0

denotes the intersection over all setsN of

Lebesgue measure zero.

To prove the convergence of the agents to the desired forma-
tion, an invariance principle for switched systems is applied to
a common Lyapunov function candidateV : R2N → R given
by

V (q) ,

N
∑

i=1

ϕi, (16)

whereq is the stack state vector, andV reaches its minimum
value of0 if the desired formation is achieved.

Theorem 1. [26] Let x (·) be a Filippov solution tȯx = f(x)
on an interval containingt and V : Rn → R be a Lipschitz
and regular function. ThenV (x (t)) is absolutely continuous,
d
dt
V (x(t)) exists almost everywhere (a.e.) and

d

dt
V (x (t))

a.e.∈ ˙̃
V (x) , ∩

ξ∈∂V (x(t))
ξTK [f ] (x (t)) .

Based on Definition 1 and Theorem 1 , the main result of
this paper is provided as follows.

Theorem 2. Given (10), the maximum relative position errors
of any two formation neighbors of the network system in (1)
converges tomax

j∈N f
i

‖qi − qj − cij‖ =
√

cmax
N

, i ∈ V provided

that the adjustable gaink in (6) is selected sufficiently large
and every agent can sense all its formation neighbors in the
finite time interval ∪

t∈[tk, tk+n)

(

N f
i ∪ {i}

)

= V , wheren ∈ N

is finite.

Proof: Consider the common Lyapunov function candi-
date V defined in (16), whereV can be minimized at the
critical points as shown in [19], andV reaches its minimum

value of0 when the desired formation is achieved. Based on
Theorem 1,

d

dt
V (q (t))

a.e.∈ ˙̃
V (q) , ∩

ξ∈∂V (x(t))
ξTK [q̇] . (17)

The finite sums property of the generalized gradient defined
in [27] gives

∂V ⊂
[

∂q1V
T , ∂q2V

T , . . . , ∂qNV T
]T

. (18)

Using (17) and (18), the generalized time derivative ofV in
(17) can be expressed as

˙̃
V ⊂

∑

i∈V

(

∩
ξi
ξTi K [q̇i]

)

. (19)

whereξi ∈ ∂qiV. To turn the generalized gradient into the gra-
dient, the points at whichV is not differentiable and Lebesgue
measure zero need to be considered. From the inequality in
(13), dij never takes on the valuedij = Rs, j ∈ N f

i , i ∈ V ,
at the nonsmooth point ofbij , so bij is differentiable w.r.t.qi
along the solution of the closed-loop system. SinceBik andγi
are differentiable functions,V is differentiable w.r.t.qi along
the solution of the closed-loop system fori ∈ V . Therefore,
the generalized gradient can be expressed as

∂qiV (q) = {∇qiV (q)} , i ∈ V . (20)

Based on (20), (19) can be rewritten as

˙̃
V ⊂

∑

i∈V

(

∇qiV
TK [q̇i]

)

. (21)

By segregatingV into the sets,Vf and Vu, (21) can be
rewritten as

˙̃
V ⊂

∑

i∈Vf

(

∇qiV
TK [q̇i]

)

+
∑

i∈Vu

(

∇qiV
TK [q̇i]

)

. (22)

From Assumption 1, the switching graphGσ(t) is invariant
for t ∈ [tk, tk+1) , so the setVf is also invariant during that
time period. Based on the switched control scheme in (10),
the second term on the RHS of (22) will be zero, therefore,

˙̃
V ⊂

∑

i∈Vf

(

∇qiV
TK [q̇i]

)

, t ∈ [tk, tk+1) . (23)

In addition, by the definition ofK [q̇i] in (15), the switched
controller in (10) can be expressed as

K [q̇i] ⊂ co

{

−Γ∇qiϕi ,

[

0
0

]}

. (24)

Also based on Assumption 1, the switching time instance is
Lebesgue measure zero, so (24) can be further expressed as
K [q̇i] ⊂ {−Γ∇qiϕi} . Thus, by using the gradient ofV, (17)
and (23) can be used to conclude that

V̇
a.e.

≤ −
∑

i∈Vf






Γ





N
∑

j=1

∇qiϕj





T

∇qiϕi






, (25)



where t ∈ [tn, tn+1) , n ∈ N. An equivalent way to prove

V̇
a.e.
< 0 is to show

∑

i∈Vf

(

Γ
(

∑N
j=1 ∇qiϕj

)T

∇qiϕi

)

> 0,

and based on the development in the appendix, its sufficient
condition is

∑

i∈Vf






4β

∥

∥

∥

∥

∥

∥

∑

j∈N f
i

(qi − qj − cij)

∥

∥

∥

∥

∥

∥

2

− ρ1,i

2k
− ρ2,i

2k2






> 0,

(26)

for t ∈ [tn, tn+1) . In (26),ρ1,i, ρ2,i ∈ R are functions defined

asρ1,i , c1,iγi + c2,iγ
2
i + c3,i

(

∑N
k=1 γk

)2

, ρ2,i , c4,iγ
2
i +

c5,i

(

∑N
k=1 γk

)2

, where cp,i ∈ R, p = 1 − 5, are positive
constants. To develop a further sufficient condition for (26), we
exploit the facts from [28] that∇qiγi , 2

∑

j∈N f
i

(qi − qj − cij)

and ‖∇qiγi‖ ≥ γi

R
, whereR , max ‖qi − qj‖ , qi, qj ∈ F ,

∀j ∈ N f
i . Hence, from (13)

‖∇qiγi‖ ≥ γi

Rs

, (27)

and a sufficient condition for (26) can be developed as

∑

i∈Vf

(

β
γ2
i

R2
s

− ρ1,i

2k
− ρ2,i

2k2

)

> 0. (28)

By solving (28) for γi and using (7), a further sufficient
condition for (26) is

∑

j∈N f
i

‖qi − qj − cij‖2 > cmax, i ∈ Vf , (29)

wherecmax ,

√

R2
s

β

(

ρ1

2k + ρ2

2k2

)

, and ρ1, ρ2, β ∈ R>0 are

positive constants defined asρ1 , max
i∈V

ρ1,i, ρ2 , max
i∈V

ρ2,i,

andβ , min
j∈N f

i , i∈V
βiβj. Additionally, βi, βj 6= 0 due to the

fact that no open set of initial solutions can be attracted tothe
maxima ofϕi (i.e.,βi = 0) along the negative gradient motion
−∂ϕi

∂qi
[29]. Recall thatV in (16) is a common Lyapunov

function, so the switching signalσ of the time-varying graphs
Gσ can have arbitrary sequence provided that (29) holds.
Additionally, (29) can be extended to global (i.e.,i ∈ V)
formation configuration convergence if the switching signal
σ switches in the way that satisfies the following condition

∪
t∈[tk, tk+n)

Vf = V , n ∈ N, (30)

wheren is a finite positive constant. Based on (29), and the
ultimate maximum formation error for the entire switched
system can be expressed as

max
j∈N f

i

‖qi − qj − cij‖ =

√

cmax
N

, i ∈ V , (31)

whereN , min
i∈V

∣

∣

∣N f
i

∣

∣

∣ .

VI. SIMULATION

To validate the proposed switched controller, we performed
a simulation with 5 dynamic agents and 3 obstacles. The
parameters used in the simulation are given byRS = 20,
δ1 = 8, δ2 = 2, k = 1, Γ = 10, c12 = [0, 5]T , c23 = [−5, 5]T ,
c34 = [−5, −5]T , c45 = [0, −5]T . Initially the agents are
located within the sensing region of their formation neighbors.
Fig. 1 illustrates that the agents avoid collisions with other
agents and stationary obstacles. Moreover, they eventually
achieve an approximation of their goal formation under ar-
bitrary switching sequence that satisfies (30).
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Figure 1. Trajectories of dynamic agents achieving formation configuration.

As indicated in Fig. 2,dij can increase during opera-
tion. However, these distances always remain smaller than
the sensing rangeRs (i.e., remain connected). Recall that
the relative distance in our goal formations are given by
‖c12‖ = ‖c45‖ = 5, and ‖c23‖ = ‖c34‖ = 5

√
2. Fig. 2

indicates that the final distances approximate these values, and
the position errors remain sufficiently small.
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VII. C ONCLUSION

A switched controller is developed to achieve convergence
of a network formation using only local feedback under both
limited and intermittent sensing. At the same time, network
connectivity is maintained and collisions between agents and
obstacles are avoided. A common Lyapunov function approach
is used to ensure convergence under an arbitrary switching
sequence. Moreover the entire formation configuration con-
verges globally, if the switching signal satisfies (30). The
neighborhood of convergence can be made arbitrarilly small
with sufficiently large gains. Finally, the effectiveness of the
proposed controller is verified by simulation results.

APPENDIX

This section develops a sufficient condition for
Γ (∇qiϕi)

T
(

∑N
j=1 ∇qiϕj

)

> 0, so that V̇ in
(25) is negative definite almost everywhere. We
consider the equation (∇qiϕi)

T
(

∑N
j=1 ∇qiϕj

)

=
(

βi(∇qi
γi)− γi

k (∇qi
βi)

(γk
i +βi)

1
k

+1

)T (

∑N
j=1

βj(∇qi
γj)−

γj
k (∇qi

βj)

(γk
j +βj)

1
k

+1

)

,

and decompose this into smaller pieces. Using [19] as
inspiration, it is sufficient to ensure the term

ATC − (‖B‖ ‖C‖+ ‖A‖ ‖D‖)
k

− ‖B‖ ‖D‖
k2

> 0, (32)

whereA, B, C, D ∈ R
2 are from the numerator terms of

(∇qiϕi)
T
(

∑N
j=1 ∇qiϕj

)

and are defined asA , βi (∇qiγi) ,

B , γi (∇qiβi) , C ,
∑N

j=1 βj (∇qiγj) , and D ,
∑N

j=1 γj (∇qiβj) . We now proceed to find upper bounds

for ‖A‖2 , ‖B‖2 , ‖C‖2 , and ‖D‖2 so that we can satisfy
ATC − ‖B‖2+‖C‖2+‖A‖2+‖D‖2

2k − ‖B‖2+‖D‖2

2k2 > 0, which is
the upper bound of (32).

Property 1. ‖A‖2 ≤ 4β2
i

∣

∣

∣N f
i

∣

∣

∣ γi.

Proof: By definition A = βi (∇qiγi) =

βi



2
∑

j∈N f
i

(qi − qj − cij)



 = 2βi

∑

j∈N f
i

(qi − qj − cij) ,

from which it follows that‖A‖2 =

‖A‖2 = 4β2
i

∥

∥

∥

∥

∥

∥

∑

j∈N f
i

(qi − qj − cij)

∥

∥

∥

∥

∥

∥

2

. (33)

TakingXj , [xj1, xj2]
T we can bound the sum, first by using

the triangle inequality as

∥

∥

∥

∥

∥

∥

∑

j∈N f
i

Xj

∥

∥

∥

∥

∥

∥

2

≤





∑

j∈N f
i

‖Xj‖





2

=





∑

j∈N f
i

‖Xj‖ · 1





2

.

(34)

Next we apply the Cauchy–Schwarz inequality, and bound (34)
as

∥

∥

∥

∥

∥

∥

∑

j∈N f
i

Xj

∥

∥

∥

∥

∥

∥

2

≤





∑

j∈N f
i

‖Xj‖2








∑

j∈N f
i

1





≤
∣

∣

∣N f
i

∣

∣

∣

∑

j∈N f
i

‖Xj‖2 . (35)

We can bound‖A‖2 by using (35) to establish Property 1.

Property 2. ‖B‖ ≤ γi

(∣

∣

∣N f
i

∣

∣

∣

2
δ2

+ |Ni ∪Mi| 2
δ1

)

.

Proof: Given the definition: B = γi (∇qiβi) =

γi





∑

j∈N f
i

(∇qibij) bij +
∑

k∈Ni∪Mi

(∇qiBik) B̄ik



 , where we

take B̄ik ,
∏

j∈N f
i

bij
∏

h∈Ni∪Mi, h 6=k

Bih, since bij andBik ∈

[0, 1] , then bij , B̄ik ∈ [0, 1] . Thus, we can develop the
following inequality for‖B‖:

‖B‖ ≤ γi





∑

j∈N f
i

‖∇qibij‖+
∑

k∈Ni∪Mi

‖∇qiBik‖



 . (36)

By using (12), ‖∇qibij‖ ≤ 2
δ2
. In a similar

manner,‖∇qiBik‖ ≤ 2
δ1
. Property 2 is proven by applying

these inequalities term by term to (36).

Property 3. ‖C‖2 ≤ 4
∣

∣

∣N f
i

∣

∣

∣ γi.

Proof: Recall that C is defined asC ,
∑N

j=1 βj (∇qiγj) =
∑

j∈V
βj (∇qiγj) =

∑

j∈N f
i

βj (∇qiγj) +

∑

j∈V\N f
i

βj (∇qiγj) . Since the graph is undirected, whenever

j in N f
i , we havei in N f

j . Therefore, for any agenti in N f
j

∇qiγj = ∇qi

(

‖qj − qi − cji‖2
)

+∇qi













∑

h∈N f
j

h 6=i

‖qj − qh − cjh‖2













= ∇qi







∑

i∈N f
j

‖qj − qi − cji‖2






= −2 (qj − qi − cji) = 2 (qi − qj − cij) . (37)

By using (37)
∑

j∈N f
i

βj (∇qiγj) =
∑

j∈N f
i

βj (2 (qi − qj − cij))

= 2
∑

j∈N f
i

βj (qi − qj − cij) . (38)



On the contrary, if j is not in N f
i , then ∇qiγj =

∇qi





∑

i∈N f
j

‖qj − qi − cji‖2


 = 0, which indicates that

∑

j∈V\N f
i

βj (∇qiγj) = 0. Finally, using (38)

C =
∑

j∈N f
i

βj (∇qiγj) =
∑

j∈N f
i

βj (2 (qi − qj − cij)) .

According toβj ∈ [0, 1] , ∀j ∈ V , ‖C‖ can be bounded by

‖C‖ ≤ 2

∥

∥

∥

∥

∥

∥

∑

j∈N f
i

(qi − qj − cij)

∥

∥

∥

∥

∥

∥

, and ‖C‖2 can be further

bounded by

‖C‖2 ≤ 4

∥

∥

∥

∥

∥

∥

∑

j∈N f
i

(qi − qj − cij)

∥

∥

∥

∥

∥

∥

2

.

By using (35),‖C‖2 can be bounded by

‖C‖2 ≤ 4
∣

∣

∣N f
i

∣

∣

∣

∑

j∈N f
i

‖(qi − qj − cij)‖2 = 4
∣

∣

∣N f
i

∣

∣

∣ γi.

Property 4. ‖D‖ ≤
(

2
δ2

+ 2
δ1

)

∑N
j=1 γj .

Proof: By using the definition ofD =
∑N

j=1 γj (∇qiβj)
and applying the same inequalities used in the proof of
Property 2

‖D‖ =

∥

∥

∥

∥

∥

∥

N
∑

j=1

γj (∇qiβj)

∥

∥

∥

∥

∥

∥

≤
N
∑

j=1

‖γj‖ ‖(∇qiβj)‖

≤
N
∑

j=1

‖γj‖
(

2

δ2
+

2

δ1

)

.

Sinceγj ∈ R≥0 (i.e.,γj = ‖γj‖), ‖D‖ can be further bounded

by ‖D‖ ≤
(

2
δ2

+ 2
δ1

)

∑N
j=1 γj .

Property 5. γi ≤
∣

∣

∣N f
i

∣

∣

∣ (Rs + c̄i)
2
, wherec̄i = max

j∈N f
i

‖cij‖ .

Proof: From (13), ‖qi − qj‖ ≤ Rs, j ∈ N f
i , then

‖qi − qj − cij‖ ≤ ‖qi − qj‖ + ‖cij‖ ≤ Rs + ‖cij‖ , which
implies γi =

∑

j∈N f
i

‖qi − qj − cij‖2 ≤ ∑

j∈N f
i

‖Rs + ‖cij‖‖2 .

By choosing thēci = max
j∈N f

i

‖cij‖ , then

γi ≤
∣

∣

∣
N f

i

∣

∣

∣
(Rs + c̄i)

2
.

Recall that our goal is to establish (32). We will in-
stead establish this for the smaller equation obtained by
way of Young’s inequality:ATC − ‖B‖2+‖C‖2+‖A‖2+‖D‖2

2k −

‖B‖2+‖D‖2

2k2 ≤ ATC − (‖B‖‖C‖+‖A‖‖D‖)
k

− ‖B‖‖D‖
k2 . By using

the upper bounds established in Property 1-4, we find:

ATC − ‖B‖2 + ‖C‖2 + ‖A‖2 + ‖D‖2
2k

− ‖B‖2 + ‖D‖2
2k2

≥ 4β

∥

∥

∥

∥

∥

∥

∑

j∈N f
i

(qi − qj − cij)

∥

∥

∥

∥

∥

∥

2

− ρ1,i

2k
− ρ2,i

2k2
, (39)

whereρ1,i and ρ2,i are defined below (26). In other words,
if the right hand side of (39) is positive, thenATC −
(‖B‖‖C‖+‖A‖‖D‖)

k
− ‖B‖‖D‖

k2 > 0. In addition, we would have

a sufficient condition for(∇qiϕi)
T
(

∑N
j=1 ∇qiϕj

)

> 0. Thus
by (39) it suffices to show






4β

∥

∥

∥

∥

∥

∥

∑

j∈N f
i

(qi − qj − cij)

∥

∥

∥

∥

∥

∥

2

− ρ1,i

2k
− ρ2,i

2k2






> 0. (40)

Based on Property 5,γi can be bounded above by a constant,
which meansρ1,i andρ2,i both have upper bounds ofρ1 and
ρ2 defined below (29). In addition, in (40)β ∈ R is a positive
constant defined below (29).
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