
Co-spin with Symmetry Axis Stabilization,
and De-spin for Asteroid Capture

Haijun Shen† and Carlos M. Roithmayr‡

Abstract— Consideration is given to attitude control associ-
ated with capturing a free-flying asteroid using an axisymmetric
spacecraft. Asymptotically stable controllers are designed to
align the spacecraft axis of symmetry with a line of descent
that is fixed in the asteroid, and to eliminate all relative angular
velocity before capture takes place. An analytical expression is
presented for the torque required to maintain alignment of
the axes of symmetry of the spacecraft and an axisymmetric
asteroid. After the asteroid is securely captured, the angular
velocity of the rigid composite body relative to an inertial frame
is arrested; we present a controller that is asymptotically stable
and stays within specified thrust limits.

I. INTRODUCTION

Capturing and returning an asteroid to the Earth-Moon
system has garnered a great deal of attention recently (Ref.
[1]). References [2] and [3] discuss various phases of the
operations when the spacecraft is in the vicinity of the
asteroid, including initial approach, hover, spacecraft spin-
up, descent, ascent (if a small boulder is picked up from a
large asteroid), and de-spin. Dynamics and control in each
of these activities is analyzed in order to determine the
velocity increments and control force and torque that must
be provided by a Reaction Control System (RCS), and the
mass of the propellant that will be consumed.

This paper addresses in depth the attitude control required
for spin-up and de-spin. First, the spacecraft is reoriented
and spun up so that it points to the asteroid properly, and
all angular velocity relative to the asteroid is eliminated to
ensure capture of the asteroid. Second, the body consisting
of the spacecraft and the captured asteroid is de-spun to
eliminate angular velocity relative to an inertial reference
frame, to prepare for the return to the Earth-Moon system.

We make the following assumptions. The asteroid is a
rigid body with mass distributed in the most general possible
way; that is, it can possess three distinct principal moments
of inertia, and is therefore referred to as unsymmetric.
Before capture the asteroid undergoes torque-free motion and
in general can tumble, and its angular velocity and mass
properties are known. The spacecraft is an axisymmetric
rigid body. The capture mechanism is also axisymmetric; the
axes of symmetry of the spacecraft and capture mechanism
are collinear. Due to symmetry, effective use of the capture
mechanism does not require any particular relative orienta-
tion, about the axis of symmetry, between the spacecraft and
the asteroid. The spacecraft approaches the asteroid along a
straight line (line of descent) that is fixed in the asteroid, as
illustrated in Fig. 1.

†Analytical Mechanics Associates, Inc., 21 Enterprise Parkway, Suite
300, Hampton, VA 23666, USA +1 757 865 0000, shen@ama-inc.com

‡NASA Langley Research Center, Vehicle Analysis Branch, MS 451,
1 North Dryden Street, Hampton, VA, 23681, USA +1 757 864 6778,
carlos.m.roithmayr@nasa.gov

A

B

b
1

^

b
2

^

a
1

^

a
2

^

a
3

^

line of
descent

a
3

^

â

Fig. 1. Illustration of spacecraft approaching asteroid.

Here, we take the approach of removing completely the
relative angular velocity between the spacecraft and the
asteroid, based on the assumption that this offers the best
chance to avoid damage or destruction of the mechanism
when capture takes place. Thus, the objectives of spin-up
control are to make the axis of symmetry of the spacecraft
parallel to the line of descent, and to eliminate rotational
motion of the spacecraft relative to the asteroid about the
line of descent.

We assume that, after capture, the asteroid is rigidly
connected to the spacecraft so that together they form one
rigid body, which is considered unsymmetric to maintain
generality. The body must undergo de-spin to eliminate an-
gular velocity relative to the inertial frame. This is necessary,
for example, to orient solar arrays properly or to aim thrust
in the direction needed to return to the Earth-Moon system.
A controller is designed to be asymptotically stable, and stay
within specified thruster limits.

The paper is organized as follows. The controllers that
align the axis of symmetry of the spacecraft with the line of
descent, and eliminate relative angular velocity between the
two bodies, are presented first. Next, an analytical expression
is presented for the control torque required to maintain
alignment of the axes of symmetry of the spacecraft and
the special case of an axisymmetric asteroid. Finally, the
despin controller is presented, followed by conclusions and
references.

II. ATTITUDE SYNCHRONIZATION

In this section we present controller designs that facilitate
the synchronization of the spacecraft axis of symmetry and
the line of descent. To this end, consider a unit vector â
fixed in the asteroid, A, parallel to the line of descent, and
having a direction consistent with the descent. Let b̂1, b̂2,
and b̂3 be a set of right-handed, mutually orthogonal unit
vectors fixed in the spacecraft, B, with b̂3 parallel to the
axis of symmetry, and marking the direction in which the
spacecraft is to advance toward the asteroid. It is desired
to design a controller to align b̂3 with â, and to eliminate



all relative rotational motion before capture takes place,
without requiring any particular relative orientation between
the spacecraft and the asteroid about b̂3.

A. Kinematics and Dynamics

The direction of â with respect to the spacecraft reference
frame is described with two parameters, w1 and w2, obtained
through stereographic projection as discussed in Ref. [4] and
illustrated in Fig. 2. If the unit vector â is written as

â = ab̂1 + bb̂2 + cb̂3 (1)

then w1 and w2 are defined as

w1 =
b

1 + c
w2 =

−a

1 + c
(2)

Fig. 2. Illustration of stereographic projection and parameters w1 and w2.

As illustrated in Fig. 2, when w1 = w2 = 0, b̂3 has the
same direction as â, implying that the axis of symmetry is
aligned with the line of descent. Thus, the objective of the
controller design is to drive both w1 and w2 to zero, and to
eliminate all relative angular velocity between B and A.

The problem of pointing the axis of symmetry, b̂3, of
an axisymmetric spacecraft in the inertial frame is studied
in Ref. [5], where kinematic equations are given that relate
the angular velocity of the spacecraft to the rates of w1 and
w2, as well as several controllers that either exponentially
or asymptotically stabilize b̂3. The problem in this paper is
different in that we are dealing with the orientation of b̂3 in
A, which is a rotating frame.

Let AωB denote the angular velocity of the spacecraft
relative to the asteroid. Since â is fixed in frame A,

A
dâ

dt
=

B
dâ

dt
+ AωB × â = 0 (3)

where
X d(·)

dt denotes the derivative of a vector with respect
to time taken in a reference frame X . In addition, Eq. (1)
leads to

B
dâ

dt
= ȧb̂1 + ḃb̂2 + ċb̂3 (4)

It can be shown from Eqs. (2), (3), and (4) that w1 and w2

are governed by the following kinematic equations.

ẇ1 = w2δ3 + δ2w1w2 +
δ1
2
(1 + w2

1 − w2
2) (5a)

ẇ2 = −w1δ3 + δ1w1w2 +
δ2
2
(1 + w2

2 − w2
1) (5b)

where
δi =

AωB · b̂i (i = 1, 2, 3) (6)

are the measure numbers (Ref. [6], p. 3) of AωB for b̂1,
b̂2, and b̂3.

The dynamics of the rotational motion of the spacecraft are
described by Euler’s equations. Let Ii (i = 1, 2, 3) denote
the principle moments of inertia of the spacecraft. For an
axisymmetric body, I1 = I2. Let

ωi =
NωB · b̂i (i = 1, 2, 3) (7)

denote the b̂1-b̂2-b̂3 measure numbers of the angular veloc-
ity of spacecraft B relative to an inertial frame N . Then,
Euler’s equations are written as

ω̇1 = a1ω2ω3 + u1 (8a)
ω̇2 = −a1ω3ω1 + u2 (8b)
ω̇3 = u3 (8c)

where a1 = (I2−I3)/I1 and ui = Mi/Ii (i = 1, 2, 3). Here,
M1, M2, and M3 are the b̂1-b̂2-b̂3 measure numbers of the
torque acting on the spacecraft.

The dynamic equations that govern the relative angular
velocity measure numbers δi (i = 1, 2, 3) can then be
derived. By definition in Eq. (6),

δi = (NωB − NωA) · b̂i (i = 1, 2, 3) (9)

Let
ϖi =

NωA · b̂i (i = 1, 2, 3)

denote the b̂1-b̂2-b̂3 measure numbers of the angular veloc-
ity of the asteroid relative to the inertial frame. Then,

δi = ωi −ϖi (i = 1, 2, 3) (10)

Eqs. (8) and (10) together yield

δ̇1 = a1δ2δ3 + v1 (11a)

δ̇2 = −a1δ3δ1 + v2 (11b)

δ̇3 = v3 (11c)

where vi (i = 1, 2, 3) are new control variables that are
related to the original control variables ui (i = 1, 2, 3) by

v1 = u1 + a1(ϖ2ϖ3 + δ2ϖ3 +ϖ2δ3)− ϖ̇1 (12a)
v2 = u2 − a1(ϖ1ϖ3 + δ1ϖ3 +ϖ1δ3)− ϖ̇2 (12b)
v3 = u3 − ϖ̇3 (12c)

where ϖ̇i (i = 1, 2, 3) are given by

ϖ̇i =

N
d

dt
(NωA · b̂i)

= NαA · b̂i +
NωA · (NωB × b̂i)

= (NαA + NωA × NωB) · b̂i (i = 1, 2, 3)
(13)



where NαA is the angular acceleration of the asteroid
relative to the inertial frame.

The asteroid is assumed to have known ratios of moments
of inertia (Ref. [7]), and undergo a torque-free motion. Thus,
with an attitude and angular velocity measurement at any
time, the attitude, angular velocity, and angular acceleration
of the asteroid can be determined at any other time from
dynamical and kinematical equations of motion (Ref. [8],
Secs. 3.1 and 3.4).

B. Controller Design

A close examination of Eqs. (5) and (11) reveals that the
dynamics of δ3 is self-contained in that it is not affected by
other states in the system. Thus, the problem can be separated
into two subsystems, and controllers can be designed to
stabilize the subsystems individually.

Subsystem 1:

δ̇ = −ia1δ3δ + v (14a)

ẇ = −iδ3w +
δ

2
+

δ̄

2
w2 (14b)

Subsystem 2:
δ̇3 = v3 (15)

where Subsystem 1 consists of Eqs. (5), (11a), and (11b),
while Subsystem 2 consists of Eq. (11c). Here the notation
of using complex numbers is adopted from Ref. [5]. Namely,
i =

√
−1, δ = δ1 + iδ2, w = w1 + iw2, v = v1 + iv2, (̄·)

denotes complex conjugate, and | · | denotes the magnitude
of a complex number.

In Ref. [5], four controllers with exponential or asymptotic
behavior are developed to align b̂3 with n̂3, a unit vector
fixed in an inertial frame. No control torque is applied about
b̂3; therefore, ω3 is constant during the time control is
applied in the other two directions. Subsystem 1 resembles
the system studied in Ref. [5]; in general, however, δ3
(the counterpart to constant ω3) is not constant. The four
controllers developed in Ref. [5] are presented in Eqs.
(16)–(19) with ω3 replaced by δ3. It can be shown in a
straightforward way that proofs of stability given in Ref.
[5] hold for δ̇3 ̸= 0, and therefore remain applicable to
Eqs. (16)–(19). For completeness, the four controllers for
Subsystem 1 are presented as follows.

Controller 1:

v = ia1δ3δ + k1(iδ3δ −
δ

2
− δ̄

2
w2)

− k2(δ + k1w)
(16)

with k1 > 0 and k2 > 0, globally asymptotically stabilizes
Subsystem 1.

Controller 2:

v = ia1δ3δ − k1(−iδ3w +
δ

2
+

δ̄

2
w2)

− k2(δ + k1w)− w(1 + |w|2)
(17)

with k1 > 0 and k2 > 0, globally exponentially stabi-
lizes Subsystem 1 with rate of decay β/2, where β =
min{k1, 2k2}.

Controller 3:
v = −k1δ − k2w (18)

with k1 > 0 and k2 > 0, globally asymptotically stabilizes
Subsystem 1.

Controller 4:

v = −k1δ − k2(1 + |w|2)w (19)

with k1 > 0 and k2 > 0, globally asymptotically stabilizes
Subsystem 1.

The original control variables u1 and u2 can be obtained
through Eqs. (12a) and (12b) as

u1 = v1 − a1(ϖ2ϖ3 + δ2ϖ3 +ϖ2δ3) + ϖ̇1 (20a)
u2 = v2 + a1(ϖ1ϖ3 + δ1ϖ3 +ϖ1δ3) + ϖ̇2 (20b)

Exponential or asymptotic stabilization of Subsystem 1
ensures that b̂3 becomes aligned with â as time progresses.
These controllers can be readily used in applications such
as giving b̂3 the same direction as a specified vector fixed
in another rotating satellite, while allowing relative angular
speed δ3 to vary freely. However, for retrieving an asteroid,
it is desirable to drive δ3 to zero to avoid damaging the
capture mechanism. Because of the simple form of Eq. (15)
associated with Subsystem 2, it is clear that

v3 = −k3δ3 (21)

with k3 > 0, globally exponentially stabilizes Subsystem 2
with rate of decay k3. From Eq. (12c), the original control
variable u3 can be obtained as

u3 = −k3δ3 + ϖ̇3 (22)

Remark: The controllers presented in this section are
effective regardless of the initial angle between b̂3 and â.
However, in practice, in the cases where reorientation of b̂3

can be performed without expending much propellant, it can
be preferable to reorient b̂3 first, spin up the spacecraft about
b̂3, and then apply the feedback controllers. This is because
the controllers are not designed to minimize propellant usage.
For example, when the spacecraft is initially at rest, a slow
reorientation of b̂3 can be achieved through brief thruster fir-
ings, with minimal propellant consumption, at the beginning
and end of the maneuver. Additionally, the spacecraft can be
spun up about b̂3 once the reorientation is completed. This
way, the simple attitude maneuvers are separated from more
complex ones that require feedback control.

III. CO-SPINNING AXISYMMETRIC SPACECRAFT AND
AXISYMMETRIC ASTEROID

As the axis of symmetry of the spacecraft asymptotically
approaches the line of descent, torque must be applied
continuously to keep the two lines collinear. An analytical
expression for the torque is available for the special case of
an axisymmetric asteroid and a line of descent parallel to
the asteroid’s axis of symmetry. During torque-free motion,
the central angular momentum H of the asteroid A in a
Newtonian reference frame N has constant magnitude and
constant direction in N . The angle ϕ between H and the
asteroid’s axis of symmetry is constant. A reference frame C
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Fig. 3. Axisymmetric spacecraft, B, duplicating torque-free rotational
motion of axisymmetric asteroid.

(see Fig. 3) can be introduced such that H and the asteroid’s
axis of symmetry are fixed in C. The angular velocity of
A in N can be described simply in terms of spin about the
axis of symmetry, together with precession about the angular
momentum vector (see Ref. [8], Sec. 3.1). With unit vector ĉ3
chosen such that it is fixed in C and parallel to the asteroid’s
axis of symmetry, the angular velocity CωA of A in C can
be written as

CωA = sĉ3 (23)

where spin speed s is a constant. Moreover, the angular
velocity Nω C of C in N is given by

Nω C = pĥ (24)

where precession speed p is a non-negative constant, and ĥ
is a unit vector having the same direction as H. Hence, the
angular velocity of A in N can be expressed simply as

NωA = Nω C + CωA = pĥ + sĉ3 (25)

and the angular acceleration NαA of A in N is given by

NαA =

N
d

dt
(pĥ + sĉ3) = 0+ sNω C × ĉ3

= spĥ × ĉ3 = sp sinϕ ĉ2

(26)

where ĉ2 is a unit vector fixed in C and normal to the plane
containing H and ĉ3 (see Fig. 3). If the axes of symmetry
of A and B are to be parallel, then ĉ3 = b̂3, and the central
inertia dyadic of B can be expressed as

I = IB(b̂1b̂1+b̂2b̂2)+JBb̂3b̂3 = IB(ĉ1ĉ1+ĉ2ĉ2)+JB ĉ3ĉ3
(27)

where JB and IB are central principal moments of inertia
of B for, respectively, a line parallel to b̂3, and any line
perpendicular to b̂3. If B is to duplicate the asteroid’s angular
velocity and angular acceleration, then NωB = NωA and
NαB = NαA, and the required control torque is given by

T = I · NαA + NωA × I · NωA

= p sinϕ [(JB − IB) p cosϕ+ JBs] ĉ2 (28)

The magnitude of T is constant. The relationship

cosϕ =
Js

(I − J)p
(29)

where I and J are central principal moments of inertia of the
asteroid, can be used to show that T vanishes if the ratio of
moments of inertia of the spacecraft happens to be the same
as that of the asteroid; that is, if IB/JB = I/J . Otherwise,
T is the control torque that must be applied to maintain a
relative angular velocity of zero until capture takes place.

IV. DESPIN

Once the asteroid payload has been securely captured by
the spacecraft, the composite body (spacecraft and payload)
undergoes de-spin to eliminate angular velocity relative to
the inertial frame. For convenience B will denote the newly
formed rigid body. An asymptotically stable controller is
designed for applying torque to drive NωB to 0. No
requirements are placed on the orientation of B in N at the
time NωB reaches 0. It is assumed that the required ori-
entation can subsequently be obtained by briefly firing RCS
thrusters at the beginning and end of a slow reorientation
that consumes a negligible amount of propellant.

Let Ii (i = 1, 2, 3) denote the principle moments of inertia
of B, and let ωi (i = 1, 2, 3) be defined as in Eqs. (7).
Assume that n RCS thrusters are mounted to the spacecraft,
and each is capable of producing a moment about the center
of mass of B. Let F = [F1, F2, . . . , Fn] be a 3× n matrix,
the columns of which are the maximum moment produced by
each thruster. Assume the thrusters can be throttled between
0 and 1, and let η = [η1, η2, . . . , ηn]

T denote the n×1 matrix
of the thruster throttles. In addition, it is assumed that the
RCS thrusters are configured in such a way that when all
thrusters are firing at full throttle, the net moment equals to
zero; i.e.,

F1 = 0 (30)

where 1 = [1, 1, . . . , 1]T is the n×1 array with all elements
equal to 1. This is a typical RCS thruster configuration in
practice. For example, RCS thrusters are often arranged in
pairs, each of which applies a force couple.

Euler’s dynamical equations of rotational motion for rigid
body B can be written as

Iω̇ = −ω×Iω + Fη (31)

where I is a diagonal inertia matrix of B, ω = [ω1, ω2, ω3]
T ,

and ω× is a skew symmetric matrix used to implement a
cross product of two vectors.

Let a Lyapunov function be defined as the rotational
kinetic energy K of B in N

K =
1

2
ωT Iω (32)

Hence, the time rate of change of K is given by

K̇ = ωT Iω̇ = ωT (−ω × Iω + Fη) = ωTFη (33)

We seek a strategy for applying control torque that will
completely dissipate rotational kinetic energy; that is, we
wish to make K̇ ≤ 0, and K̇ = 0 if and only if ω = 0.



A fast strategy would be a bang-bang profile for throttle.
That is,

ηi =

{
1 if ωTFi < 0

0 if ωTFi ≥ 0
(i = 1, 2, . . . , n) (34)

This strategy, though effective in rapidly dissipating K,
incurs tremendous chattering especially when ω approaches
0. Thus, a smooth controller is desired. To this end, we seek a
controller that not only dissipates K, but also applies torque
sparingly so as to avoid excessive expenditure of propellant.
These considerations lead us to an objective function J
defined as

J
∆
= ωTFη +

1

2
ηTRη (35)

which will be minimized at each instant of time. Here R > 0
is an n×n positive definite matrix. The optimal matrix η can
be found by setting the partial derivative of J with respect
to η equal to zero; i.e.,

∂J

∂η
= ωTF + ηTR = 0 (36)

which leads to
η = −R−1FTω (37)

Substituting η into Eq. (33) yields

K̇ = −ωTFR−1FTω ≤ 0 (38)

and K̇ = 0 if and only if ω = 0. Thus, according
to Lyapunov theory (Ref. [9]) the controller in Eq. (37)
asymptotically stabilizes the angular velocity, and minimizes
the control energy simultaneously.

Recall that the thruster throttles should be bounded be-
tween 0 and 1; however, this is not guaranteed in Eq. (37).
We now proceed to modify Eq. (37) to satisfy the throttle
constraint and maintain asymptotic stability. To this end, let
ηmin be the minimum of all throttles calculated by Eq. (37).
If ηmin < 0, then we modify η as

η = −R−1FTω − ηmin1 (39)

Now, let ηmax be the maximum of all throttles as given in
Eq. (39), and if ηmax > 1, then we modify η by scaling it
by 1/ηmax; i.e.,

η =
−R−1FTω − ηmin1

ηmax
(40)

It can be deduced that the throttles given in Eq. (40) are all
between 0 and 1 by construction. Substitute this controller
into Eq. (33), and we get

K̇ = ωTF
(−R−1FTω − ηmin1)

ηmax

= − 1

ηmax
ωTFR−1FTω

≤ 0

(41)

and K̇ = 0 if and only if ω = 0. Here, the assumption in Eq.
(30) is used. Thus, the controller in Eq. (40) asymptotically
stabilizes the angular velocity.

Remark 1: As ηmin is subtracted from each throttle in Eq.
(39), some thrusters may be fired unnecessarily, resulting

TABLE I
RCS THRUSTER CONFIGURATION

Pod Position (m) Thrust Directions
P1 rB

∗P1 = 2b̂1 − 2.65b̂3 ±b̂2,±b̂3

P2 rB
∗P2 = −2b̂1 − 2.65b̂3 ±b̂2,±b̂3

P3 rB
∗P3 = 2b̂2 − 2.65b̂3 ±b̂1,±b̂3

P4 rB
∗P1 = −2b̂2 − 2.65b̂3 ±b̂1,±b̂3

in needless propellant consumption. The thruster firings
commanded by Eq. (39) that produce no resultant torques
need to be eliminated. For example, if thrusters i and j
with the same maximum thrust produce moments in opposite
directions, and they are commanded to throttle ηi ≥ ηj > 0,
then both thrusters are fired unnecessarily. These throttles can
be clipped by setting the new ηi to ηi − ηj , and the new ηj
to 0. Doing so does not change the commanded torque, and
thus does not affect the stability of the closed-loop system.

Remark 2: The special case where the thrusters are
arranged in collocated pairs, each of which provides thrust in
opposite directions, can be equivalently described as having
n/2 thrusters with throttles between −1 and 1. Let η′max
denote the maximum absolute value of the throttles given in
Eq. (37). If η′max > 1, then the controller in Eq. (37) can be
modified to satisfy the throttle bounds as

η = −R−1FTω

η′max

(42)

It is straightforward to see that the asymptotic stability of
the controller is maintained.

V. NUMERICAL EXAMPLES

In this section, numerical examples will be presented to
show the effectiveness of the controllers. The spacecraft
design is adopted from Ref. [1]. The mass of the spacecraft
is 18,000 kg. The cylindrical bus is axisymmetric, with a
diameter of 2.7 m and a height of 5.9 m. Four pods, each
containing four RCS thrusters, are mounted to the bus on
struts as shown in Fig. 5 of Ref. [1] (p. 23). Each pod has a
radial distance of 2 m from the cylinder’s axis of symmetry,
and is 0.3 m from the cylinder’s end. Each thruster can apply
200 N of force, and has a specific impulse Isp = 287 s. The
position vector rB

∗Pi from the mass center of the bus, B∗,
to each of the four pods Pi (i = 1, 2, 3, 4), and directions of
thrust, are reported in Table 1.

A. Example 1: Attitude Synchronization

Use of the feedback controller to align b̂3 with â is
demonstrated in an example involving a tumbling unsym-
metric asteroid, taken to be an ellipsoid with semidiameters
α = 5 m, β = 3 m, and γ = 4 m, and a uniform
density of 2000 kg/m3. The angular velocity of A in N
is characterized at t = 0 by the values NωA · â1 = 0.6
deg/s, NωA · â2 = 0.6 deg/s, and NωA · â3 = 6.0 deg/s
(60 revolutions per hour). The line of descent, â, is chosen
to have the same direction as â3.

Although four controllers are presented in Section II-B,
only the linear controller in Eq. (18) is demonstrated here.



It is assumed here that the procedure of reorienting the
spacecraft and spinning up about the axis of symmetry is
executed before t = 0. That is, at t = 0, b̂3 is aligned
with â3, and the spacecraft spins about b̂3 at 6.0 deg/s. In
addition, the angle between b̂1 and â1 is arbitrarily chosen
to be 60 deg. The controller consisting of Eqs. (18), (20),
and (22) is applied at t = 0.

Results are shown in Fig. 4. Figure 4(a) shows the measure
numbers δi (i = 1, 2, 3) of the angular velocity of the
spacecraft relative to the asteroid. The controller is able to
drive the errors to zero in about 200 s. The angle between the
spacecraft axis of symmetry and the line of descent, which
can be expressed as cos−1(b̂3 · â3), is shown in Fig. 4(b).
The angle is driven to zero within about 200 s. The torque
commanded by the controller is shown in Fig. 4(c). Notice
that after 200 s torque is required continuously to keep the
angular velocity errors at zero, and b̂3 aligned with â3.
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Fig. 4. (a) Relative angular velocity measure numbers δi = AωB · b̂i
(i = 1, 2, 3), (b) angle between the axis of symmetry and the line of descent,
(c) control torque required for attitude synchronization.

B. Example 2: Despin

The despin controller is demonstrated with the spacecraft
and asteroid introduced in Example 1. The result of capture is
that b̂3 has the same direction as â3, the top of the spacecraft
is in contact with the asteroid, and a 60-deg relative angle
about b̂3 is present, as discussed in Example 1. Unit vectors
b̂1, b̂2, and b̂3 fixed in the composite body B are chosen to
be parallel to the diameters of the ellipsoidal asteroid. The
angular velocity of B in N is characterized at t = 0 by the
values NωB · b̂i (i = 1, 2, 3) equal to 0.6 deg/s, 0.6 deg/s,
and 6.0 deg/s, respectively.

Because the mass of the captured asteroid is significantly
greater than that of the spacecraft, the center of mass of B
is close to that of the asteroid. In this case, moment in the
direction of b̂1 or b̂2 is applied with an arm that is 4.2 times
as large as the arm associated with moment in the direction
of b̂3. In Ref. [2], tumbling is intentionally induced in order
to take advantage of larger moment arms. In the present
example, the largest component of angular velocity is in the
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Fig. 5. Angular velocity of the composite body during despin.

direction of b̂3, which is parallel to the intermediate axis
of inertia, and the initial conditions correspond to a state of
tumbling. By waiting for 251.7 s until the angular momentum
is transferred to the plane spanned by b̂1 and b̂2, and then
applying the despin controller, one can take advantage of
the larger moment arms. The controller drives the angular
velocity asymptotically to zero, as shown in Fig. 5, and
34 kg of propellant in consumed. The cost of not waiting
for angular momentum transfer is 64 kg of propellant, an
increase of 88%.

VI. CONCLUSION

Attitude control associated with capturing a free-flying
asteroid using an axisymmetric spacecraft is considered. It
has been shown that the axis of symmetry of the spacecraft
can be aligned asymptotically with a line of descent fixed
in an asteroid, and the relative angular velocity between the
two bodies can be made to vanish. An analytical expression
is obtained for the torque required to keep the spacecraft axis
of symmetry aligned with that of an axisymmetric asteroid.
After the asteroid is securely captured, the angular velocity of
the composite body relative to an inertial frame can be driven
asymptotically to zero. In some cases propellant consumption
can be reduced by waiting for angular momentum transfer
to occur before applying the despin controller, because then
advantage can be taken of longer momentum arms about
certain axes.
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