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Abstract—For biological experiments aiming at calibrating provided by an experiment can be quantified as the difference
models with unknown parameters, a good experimental desigis  petween the entropy of the prior and the entropy of the
crucial, especially for those subject to various constraits, such posterior. To anticipate the information gain before perfing

as financial limitations, time consumption and physical pratica- th . t Lindl oses to average the informatio
bility. In this paper, we discuss a sequential experimentatiesign € experiment, Lindley prop g

based on information theory for parameter estimation and aply ~gain over all possible experimental outcomes. This expecte
it to two biological systems. Two specific issues are addrext information gain is interpreted as mutual informatioh [&l.

in the proposed applications, namely the determination of he  Thus the optimal experimental design is fount by maximizing
optimal sampling time and the optimal choice of observableThe the mutual information.

optimal design, either sampling time or observable, is acleved o .
by an information-theoretic sensitivity analysis. It is stown that Sebastiani and Wynri [6] show that when the conditional

this is equivalent with maximizing the mutual information and ~ €ntropy of the observable given the parameters is not func-
contrasted with non-adaptive designs, this information tleoretic  tionally dependent on the design then the optimal design can

strategy provides the fastest reduction of uncertainty. be found by just maximizing the entropy of the observable.
This maximum entropy strategy is a particular case of mutual
. INTRODUCTION information maximization. Even though estimating the epyr

The understanding of underlying dynamics in biologicats easier than estimating the mutual information, we show
systems through mathematical models requires a good parathat for the problems studied in this paper, this indepeoden
ter estimation from experimental data. However, expertiaenassumption does not hold. Therefore we adopt the general mu-
data collection in biological systems is a time consuming anual information maximization strategy for our data colien
costly operation due to its high reliance on human resourge®cess.
and specialized equipment. As a result, strategies based o&stimating mutual information from samples is challenging
design of experiments are needed to judiciously perforBome commonly used estimators include histogram based
data collections that meet various constraints of biolalgicestimator, kernel density estimator, akehearest neighbor
experiments[[1]. estimator (KNN). In their survey, Walters-Williams and [{][

In this paper, we adopt an information-theoretic sequentshow that parametric estimation usually outperform non-
experimental design which reduces the uncertainty in paraparametric estimation when data is drawn from a known family
eters by selecting designs that maximize the expected-infof distributions. However, this is not the case in most peatt
mation gain. This is equivalent with finding the experiméntgroblems. Khan et al[[8] compare different estimators that
design that can provide the highest statistical dependenmpentify the dependence between random variables, and show
between the model parameters and observables [2]. The sttt the kNN estimator of mutual information captures bette
shows that by monitoring the reduction in uncertainty aftehe nonlinear dependence than other commonly used estima-
each measurement update, one can design a stopping critenig. In our paper, we adopt the kNN estimator of mutual
for the experimental process which gives a minimal set afformation proposed by Kraskov et al.l [9], which is based
experiments to efficiently learn the model parameters. on KNN estimator of entropy proposed by Kozachenko and

The sequential model-driven data collection approach is aeonenko [[10].
iteration between optimal design determination, measarém After each design stage a Bayesian update needs to be per-
collection and parameter estimation. This is naturallyeglosformed to obtain the posterior distribution of the paramete
in the Bayesian framework. After each optimal design iSiven that the biological systems in this paper are desdribe
determined, Bayesian update is applied to obtain the gosteby nonlinear ordinary differential equations, Markov Ghai
distribution of model parameters given the newly acquirddonte Carlo (MCMC) and sequential Monte Carlo methods
experimental data. We then repeat the cycle by using thee commonly used to solve the Bayesian update problem [11].
current posterior distribution to determine the next oplim Since we need to sequentially solve for the posterior, wetdo
design. the ensemble Kalman filter (EnKF) to obtain samples that are

The basis for our data collection strategy is Shanndalistributed according to the posterior distribution of rabd
entropy [3], which quantifies the uncertainty of a randomarameters. The EnKF propagates a relatively small engembl
variable. Lindley [[4] proposes that the amount of inforrati of samples through the system nonlinearities and during the
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measurement update it moves the ensembles such as t@hen the above expected information gain, the optimal ex-
mean and covariance approximate the first two moments priment is obtained by solving the following optimization
the posterior. problem:

The rational behind our sequential data collection strat- £ =argmax F4[U(d, £)] (5)
egy is described in Sectidnl Il. Bayesian update is detailed ¢es
in Section[Tll, and in Sectiof IV we apply this sequentiagyVe can expand the expected information gain by substituting
experimental design to two biological models: predataypr Eq. (3) in Eq. [(4):

and cell-signaling pathway. Finally, the conclusions audfe p(6,d|€)
work are given in SectiopV. U(d,§)] / / (6,d[£) 1og (e ——>2df@dd
Il. INFORMATION-THEORETIC EXPERIMENTAL
DESIGN —// 6.d|&) log p(0)dOdd (6)
In our work, the goal of experiments is to estimate unknown (6. p(0,d|€) p(0.di§) o 7
parameters of biological systems. Each observation dartgs [€) 1o (d|§) (6) ()
to the reduction in parametric uncertainty. Design of ekper = I 0 d|£ ®)

ments determine experimental conditions which can provide
the observations that carry the most information leading tere, 1(6;d[) is the mutual information between model
the least uncertainty in the posterior parameters. parameters® and model predictions/observablds Mutual
The biological models used in this paper are generalijformation provides a measure of statistical dependeree b
represented by the following ordinary differential equati:  tween the parameters and observables and it quantifies the
reduction in uncertainty in the parametésvhen knowingd.

X(t) = f(x(t),0,¢) @ Therefore, our model-driven data collection is based oruadut
d = HX(?) + €meas (2)  information maximization.
wherex(t) is the state of the systes € = is the design ¢ = argmax 1(6;d[€) )
variables associated with the experimental scenario,Zisl £eE ’

the design space. The uncertain model parameters are dengigis information theoretic experimental design determithe

by 6 € ©, and the random vectat,,..s is the observation experimental scenari¢* where the expected observations
noise due to measurement imprecision. The measuremﬁa@e the h|ghest impact on model parameters_

noise is assumed to be normally distributed with zero mean

and covariance matriR. The observablel is assumed here B. Relation with maximum entropy maximization

to be a linear combination of system states. The measuremeriote that Eq.[{[7) can also be expanded as follows:

data is obtained at a series of observation times, and the ( p(d|6, €)
vel = [ [ po.deo

parameter® are estimated from the observations via BayesianEq[U —=——_—2240dd (10)
update. p(d[€)p(0)
In the followings we present an information-theoretic ex- = // p(0,d[§) logp(d|6, §)dOdd (11)
perimental design, to determine the experimental conugfo DJ/oe
that provides the highest reduction in parametric unagstai _ // p(0,d|¢) log p(d|€)dOdd (12)
DJ®

A. Criterion to find the optimal design

According to Lindley [4], the amount of information pro-
vided by an experimenrg, with prior knowledgep(@), when where the first term in EqL{13) is the conditional entropy of

= —H¢(d|6) + He(d) (13)

the observation isl, is the observable given the parameters, and the second term is
the entropy of the observable.
U(d,§) =-— / p(8)log p(6)do— WhenH,(d|0) is independent on the design variaglehen
2 (3) the optimal design can be found by maximizing the entropy
(—/@p(0|d)10gp(9|d)d9) of the observable/,(d). Note that
where the two terms on the right represent the entropy p(d|0,€):/p(d|X(t))p(X(t)|0,€)dX(t). (14)
of prior and posterior distribution respectively. The ityil X

function U(d, §) quantifies the information gained from theror systems described by Eds. (@)-(2), that have certdiilini
experimental datad. However, since we do not know theconditions, namelyx(0) is perfectly known,p(x(t)|6) is a
observation before performing the experiment, we computgrac delta function ang(d|@) will be solely determined by
the average amount of information provided by an experimeafk distribution of the measurement noise. Heiked|0) =
€ by marginalizing over the all possible observables predict] /21og|27eR| which is independent of the design variable.
by the model: However, in the presence of uncertain initial conditions,
H¢(d|0) is in general dependent on the design variable, which
Eq[U(d, §)] Z/DU(df)P(dE)dd ) mfe(arls maximum entropy strategy will not be applicable.



This is especially accentuated in sequential inferencenEwfilter (PF). Both EnKF and PF use samples to describe prob-
though we may start with a certain initial condition in thebility distributions; the samples are called ensemble bwm
beginning, due to parametric uncertainty, subsequentlgnee in EnKF and particles in PF.

up with posterior distributions for the state which become EnKF updates each ensemble member at finas follows:
priors in future designs. Thus we adopt mutual information

maximization in our design strategy. g (k) = @) (k) + BL(HTHB ()H" + R
. _ f
C. Mutual information estimation [d; (k) H%(k)] _ (21)
In this paper, mutual information is estimated using the kNN I (k) = [}) (k) — x) (B)][x) (k) — x} (k)]T (22)
estimator proposed by Kraskov et all [9] as follows: ¢ = [xa(k) — xa (k)][xg (k) — xa(k)]T (23)
N
1(6;d|¢) ~ — 1 (h(ng(i) + 1) + ¥(na(i) + 1)) where the perturbed measuremedigk) = d(k) + ¢;, for
N~ j=1...N andN is the number of ensemble members, and
+ (k) + ¥(N) (15) Re= ee’' is the samples covariance matrix of the measure-

ment noise. The analysis ensemble memifgf(k) represents
Here, nq(i) and ny(i) are the number of samples in thehe jth sample from the current posterior distribution. The
marginal space within the distance from thie sample to its forecast ensemble membgg (k) is obtained by propagating
kNN in the joint space, and(k) is the digamma function the corresponding ensembleg ;(k — 1), from the previous
which satisfy the recursiony(k + 1) = (k) + 1/z and posterior distribution through the mathematical modelr Fo
Y(1) = —C, whereC' ~ 0.5772156 is the Euler-Masheroni more details on theoretical analysis and implementation of
constant. Note that a small value fbrwill result in a small EnKF one can refer to Ref.[12].
bias but a large variance and vice-versa. Also, the effigienc
of the estimator decreases as the dimensionality of the join IV. APPLICATION

space increases. . : . . .
P For biological experiments, the design scenario can be the

I1l. BAYESIAN UPDATE choice of observation times, pattern of stimulations, anthle
After performing an experiment, the observation data Icshoice of observables [11]. In this section, maximum mutual

collected, and the posterior distribution is obtained gsir{nforma'uon strategy is applied to two models: predataypr

Bayes rule. In this paper both stateand parameted are and STATS cell-signaling pathway. For the first model, we

updated together. We tred also as a state variable by];gglézl%‘et?oecfggr:?:]:giig?\};%?et'srgleesété:d for the second

augmenting the following equation to the process model Iin
Eq.(D), . A. Predator-Prey
6=0. (16) )
The Lotka-Volterra equation
For simplicity we denote wittx, the vector of both state and

parametersys = [x 8]7. In sequential inference, the posterior @1(t) = —bhai(t)z2(t) + Os21(¢) (24)
distribution obtained at the current stage will be the prior Bo(t) = Oozy (t)22(t) — O4x2(2) (25)
distribution in the next stage. SuppoBg = {d;,do,...,d, }

is a set of observations at sequential stages. We can derivés widely used to describe the dynamics of biological system

the following recursive Bayesian update: in which a prey and its predator interact. The statgsand
x9 are population of a prey and its predator(t) andis(t)
p(Xg|Dy) = YM (17) represent the growth rates of the two populations over time
p(Dn) and the parameter, and 6, describe the interaction of the
_ p(dn, Dn—1[Xg)p(Xs) (18) two species. Suppos#; and 6, are known, then in order
p(dn, Dr_1) to estimate parametefs andf,, sequential experiments are

~ p(dn|Dp—1,%X0)p(Dr—1/X0)p(Xp) performed. In each experiment, (¢) andz,(t) are measured

p(dn|Dp_1)P(Dy_1) (19) " with errors, and posterior distribution(|xs(t)) can be ob-
p(dy|Dy_1,%0)p(Xg|Dn—1) tained via Bayesian update. This posterior distributioth e
= p(dn[Dp1) (20) taken as the prior information for the following experiment

However, different measurement times will lead to différen
Given the joint posterior distribution of state and para@m&t amount of reduction in parametric uncertainty. In our study
the p_ost_erio_r distribution of the parameters is obtained Ryg compare maximum mutual information design strategy
marginalization. proposed in previous sections with non-adaptive strasegie
In this study the EnKF is used to obtain samples from poste-gq; simylation, we use the following linear observation

rior distributions. EnKF was first introduced by Evensen][13n0del with an additive Gaussian NOI&Ecqs ~ N (0,0.12)
and has been widely used in various applications. It origima ’

from Kalman filter and it has similarities also with the pelei di = z;(t) + €meas, 1=1,2 (26)



We use normal priorsV(0.7,0.1%) for 6; and N(0.4,0.1?)
for 6, and fix the other two parameters g = 1, 6, = 0.4.
The initial condition is given byr,(tp) = 2 and x2(ty) =
3. True parameter§;, ;] = [0.6,0.3] are used to generate
measurements, and simulated data is shown in[Fig. 1.

concentration

time

Fig. 1: Curves show how population changes with time andreliscdots are the
corresponding measurements simulated with true parasneteradditive Gaussian noise.

We divide the time spafil, 21] into 4 periods and in each
period there ar@ optional time points for measurement. The
maximum mutual information strategy is employed to adap
tively select a measurement time in each period. The reglucti
in the parametric uncertainty at the end of each period obthi
using mutual information maximization is compared with non
adaptive strategies and a random strategy. The non-adapt
strategies always select the same measurement time in e:
period and the random strategy picks at random a measurem
time. Here, the uncertainty of parameters is quantifiedgusin
standard deviation for individual parameters and entrapy f
joint parametric distributions. We are looking for the mosit
decrease in parametric uncertainty as more experiments ¢
selected.

We usel000 ensemble members in the EnKF and to esti
mate the mutual information, and the performance measur
are averaged over(0 trial runs. Results are shown in Fig.
[2. We can see that stratedy which always chooses the first

measurement time in each period, and maximum mutual ir-

formation strategy outperform the other strategies foucaty
the uncertainty of);. However maximum mutual information
provides the most reduction in the joint distribution of ot
parameters over all considered strategies.

B. STATS Cell-Signaling Pathway

For the second example we use the STAT5 Cell-Signalin
Pathway model presented by Swameye etlall [13]. For sin
plicity, we ignore the time delay and use a sustained stisulu
The model is given by the following set of ordinary differiaht
equations:
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il (f) = —6‘11‘1 (t) (27)
ig(f) —0ox (t)2 + 6121 (t) (28)
Il(t) —93563 (t) + %92562 (t)2 (29)
ig (f) 93,@3( ) (30)

Fig. 2: The performance of maximum mutual information st and non-adaptive
strategies are compared. Figure (a) and Figure (b) showttrelard variance o8,
and 6, after each experiment of different sequential designsurgigc) shows the joint
entropy of6, and 6> which quantifies the total uncertainty of both parameteigurie
(d) gives the root mean square error(RMSE) of parametemastn



where z (t) refers to the concentration of unphosphorylatedistributions and entropy for joint distributions.
STATS, x2(t) is the activated STAT5z5(¢) is the dimeric  We use2000 ensemble members in the EnKF and to esti-
STATS, andxy4(t) is the nucleus STAT5. The parametéis mate the mutual information, and the performance measures
62, 05 are three reaction rates which need to be estimated frame averaged ovel00 trial runs. The results are presented in
experimental data. Fig[4. We can see that while the reduction in uncertaintg,of
Suppose that experimentally is more cost effective to meandds; are minor, maximum mutual information strategy gives
sure either the total amount of activated STAT5 giveryby= the best estimate of; and the smallest joint entropy of the
x2 + 2x3 or STAT5 given byys = x1 + x2 + 2x3. This means three parameters as compared with the other three strategie
that every time step we have to make a choice betweemnd
y2, and different observables may cause different amount of
reductlo!ﬂ In unce_rtamty. In order to estimate the rea_atams, . In this paper, sequential experimental design is formdlate
sequentlgl experiments are performed and mutual mfonnatli the Bayesian framework where the posterior distribution
strategy is employed to select which observable needs to

. €model parameters obtained from one experiment is used
measured at each time step.
In our simulation, the three parameters have the saigg

as the prior information to design the next experiment. The
: . . . . sign criterion is maximizing the expected informatioimga

Eauss&)an_prllow [065’ 0_12) andghe_ln(;tlal and_'t'%ns_rire?'venwhich leads to the most reduction in parametric uncertainty

pgrill”rgeier_se : xQ(()l) _9 : x8(1)9_ : :641( :Zm?j the a((ejdirtl{lvee This design strategy is applied to two biological systems
_ L= a0 s = _ which are both represented by ordinary differential equresti

Gaussian Nnoise,,..s ~ N(0,0.12) are used to simulate the P y Y

system and generate measurements as shown [d Fig.3.

V. CONCLUSIONS

and it is showed that maximum mutual information strategy
outperforms non-adaptive design strategies. Howeveerakv
aspects needs improving and are planned as future work.
First, in this paper, we use ensemble Kalman filter to perform
Bayesian update, which is based on the assumption that the
) joint distribution between state and observable is Ganssia
which is not necessarily true on most occasions. MarkoviChai
Monte Carlo and sequential Monte Carlo methods have their
weaknesses too. Thus we are looking for more accurate and
general Bayesian update methods. Second, although mutual
information is a powerful tool to measure the dependence
between two random variables, estimating it is challenging
and biased. Better ways to make a tradeoff between bias and
variance are also needed. Third, on most occasions, we are
unable to access the true model, so we have to consider how
to deal with the model error.
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