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Abstract—For biological experiments aiming at calibrating
models with unknown parameters, a good experimental designis
crucial, especially for those subject to various constraints, such
as financial limitations, time consumption and physical practica-
bility. In this paper, we discuss a sequential experimentaldesign
based on information theory for parameter estimation and apply
it to two biological systems. Two specific issues are addressed
in the proposed applications, namely the determination of the
optimal sampling time and the optimal choice of observable.The
optimal design, either sampling time or observable, is achieved
by an information-theoretic sensitivity analysis. It is shown that
this is equivalent with maximizing the mutual information and
contrasted with non-adaptive designs, this information theoretic
strategy provides the fastest reduction of uncertainty.

I. INTRODUCTION

The understanding of underlying dynamics in biological
systems through mathematical models requires a good parame-
ter estimation from experimental data. However, experimental
data collection in biological systems is a time consuming and
costly operation due to its high reliance on human resources
and specialized equipment. As a result, strategies based on
design of experiments are needed to judiciously perform
data collections that meet various constraints of biological
experiments [1].

In this paper, we adopt an information-theoretic sequential
experimental design which reduces the uncertainty in param-
eters by selecting designs that maximize the expected infor-
mation gain. This is equivalent with finding the experimental
design that can provide the highest statistical dependence
between the model parameters and observables [2]. The study
shows that by monitoring the reduction in uncertainty after
each measurement update, one can design a stopping criteria
for the experimental process which gives a minimal set of
experiments to efficiently learn the model parameters.

The sequential model-driven data collection approach is an
iteration between optimal design determination, measurement
collection and parameter estimation. This is naturally posed
in the Bayesian framework. After each optimal design is
determined, Bayesian update is applied to obtain the posterior
distribution of model parameters given the newly acquired
experimental data. We then repeat the cycle by using the
current posterior distribution to determine the next optimal
design.

The basis for our data collection strategy is Shannon
entropy [3], which quantifies the uncertainty of a random
variable. Lindley [4] proposes that the amount of information

provided by an experiment can be quantified as the difference
between the entropy of the prior and the entropy of the
posterior. To anticipate the information gain before performing
the experiment, Lindley proposes to average the information
gain over all possible experimental outcomes. This expected
information gain is interpreted as mutual information [2],[5].
Thus the optimal experimental design is fount by maximizing
the mutual information.

Sebastiani and Wynn [6] show that when the conditional
entropy of the observable given the parameters is not func-
tionally dependent on the design then the optimal design can
be found by just maximizing the entropy of the observable.
This maximum entropy strategy is a particular case of mutual
information maximization. Even though estimating the entropy
is easier than estimating the mutual information, we show
that for the problems studied in this paper, this independence
assumption does not hold. Therefore we adopt the general mu-
tual information maximization strategy for our data collection
process.

Estimating mutual information from samples is challenging.
Some commonly used estimators include histogram based
estimator, kernel density estimator, andk-nearest neighbor
estimator (kNN). In their survey, Walters-Williams and Li [7]
show that parametric estimation usually outperform non-
parametric estimation when data is drawn from a known family
of distributions. However, this is not the case in most practical
problems. Khan et al. [8] compare different estimators that
quantify the dependence between random variables, and show
that the kNN estimator of mutual information captures better
the nonlinear dependence than other commonly used estima-
tors. In our paper, we adopt the kNN estimator of mutual
information proposed by Kraskov et al. [9], which is based
on kNN estimator of entropy proposed by Kozachenko and
Leonenko [10].

After each design stage a Bayesian update needs to be per-
formed to obtain the posterior distribution of the parameters.
Given that the biological systems in this paper are described
by nonlinear ordinary differential equations, Markov Chain
Monte Carlo (MCMC) and sequential Monte Carlo methods
are commonly used to solve the Bayesian update problem [11].
Since we need to sequentially solve for the posterior, we adopt
the ensemble Kalman filter (EnKF) to obtain samples that are
distributed according to the posterior distribution of model
parameters. The EnKF propagates a relatively small ensemble
of samples through the system nonlinearities and during the
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measurement update it moves the ensembles such as their
mean and covariance approximate the first two moments of
the posterior.

The rational behind our sequential data collection strat-
egy is described in Section II. Bayesian update is detailed
in Section III, and in Section IV we apply this sequential
experimental design to two biological models: predator-prey
and cell-signaling pathway. Finally, the conclusions and future
work are given in Section V.

II. INFORMATION-THEORETIC EXPERIMENTAL
DESIGN

In our work, the goal of experiments is to estimate unknown
parameters of biological systems. Each observation contributes
to the reduction in parametric uncertainty. Design of experi-
ments determine experimental conditions which can provide
the observations that carry the most information leading to
the least uncertainty in the posterior parameters.

The biological models used in this paper are generally
represented by the following ordinary differential equations:

ẋ(t) = f(x(t), θ, ξ) (1)

d = Hx(t) + ǫmeas (2)

where x(t) is the state of the systemξ ∈ Ξ is the design
variables associated with the experimental scenario, andΞ is
the design space. The uncertain model parameters are denoted
by θ ∈ Θ, and the random vectorǫmeas is the observation
noise due to measurement imprecision. The measurement
noise is assumed to be normally distributed with zero mean
and covariance matrixR. The observabled is assumed here
to be a linear combination of system states. The measurement
data is obtained at a series of observation times, and the
parametersθ are estimated from the observations via Bayesian
update.

In the followings we present an information-theoretic ex-
perimental design, to determine the experimental condition ξ∗

that provides the highest reduction in parametric uncertainty.

A. Criterion to find the optimal design

According to Lindley [4], the amount of information pro-
vided by an experimentξ, with prior knowledgep(θ), when
the observation isd, is

U(d, ξ) =−

∫
Θ

p(θ) log p(θ)dθ−

(−

∫
Θ

p(θ|d) log p(θ|d)dθ)
(3)

where the two terms on the right represent the entropy
of prior and posterior distribution respectively. The utility
function U(d, ξ) quantifies the information gained from the
experimental datad. However, since we do not know the
observation before performing the experiment, we compute
the average amount of information provided by an experiment
ξ by marginalizing over the all possible observables predicted
by the model:

Ed[U(d, ξ)] =
∫

D
U(d, ξ)p(d|ξ)dd (4)

Given the above expected information gain, the optimal ex-
periment is obtained by solving the following optimization
problem:

ξ
∗ = argmax

ξ∈Ξ

Ed[U(d, ξ)] (5)

We can expand the expected information gain by substituting
Eq. (3) in Eq. (4):

Ed[U(d, ξ)] =
∫

D

∫
Θ

p(θ, d|ξ) log
p(θ, d|ξ)
p(d|ξ)

dθdd

−

∫
D

∫
Θ

p(θ, d|ξ) log p(θ)dθdd (6)

=

∫
D

∫
Θ

p(θ, d|ξ) log
p(θ, d|ξ)
p(d|ξ)p(θ)

dθdd (7)

= I(θ; d|ξ) (8)

Here, I(θ; d|ξ) is the mutual information between model
parametersθ and model predictions/observablesd. Mutual
information provides a measure of statistical dependence be-
tween the parameters and observables and it quantifies the
reduction in uncertainty in the parametersθ when knowingd.
Therefore, our model-driven data collection is based on mutual
information maximization.

ξ∗ = argmax
ξ∈Ξ

I(θ; d|ξ) (9)

This information theoretic experimental design determines the
experimental scenarioξ∗ where the expected observations
have the highest impact on model parameters.

B. Relation with maximum entropy maximization

Note that Eq. (7) can also be expanded as follows:

Ed[U(d, ξ)] =
∫

D

∫
Θ

p(θ, d|ξ) log
p(θ)p(d|θ, ξ)
p(d|ξ)p(θ)

dθdd (10)

=

∫
D

∫
Θ

p(θ, d|ξ) log p(d|θ, ξ)dθdd (11)

−

∫
D

∫
Θ

p(θ, d|ξ) log p(d|ξ)dθdd (12)

= −Hξ(d|θ) +Hξ(d) (13)

where the first term in Eq. (13) is the conditional entropy of
the observable given the parameters, and the second term is
the entropy of the observable.

WhenHξ(d|θ) is independent on the design variableξ, then
the optimal design can be found by maximizing the entropy
of the observable,Hξ(d). Note that

p(d|θ, ξ) =
∫

X
p(d|x(t))p(x(t)|θ, ξ)dx(t) . (14)

For systems described by Eqs. (1)-(2), that have certain initial
conditions, namelyx(0) is perfectly known,p(x(t)|θ) is a
Dirac delta function andp(d|θ) will be solely determined by
the distribution of the measurement noise. HenceHξ(d|θ) =
1/2 log |2πeR| which is independent of the design variable.
However, in the presence of uncertain initial conditions,
Hξ(d|θ) is in general dependent on the design variable, which
means maximum entropy strategy will not be applicable.



This is especially accentuated in sequential inference. Even
though we may start with a certain initial condition in the
beginning, due to parametric uncertainty, subsequently weend
up with posterior distributions for the state which become
priors in future designs. Thus we adopt mutual information
maximization in our design strategy.

C. Mutual information estimation

In this paper, mutual information is estimated using the kNN
estimator proposed by Kraskov et al. [9] as follows:

I(θ; d|ξ) ≈−
1

N

N∑
i=1

(ψ(nθ(i) + 1) + ψ(nd(i) + 1))

+ ψ(k) + ψ(N) (15)

Here, nd(i) and nθ(i) are the number of samples in the
marginal space within the distance from theith sample to its
kNN in the joint space, andψ(k) is the digamma function
which satisfy the recursionψ(k + 1) = ψ(k) + 1/x and
ψ(1) = −C, whereC ≈ 0.5772156 is the Euler-Masheroni
constant. Note that a small value fork will result in a small
bias but a large variance and vice-versa. Also, the efficiency
of the estimator decreases as the dimensionality of the joint
space increases.

III. BAYESIAN UPDATE

After performing an experiment, the observation data is
collected, and the posterior distribution is obtained using
Bayes rule. In this paper both statex and parameterθ are
updated together. We treatθ also as a state variable by
augmenting the following equation to the process model in
Eq.(1),

θ̇ = 0 . (16)

For simplicity we denote withxθ the vector of both state and
parameters,xθ = [x θ]T . In sequential inference, the posterior
distribution obtained at the current stage will be the prior
distribution in the next stage. SupposeDn = {d1, d2, ..., dn}
is a set of observations atn sequential stages. We can derive
the following recursive Bayesian update:

p(xθ|Dn) =
p(Dn|xθ)p(xθ)

p(Dn)
(17)

=
p(dn,Dn−1|xθ)p(xθ)

p(dn,Dn−1)
(18)

=
p(dn|Dn−1, xθ)p(Dn−1|xθ)p(xθ)

p(dn|Dn−1)P (Dn−1)
(19)

=
p(dn|Dn−1, xθ)p(xθ|Dn−1)

p(dn|Dn−1)
(20)

Given the joint posterior distribution of state and parameters,
the posterior distribution of the parameters is obtained by
marginalization.

In this study the EnKF is used to obtain samples from poste-
rior distributions. EnKF was first introduced by Evensen [12]
and has been widely used in various applications. It originates
from Kalman filter and it has similarities also with the particle

filter (PF). Both EnKF and PF use samples to describe prob-
ability distributions; the samples are called ensemble member
in EnKF and particles in PF.

EnKF updates each ensemble member at timek as follows:

xa
θ,j(k) = x

f
θ,j(k) +Σf

e (k)H
T [HΣf

e (k)H
T + Re]

−1×

[dj(k)− HΣf
e (k)] (21)

Σf
e (k) = [xfθ (k)− xfθ (k)][x

f
θ (k)− xfθ (k)]

T (22)

Σa
e = [xaθ(k)− xaθ(k)][x

a
θ(k)− xaθ(k)]

T (23)

where the perturbed measurementsdj(k) = d(k) + ǫj , for
j = 1 . . .N andN is the number of ensemble members, and
Re = ǫǫT is the samples covariance matrix of the measure-
ment noise. The analysis ensemble memberxa

θ,j(k) represents
the jth sample from the current posterior distribution. The
forecast ensemble memberx

f
θ,j(k) is obtained by propagating

the corresponding ensemble,xa
θ,j(k − 1), from the previous

posterior distribution through the mathematical model. For
more details on theoretical analysis and implementation of
EnKF one can refer to Ref.[12].

IV. APPLICATION

For biological experiments, the design scenario can be the
choice of observation times, pattern of stimulations, and/or the
choice of observables [11]. In this section, maximum mutual
information strategy is applied to two models: predator-prey
and STAT5 cell-signaling pathway. For the first model, we
focus on the optimal observation times, and for the second
model we focus on the observable selection.

A. Predator-Prey

The Lotka-Volterra equation

ẋ1(t) = −θ1x1(t)x2(t) + θ3x1(t) (24)

ẋ2(t) = θ2x1(t)x2(t)− θ4x2(t) (25)

is widely used to describe the dynamics of biological systems
in which a prey and its predator interact. The statesx1 and
x2 are population of a prey and its predator,ẋ1(t) and ẋ2(t)
represent the growth rates of the two populations over time
and the parametersθ1 and θ2 describe the interaction of the
two species. Supposeθ3 and θ4 are known, then in order
to estimate parametersθ1 and θ2, sequential experiments are
performed. In each experiment,x1(t) andx2(t) are measured
with errors, and posterior distributionp(θ|xθ(t)) can be ob-
tained via Bayesian update. This posterior distribution will be
taken as the prior information for the following experiment.
However, different measurement times will lead to different
amount of reduction in parametric uncertainty. In our study,
we compare maximum mutual information design strategy
proposed in previous sections with non-adaptive strategies.

For simulation, we use the following linear observation
model with an additive Gaussian noiseǫmeas ∼ N(0, 0.12)

di = xi(t) + ǫmeas, i = 1, 2 (26)



We use normal priorsN(0.7, 0.12) for θ1 andN(0.4, 0.12)
for θ2 and fix the other two parameters toθ3 = 1, θ4 = 0.4.
The initial condition is given byx1(t0) = 2 and x2(t0) =
3. True parameters[θ1, θ2] = [0.6, 0.3] are used to generate
measurements, and simulated data is shown in Fig. 1.
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Fig. 1: Curves show how population changes with time and discrete dots are the
corresponding measurements simulated with true parameters and additive Gaussian noise.

We divide the time span[1, 21] into 4 periods and in each
period there are3 optional time points for measurement. The
maximum mutual information strategy is employed to adap-
tively select a measurement time in each period. The reduction
in the parametric uncertainty at the end of each period obtained
using mutual information maximization is compared with non-
adaptive strategies and a random strategy. The non-adaptive
strategies always select the same measurement time in each
period and the random strategy picks at random a measurement
time. Here, the uncertainty of parameters is quantified using
standard deviation for individual parameters and entropy for
joint parametric distributions. We are looking for the most
decrease in parametric uncertainty as more experiments are
selected.

We use1000 ensemble members in the EnKF and to esti-
mate the mutual information, and the performance measures
are averaged over100 trial runs. Results are shown in Fig.
2. We can see that strategy1, which always chooses the first
measurement time in each period, and maximum mutual in-
formation strategy outperform the other strategies for reducing
the uncertainty ofθ1. However maximum mutual information
provides the most reduction in the joint distribution of both
parameters over all considered strategies.

B. STAT5 Cell-Signaling Pathway

For the second example we use the STAT5 Cell-Signaling
Pathway model presented by Swameye et al. [13]. For sim-
plicity, we ignore the time delay and use a sustained stimulus.
The model is given by the following set of ordinary differential
equations:

ẋ1(t) = −θ1x1(t) (27)

ẋ2(t) = −θ2x2(t)
2 + θ1x1(t) (28)

ẋ1(t) = −θ3x3(t) +
1

2
θ2x2(t)

2 (29)

ẋ2(t) = θ3x3(t) (30)
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(a) standard variance ofθ1
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(b) standard variance ofθ2
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(c) joint entropy ofθ1 andθ2

1 2 3 4
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

period

R
M

S
E

 

 

1
2
3
RND
MI

(d) root mean square error

Fig. 2: The performance of maximum mutual information strategy and non-adaptive
strategies are compared. Figure (a) and Figure (b) show the standard variance ofθ1
andθ2 after each experiment of different sequential designs. Figure (c) shows the joint
entropy ofθ1 andθ2 which quantifies the total uncertainty of both parameters. Figure
(d) gives the root mean square error(RMSE) of parameter estimation



wherex1(t) refers to the concentration of unphosphorylated
STAT5, x2(t) is the activated STAT5,x3(t) is the dimeric
STAT5, andx4(t) is the nucleus STAT5. The parametersθ1,
θ2, θ3 are three reaction rates which need to be estimated from
experimental data.

Suppose that experimentally is more cost effective to mea-
sure either the total amount of activated STAT5 given byy1 =
x2+2x3 or STAT5 given byy2 = x1 +x2+2x3. This means
that every time step we have to make a choice betweeny1 and
y2, and different observables may cause different amount of
reduction in uncertainty. In order to estimate the reactionrates,
sequential experiments are performed and mutual information
strategy is employed to select which observable needs to be
measured at each time step.

In our simulation, the three parameters have the same
Gaussian priorN [0.5, 0.1], and the initial conditions are given
by x1(0) = 1, x2(0) = 0, x3(0) = 0, x4(0) = 0. The true
parametersθ1 = 0.1, θ2 = 0.1, θ3 = 0.1 and the additive
Gaussian noiseǫmeas ∼ N(0, 0.12) are used to simulate the
system and generate measurements as shown in Fig.3.
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(a) STAT5 cell-signaling pathway model
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(b) Observables

Fig. 3: Figure(a) shows STAT5 cell-signaling pathway model. Figure(b) shows sim-
ulated time evolution of observables and corresponding measurements at time point
t = 2, 4, 8, 16, 32.

Here we apply the maximum mutual information strategy
to choose the optimal observable and compare it with non-
adaptive strategies: such as always choosing the same observ-
able and randomly choosing one observable at each time step.
As in the previous example the uncertainty of parameters is
quantified by standard deviation when referring to the marginal

distributions and entropy for joint distributions.
We use2000 ensemble members in the EnKF and to esti-

mate the mutual information, and the performance measures
are averaged over100 trial runs. The results are presented in
Fig.4. We can see that while the reduction in uncertainty ofθ2
andθ3 are minor, maximum mutual information strategy gives
the best estimate ofθ1 and the smallest joint entropy of the
three parameters as compared with the other three strategies.

V. CONCLUSIONS

In this paper, sequential experimental design is formulated
in the Bayesian framework where the posterior distribution
of model parameters obtained from one experiment is used
as the prior information to design the next experiment. The
design criterion is maximizing the expected information gain,
which leads to the most reduction in parametric uncertainty.
This design strategy is applied to two biological systems
which are both represented by ordinary differential equations
and it is showed that maximum mutual information strategy
outperforms non-adaptive design strategies. However, several
aspects needs improving and are planned as future work.
First, in this paper, we use ensemble Kalman filter to perform
Bayesian update, which is based on the assumption that the
joint distribution between state and observable is Gaussian,
which is not necessarily true on most occasions. Markov Chain
Monte Carlo and sequential Monte Carlo methods have their
weaknesses too. Thus we are looking for more accurate and
general Bayesian update methods. Second, although mutual
information is a powerful tool to measure the dependence
between two random variables, estimating it is challenging
and biased. Better ways to make a tradeoff between bias and
variance are also needed. Third, on most occasions, we are
unable to access the true model, so we have to consider how
to deal with the model error.
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