
Incremental Verification of Co-observability in Discrete-event Systems*

Huailiang Liu1, Ryan J. Leduc2, Robi Malik3 and S. L. Ricker4

Abstract— Existing strategies for verifying co-observability,
one of the properties that must be satisfied for synthesizing
solutions to decentralized supervisory control problems, require
the construction of the complete system model. When the system
is composed of many subsystems, these monolithic approaches
may be impractical due to the state-space explosion problem.
To address this issue, we introduce an incremental verification
of co-observability approach. Selected subgroups of the system
are evaluated individually, until verification of co-observability
is complete. The new method is potentially much more efficient
than the monolithic approaches, in particular for systems
composed of many subsystems, allowing for some intractable
state-space explosion problems to be manageable. Properties of
this new strategy are presented, along with a corresponding
algorithm and an example.

I. INTRODUCTION

One of the main challenges in the control of discrete-
event systems (DES) is the combinatorial explosion of the
state space. The state-space explosion problem becomes
a bottleneck for the application of supervisory control of
DES. To address the state-space explosion problem, an
incremental method has been successfully used in verifi-
cation of controllability without considering nonblocking
[3]. Nonblocking verification has been addressed using the
compositional approach [12], [6], in which the global system
is constructed incrementally using abstraction in order to
reduce the complexity of verification. A different type of
abstraction appears in [7], [11] based on supervision equiv-
alence to incrementally construct the monolithic supervisor
for a system.

All the above literature using incremental methods assume
that a supervisor has full observation, and none of them
consider the setting of decentralized control [15], in which
each supervisor can access only partial information and is
allowed to disable only a subset of controllable events. The
supervisors must coordinate the disabling and enabling of
events in order to realize the legal or desired behavior.

Decentralized discrete-event control problems arise natu-
rally through the investigation of a large variety of distributed
systems such as complex automated manufacturing systems,

*This work was supported by Natural Sciences and Engineering Research
Council of Canada (NSERC)

1Huailiang Liu and 2Ryan J. Leduc are with the Department of Comput-
ing and Software, McMaster University, Hamilton, ON L8S 4K1, Canada
{liuh26, leduc}@mcmaster.ca

3Robi Malik is with the Department of Computer Science, Uni-
versity of Waikato, Private Bag 3105, Hamilton, New Zealand
robi@waikato.ac.nz

4S. L. Ricker is with the Department of Mathematics and Computer
Science, Mount Allison University, Sackville, NB E4L 1E6, Canada
lricker@mta.ca

communication networks, integrated sensor networks, net-
worked control systems and automated guided vehicular
system. These systems have many supervisors (also called
controllers, agents or observers) that jointly control a given
system which is inherently distributed.

Due to the distributed nature of the system, in decen-
tralized control, supervisors at different sites typically can
only observe some of the events and can only control
some of the controllable events. In this situation, traditional
modular control is not appropriate and it is possible to use
decentralized control when the system satisfies a property
called co-observability [15]. Existing work on decentralized
supervisory control of DES focuses on problems where
decentralized controllers each control and observe some
events in a system and must together achieve some prescribed
goal. The synthesis of decentralized supervisors requires that
the specification satisfies the co-observability property. When
the system is very large and composed of many subsystems,
verifying co-observability using existing monolithic methods
requires the construction of the complete system model
which may be intractable in practice due to the state-space
explosion problem.

To address this problem, we introduce a new approach
called incremental verification of co-observability. Using this
method, verifying co-observability is done incrementally by
evaluating selected subgroups of the system individually,
until the entire system has been shown to be co-observable.
The incremental selection of suitable subgroups is guided
by counter examples defined in Section IV. Compared to
traditional monolithic methods, the new method is potentially
more efficient for very large systems composed of many
subsystems, rendering some intractable state-space explosion
problems to be manageable.

This paper is organized as follows. Section II reviews
supervisory control of DES. Section III provides details for
the incremental verification of co-observability. Section IV
presents an algorithm for incremental verification of co-
observability guided by counter examples. Section V applies
this algorithm to verify a classical communication protocol.
Finally, Section VI provides conclusions and future work.

Formal proofs of technical results can be found in [10].

II. PRELIMINARIES

This section provides a brief review of the key concepts
used in this paper. Readers unfamiliar with the notation and
definitions may refer to [4].

Event sequences and languages are simple ways to de-
scribe DES behaviors. Let Σ be a finite set of distinct
symbols (events), and Σ∗ be the set of all finite sequences

2014 American Control Conference (ACC)
June 4-6, 2014. Portland, Oregon, USA

978-1-4799-3271-9/$31.00 ©2014 AACC 5446

of events plus ε, the empty string. A language L over Σ is
any subset L ⊆ Σ∗.

The concatenation of two strings s, t ∈ Σ∗, is written
as st. Languages and alphabets can also be concatenated as:
Lσ := {sσ ∈ Σ∗|s ∈ L, σ ∈ Σ}.

For strings s, t ∈ Σ∗, we say that t is a prefix of s (written
t ≤ s) if s = tu, for some u ∈ Σ∗. In this case, we also say
that t can be extended to s.

The prefix closure L of a language L ⊆ Σ∗ is defined as
follows:
L := {t ∈ Σ∗|t ≤ s for some s ∈ L}.
A language L is said to be prefix-closed if L = L.
Let Σ = Σ1 ∪ Σ2, L1 ⊆ Σ∗1, and L2 ⊆ Σ∗2. For i ∈

{1, 2}, s ∈ Σ∗, and σ ∈ Σ, to capture the notion of partial
observation, we define the natural projection Pi : Σ∗ → Σ∗i
according to:
Pi(ε) := ε

Pi(σ) :=

{
σ, if σ ∈ Σi;

ε, otherwise.
Pi(sσ) := Pi(s)Pi(σ)

For convienence in the above definition, we only define for
i ∈ {1, 2}. In fact, projection works for any subset of Σ∗.

The inverse projection P−1
i is the mapping Pwr(Σ∗i) →

Pwr(Σ∗) defined on sets of strings (or languages), where
Pwr(Σ∗i) and Pwr(Σ∗) denote all subsets of Σ∗i and Σ∗

respectively. Given any Li ⊆ Σ∗i , the inverse projection
P−1
i (Li) is defined as: P−1

i (Li) := {s ∈ Σ∗ | Pi(s) ∈ Li}.
A DES automaton is represented as a tuple: G :=

(Q, Σ, δ, q0), with finite state set Q, finite alphabet set
Σ, partial transition function δ : Q × Σ → Q and initial
state q0. δ is defined at each state q ∈ Q for some of the
events σ ∈ Σ. We use δ(q, σ)! to represent that δ is defined
for σ ∈ Σ at state q. δ can be extended to Σ∗ by defining
δ(q, ε) := q and δ(q, sσ) := δ(δ(q, s), σ), provided that
q′ = δ(q, s)! and δ(q′, σ)!.

The closed behavior for a DES G is denoted by a regular
language L(G), and is defined to be: L(G) := {s ∈
Σ∗|δ(q0, s)!}. The reachable state subset of G, denoted as
Qr, is defined as: Qr := {q ∈ Q|(∃s ∈ Σ∗)δ(q0, s) = q}.
We say that G is reachable if Qr = Q.

Let G1 = (Q1, Σ1, δ1, q0,1) and G2 =
(Q2, Σ2, δ2, q0,2) be two automata. Their synchronous
product is a DES G over event set Σ = Σ1 ∪ Σ2 ,
G := G1||G2 = (Q1 × Q2, Σ, δ, (q0,1, q0,2)). For
(q1, q2) ∈ Q1 ×Q2, we define δ((q1, q2), σ) to be:

(δ1(q1, σ), δ2(q2, σ)), ifσ ∈ Σ1 ∩ Σ2, δ1(q1, σ)!, δ2(q2, σ)!;

(δ1(q1, σ), q2), if σ ∈ Σ1\Σ2 and δ1(q1, σ)!;

(q1, δ2(q2, σ)), if σ ∈ Σ2\Σ1 and δ2(q2, σ)!.
The synchronous product of languages L1 and L2, denoted

by L1||L2, is defined to be: L1||L2 := P−1
1 (L1)∩P−1

2 (L2).
If both L1 and L2 are over the same event set Σ, then they
have the following property: L = L1||L2 = P−1

1 (L1) ∩
P−1

2 (L2) = L1 ∩ L2. In this paper, for convenience, we
assume the synchronous product is defined over the same
event set Σ. If we are given an automaton defined over a

subset of Σ, we can simply self-loop the missing events at
each state.

In supervisory control, the event set Σ is partitioned
into two disjoint sets: the controllable event set Σc and
the uncontrollable event set Σuc. Controllable events can
be prevented from happening, or disabled, by a supervisor,
while uncontrollable events cannot.

Let K and L = L be languages over event set Σ, and
Σuc ⊆ Σ be the uncontrollable event set. K is said to be
controllable with respect to L and Σuc if, KΣuc ∩L ⊆ K.

The property of co-observability was introduced in [15],
and a verification algorithm was introduced in [14]. The
following is the definition of co-observability adapted from
[15], [1].

Definition 1: Let K, L = L be languages over event
set Σ. Let I = {1, ..., n} be an index set. Let Σc,i ⊆
Σ and Σo,i ⊆ Σ be sets of controllable and observable
events, respectively, for i ∈ I , where Σc = ∪ni=1Σc,i and
Ic (σ) := {i ∈ I |σ ∈ Σc,i}. Let Pi : Σ∗ → Σ∗o,i be a natural
projection. A language K is said to be co-observable with
respect to L, Σo,i, Σc,i, i ∈ I , if,

(∀t ∈ K ∩ L) (∀σ ∈ Σc) tσ ∈ L\K ⇒ (∃i ∈
Ic (σ)) P−1

i [Pi(t)]σ ∩K ∩ L = ∅.
Notice that in definition 1, when there is only one

controller (supervisor), I = {1}, the property is called
observability [9]. To apply the definition to languages repre-
sented by plant automaton G and specification (requirement)
automaton S, we use L = L(G) and K = L(S).

Since in practice the specification K is not necessarily a
subset of L, we do not require that K ⊆ L as in the original
definition. Instead of checking all strings in K, reasonably,
we check all strings in K ∩ L. This makes co-observability
easier to apply in an incremental algorithm.

To solve the control problem, decentralized controllers
take local control decisions based on their partial observa-
tions. When the system leaves K (i.e., tσ ∈ L\K, where
tσ ∈ L and tσ /∈ K) there must be at least one controller
(i.e., ∃i ∈ Ic (σ)) that has sufficient information from its
own view of the system to take the correct control decision
(i.e., disable σ). Note that, by default, a controller i ∈ I will
enable all events σ ∈ Σ\Σc,i.

If an event σ needs to be disabled (i.e., t ∈ K, tσ ∈
L\K), then at least one of the controllers that control σ
must unambiguously know that σ must be disabled (i.e.,
P−1
i [Pi(t)]σ∩K∩L = ∅). From this controller’s viewpoint,

disabling σ does not prevent any string in K ∩ L. For all
other controllers that are uncertain about whether they should
disable the event σ, they will enable the event σ, and the final
fusion rule used here is the conjunction of all the decisions
of controllers [15].

In the following, when there is no ambiguity, instead of
saying that K is co-observable with respect to L, Σo,i, Σc,i,
i ∈ I , we will say that K is co-observable w.r.t. L.

5447

III. INCREMENTAL VERIFICATION OF
CO-OBSERVABILITY

In practice, the synchronous product of the plant L =
L1|| · · · ||Lm and the specification K = K1|| · · · ||Kr may be
very large, and it is difficult to verify co-observability due to
the state-space explosion problem. Therefore, we introduce
an incremental verification method for co-observability.

Recall that if languages are over the same event set Σ,
then the above synchronous product of L and K have the
following property: L = L1|| · · · ||Lm = L1 ∩ · · · ∩ Lm,
K = K1|| · · · ||Kr = K1 ∩ · · · ∩Kr. This is why we use the
intersection of the languages in this section.

Proposition 1: Let K, L = L, M = M , be languages
over event set Σ. If K is co-observable with respect to M
and L ⊆M , then K is co-observable with respect to L.

Proposition 1 is a fundamental proposition which can be
paraphrased as follows: if a specification language K is co-
observable w.r.t. a language M , then it must be co-observable
w.r.t. all the prefix-closed sublanguages of M . We also know
that if L1 and L2 are prefix-closed, so is L = L1 ∩ L2.

Corollary 1: Let K, L1 = L1, and L2 = L2 be languages
over event set Σ. If K is co-observable with respect to L1

then K is co-observable with respect to L = L1 ∩ L2.
If we want to verify whether K is co-observable w.r.t.

L = L1 ∩ · · · ∩ Lm, it is sufficient to show that there exists
a subset of indexes {j1, ..., jk} ⊆ {1, ...,m} such that K is
co-observable w.r.t. L′ = Lj1 ∩ · · · ∩Ljk . This follows from
Corollary 1.

Proposition 2: Let K1, K2 and L be prefix-closed lan-
guages over event set Σ. If both K1 and K2 are co-observable
with respect to L, then K = K1 ∩K2 is co-observable with
respect to L.

Proposition 2 can be extended to an arbitrary number of
specification languages.

In the incremental verification of co-observability, given a
specification language K = K1 ∩ · · · ∩Kr and a language
L, if we want to verify whether K is co-observable w.r.t. L,
it is enough to simply show that for each j ∈ {1, ..., r}, Kj

is co-observable w.r.t. L. Combining this with Proposition 1,
we see that we can use a subsystem L′ instead of the global
system L for the verification.

Proposition 3: Let K1, K2, M1, and M2 be prefix-closed
languages over event set Σ. If K1 is co-observable w.r.t.
M1, and K2 is co-observable with respect to M2, then K =
K1 ∩K2 is co-observable with respect to M = M1 ∩M2.

Proposition 3 is useful for verifying co-observability in
large systems which include many subsystems. As described
above, to verify whether a specification language K = K1∩
K2 is co-observable w.r.t. a language M = M1 ∩M2, we
can simply show that K1 is co-observable w.r.t. M1, and K2

is co-observable w.r.t. M2. The results of Proposition 3 can
be extended to an arbitrary number of specification and plant
component languages.

Proposition 4: Let K, L be prefix-closed languages over
event set Σ. If K ⊇ L then K is co-observable w.r.t. L.

Proposition 4 indicates that any language is co-observable
w.r.t. all its sub-languages.

Proposition 5: Let K1, K2 and M be prefix-closed lan-
guages over event set Σ. If K1 is co-observable w.r.t. M∩K2,
and K2 is co-observable w.r.t. M , then K = K1 ∩K2 is co-
observable w.r.t. M .

Proposition 5 is used to show co-observability when K2 is
co-observable w.r.t. M and K1 is not co-observable w.r.t. M .
However, we still have that K = K1 ∩K2 is co-observable
w.r.t. M if K1 is co-observable w.r.t. the extended system
M ∩K2, according to Proposition 5. Essentially, Proposition
5 allows us to treat specification K2 as a plant component.

Proposition 6: Let K1, K2, M1 and M2 be prefix-closed
languages over event set Σ. If K1 is co-observable w.r.t.
M1 ∩ K2, and K2 is co-observable w.r.t. M2, then K =
K1 ∩K2 is co-observable w.r.t. M = M1 ∩M2.

Compared to Proposition 5, Proposition 6 provides us with
a more general way to incrementally verify co-observability,
especially for systems composed of a large number of
subsystems.

Here, the plant language M = M1 ∩ M2 has only
two components. In fact, the system can have an arbitrary
number of components, which is also true for the number of
components of the specification languages.

Proposition 7: Let K1, K2 and M be prefix-closed
languages over event set Σ. If K1 is not co-observable w.r.t.
M ∩K2, then K = K1 ∩K2 is not co-observable w.r.t. M .

Proposition 7 is used for incremental verification to deter-
mine the failure of co-observability. If we can show that K1

is not co-observable w.r.t. M ∩ K2, then we can conclude
that K = K1 ∩K2 is not co-observable w.r.t. M .

In the incremental verification of co-observability, we can
use each of the above propositions independently, and we
also can combine any of the above propositions to verify
co-observability in a very flexible way.

IV. ALGORITHM

In this section, we give an algorithm on how to do in-
cremental verification of co-observability guided by counter
examples.

To show that the system fails to satisfy co-observability,
we give the definition of a counter example for co-
observability.

Definition 2: Let K, L = L be languages over event
set Σ. Let Σc,i ⊆ Σ and Σo,i ⊆ Σ be sets of con-
trollable and observable events, respectively, for i ∈ I ,
Ic (σ) :={i ∈ I |σ ∈ Σc,i}. Let Pi : Σ∗ → Σ∗o,i be a nat-
ural projection. A co-observability counter example for the
specification K and the plant L is a tuple C =(σ, t,t1, ..., tn)
where
- σ ∈ Σc;
- t ∈ K ∩ L and tσ ∈ L\K;
- (∀i ∈ Ic (σ)) tiσ ∈ K ∩ L;
- (∀i ∈ Ic (σ)) Pi(t) = Pi(ti).

Please note that for i ∈ I\Ic(σ), the corresponding
controllers cannot disable σ, therefore these ti in C cannot
affect whether Definition 2 is satisfied or not. As such, these
ti in C can be safely ignored.

5448

To show that a specification rejects a co-observability
counter example, we give the following definition. The
intention is that if we replace K in Definition 2 by K ∩K ′,
then C will no longer be a valid counter example.

Definition 3: If C = (σ, t, t1, ..., tn) is a co-observability
counter example for the specification K = K and the plant
L = L, we say that specification K ′ = K ′ ⊆ Σ∗ rejects C,
if:
- t /∈ K ′, or
- (∃i ∈ Ic(σ)) tiσ /∈ K ′.

Analogously, we give the definition bellow for when a
plant rejects a co-observability counter example. The inten-
tion here is that if we replace L in Definition 2 by L ∩ L′,
then C will no longer be a valid counter example.

Definition 4: If C = (σ, t, t1, ..., tn) is a co-observability
counter example for the specification K = K and the plant
L = L, we say that plant L′ = L′ ⊆ Σ∗ rejects C, if:
- tσ /∈ L′, or
- (∃i ∈ Ic(σ)) tiσ /∈ L′.

The plant is L = L1|| · · · ||Lm, and the specification is
K = K1|| · · · ||Kr, all over the same event set Σ. We want
to verify whether K is co-observable w.r.t. L. Algorithm 1
describes incremental verification of co-observability guided
by counter examples. The general idea is:

(1) If each Ki, where i ∈ {1, ..., r}, is co-observable w.r.t.
a component of L, then K is co-observable w.r.t. L according
to Propositions 2 and 3.

(2) If K ′ = Ki1 || · · · ||Kia where {i1, ..., ia} ⊆
{1, ..., r} is co-observable w.r.t. L′ = Lj1 || · · · ||Ljb where
{j1, ..., jb} ⊆ {1, ...,m}, then K ′ is co-observable w.r.t.
L, according to Proposition 1 and Corollary 1. This is a
compensation used when some Ki in (1) is not co-observable
w.r.t. L.

(3) If Ki, where i ∈ {1, ..., r}, is co-observable w.r.t. a
component of L, then Ki can be treated as a plant to be
synchronized with L, according to Propositions 5 and 6.

(4) If there is a counter example which shows that Ki is
not co-observable w.r.t. L||K1|| · · · ||Ki−1||Ki+1|| · · · ||Kr,
then we can conclude that K is not co-observable w.r.t. L,
according to Proposition 7.

To understand the abstract description of Algorithm 1,
we need to define the relationship of the set of plants
L = {L1, ..., Lm} and the language L = L1|| · · · ||Lm, and
the set of specifications K = {K1, ...,Kr} and the language
K = K1|| · · · ||Kr. The set L is represented as the language
L, and similarly the set K is represented as the language K.

We can define the meaning of line 5. When we say
that K′ = {Ki1 , ...,Kia} is not co-observable w.r.t. L′ =
{Lj1 , ..., Ljb}, what we mean is that a subsystem K ′ =
Ki1 || · · · ||Kia where {i1, ..., ia} ⊆ {1, ..., r} is not co-
observable w.r.t. a subsystem L′ = Lj1 || · · · ||Ljb where
{j1, ..., jb} ⊆ {1, ...,m}.

In practice, the plant and specification are all repre-
sented as DES: L = L1|| · · · ||Lm is represented as
L(G) = L(G1)|| · · · ||L(Gm), and the specification K =
K1|| · · · ||Kr is represented as L(S) = L(S1)|| · · · ||L(Sm).

Algorithm 1 Incremental Coobservability Verification
1: input plants L = {L1, . . . , Lm},

specifications K = {K1, . . . ,Kr};
2: while K 6= ∅ do
3: Pick a Ki ∈ K;
4: Let K′ = {Ki}, L′ = ∅;
5: while K′ is not co-observable w.r.t. L′ do
6: Let C be a counter example showing that K′ is not

co-observable w.r.t. L′;
7: Find a component Lj ∈ L \ L′ or Kh ∈ K \ K′

which does not accept C;
8: if there is no such a component then
9: stop “K = {K1, . . . ,Kr} is not co-observable

w.r.t. L = {L1, . . . , Lm}, counter example: C”;
10: else if the component found in line 7 is a plant

then
11: Let L′ = L′ ∪ {Lj};
12: else
13: Let K′ = K′ ∪ {Kh};
14: end if
15: end while
16: Let K = K \ K′, L = L ∪ K′;
17: end while
18: stop “K = {K1, . . . ,Kr} is co-observable w.r.t. L =
{L1, . . . , Lm}”;

Notice that on line 4, we assign L′ = ∅, which thus
means that the corresponding language L′ = Σ∗. We say
that L′ = ∅ represents the language of the automaton for the
empty set of plants. We represent L′ = Σ∗ as the language for
the automaton GΣ∗ defined over Σ, which is an automaton
with only an initial state at which every event in Σ is self-
looped. We thus have L(GΣ∗) = Σ∗. This means that for
any auomaton G defined over Σ, G||GΣ∗ = G, and thus
L(G||GΣ∗) = L(G). In other words, we initially verify
whether K ′ is co-observable w.r.t. Σ∗.

On line 2, if K is initially empty then the specification
K = Σ∗ will be co-observable w.r.t L, which is trivially
true. This is because K = Σ∗ is a superset of all languages
over Σ and is co-observable w.r.t. every language over Σ
according to Proposition 4.

If K is not empty, then on line 3, one component Ki ∈
K = {K1, ...,Kr}, where i ∈ {1, ..., r}, will be picked
to verify whether Ki is co-observable w.r.t. L. If each
component Ki is co-observable w.r.t. L, then according to
Propositions 2 or 3, K will be co-observable w.r.t. L. In fact,
the following steps will use only one or some components
of L = {L1, ..., Lm}, because if Ki is co-observable w.r.t.
some components of L, then it will be co-observable w.r.t.
L according to Proposition 1 and Corollary 1.

On line 6, a counter example C = (σ, t,t1, ..., tn) will
be produced by the algorithm to show that K ′ is not co-
observable w.r.t. L′ according to Definition 2. If there are
many counter examples, then usually the shortest one will
be selected. Some other heuristics can also be used to select

5449

counter examples.
On line 7, a component Lj in L\L′ or Kh in K\K′ which

does not accept C is selected according to Definiton 4 or
Definition 3, respectively.

Lines 8 and 9 demonstrate that if there is no such a compo-
nent, then we know that every other component accepts the
counter example C. Thus we can give the counter example
C which shows that K is not co-observable w.r.t. plant L by
Proposition 7.

Lines 10 and 11 incrementally add a plant component Lj

to L′ where j ∈ {1, ...,m}.
Lines 12 and 13 incrementally add a specification compo-

nent Kh to K′ where h ∈ {1, ..., r}.
If the subsystem consisting of specifications K′ and plants

L′ is found to be co-observable, then line 16 removes the
specifications K′ from K and adds them to L, so they
are treated as plants for the remainder of the algorithm,
according to Proposition 5. The algorithm terminates when
the set K of specifications to be checked is empty in which
case it asserts co-observability on line 18.

V. INCREMENTAL VERIFICATION OF CO-OBSERVABILITY
FOR THE SEQUENCE TRANSMISSION PROTOCOL

In this section, we demonstrate the incremental verification
of co-observability for the sequence transmission protocol
which is a classical network protocol that occurs at the data
link layer of the ISO OSI Reference Model [16].

A. The Sequence Transmission Problem

The sequence transmission problem is widely used in
the literature of communication protocols [8], most often
referred to by the name of its most famous solution: the
Alternating Bit Protocol [2].

The sequence transmission problem can be stated in this
way [8]: consider two agents, called the sender and the
receiver. The sender will transmit in steps an arbitrarily
long sequence of data messages to the receiver. The receiver
must print out the sequence in the correct order and without
duplicates.

This problem clearly has a trivial solution if we assume
that messages sent by the sender can not be lost, corrupted,
duplicated, or reordered. However, once we consider a faulty
communication medium, the problem becomes far more
complicated.

In the supervisory control framework, the sequence trans-
mission problem is modeled in [5], [13]. The sequence
transmission protocol modeled in this paper is adapted from
[13]. Here, the physical requirements are: the sender and
the receiver can only communicate via message exchanges,
communication is asynchronous, all messages are transmitted
over a half-duplex channel (i.e., bidirectional channel which
may be used only in one direction at a time), the channel
may lose messages, the sender may append one control bit
0 or 1 to data messages, and the receiver may transmit
acknowledgement (ack) of one bit 0 or 1.

B. Protocol Model

The set Σ of all possible events is given by
Σ = {g, s0, s1, ra0

, ra1
, l, a0, a1, rs0 , rs1 , p}

where
g := get new data,
s0 := send data with control bit set to 0,
s1 := send data with control bit set to 1,
rs0 := receive data with control bit set to 0,
rs1 := receive data with control bit set to 1,
p := print data received,
a0 := acknowledge data with control bit set to 0,
a1 := acknowledge data with control bit set to 1,
ra0

:= receive ack with control bit set to 0,
ra1

:= receive ack with control bit set to 1,
l := contents in the channel are lost.
In this model, Σc = {g, s0, s1, a0, a1, p}.
Figure 1 is the behavior of the plant component SENDER.

The behavior of SENDER is: SENDER gets new data and
sends it; a loss causes it to re-send some data; receiving an
acknowledgement can cause it to re-send the same data or
some new data; receiving some acknowledgements can also
cause it to get new data; then it repeats all the above actions.

Note that each automaton self-loops all events in Σ that
are not shown in its diagram.

Fig. 1. The plant component SENDER

Figure 2 is the behavior of the plant component
RECEIVER. Figure 3 illustrates the behavior of the plant
component CHANNEL, which is a buffer with capacity one.

Fig. 2. The plant component RECEIVER

Figure 4 and 5 show the specification requirement for
SpecSNDR and SpecRCVR.

Figure 6 is the specification automaton SpecSEQ for
the sequence transmission requirement. The behavior of
SpecSEQ requires that the sequence printed out should
equal the input sequence. SpecSEQ shows that g and p
must alternate, which captures the legal requirement of the
sequence transmission problem.

There exist two decentralized controllers in this protocol:
the controller on the sender side, called controller one, and
the controller on the receiver side, called controller two.
Both decentralized controllers have limited controllable and
observable event subsets.

5450

Fig. 3. The plant component CHANNEL

Fig. 4. The Specification of SENDER

Fig. 5. The Specification of RECEIVER

Fig. 6. The Specification of Sequence

From the sender side, controller one can only observe the
following events: Σo,1 := {g, s0, s1, ra0

, ra1
, l}.

Therefore, the events on the receiver side are unobservable
for controller one. We assume that there is a long enough
timeout mechanism, which allows controller one to recognize
that a data frame has been lost. In practice, this can be done
by setting a time-to-live limit in the frame. After the time
limit expires, if the required data is not received, then it
disappears from the channel and will never reach the other
side.

The set of controllable events for controller one is, Σc,1 :=
{g, s0, s1}. Namely, controller one can only control “get
data” and “send data”, and cannot control “receive data”,
“lose data” and all the events on the receiver side.

From the receiver side, controller two can only observe the
following events, Σo,2 := {a0, a1, rs0 , rs1 , p}. The set of
controllable events for controller two is, Σc,2 := {a0, a1, p}.

The behavior of the whole plant system is represented
by the synchronous product of all the plant components
G1 = SENDER, G2 = RECEIVER, and G3 = CHANNEL.
Therefore, the whole plant system is G := G1||G2||G3.
The language generated by plant system G is L(G) :=
L(G1||G2||G3) = L(G1)||L(G2)||L(G3).

The languages of the specifications are: K1 =
L(SpecSNDR), K2 = L(SpecRCVR), and K3 =
L(SpecSEQ). Therefore the global specification K is rep-
resented by K := K1||K2||K3.

C. Verification of the Protocol

We need to verify whether the global specification K is
co-observable w.r.t. L(G). According to Propositions 2 and
3, if each component requirement K1, K2 and K3 is co-
observable w.r.t. L(G), then K is co-observable w.r.t. L(G).
According to Proposition 1, it is enough to only consider a
subsystem L(G′) instead of the whole system L(G).

1. Verification whether K1=L(SpecSNDR) is co-
observable w.r.t. L(G).

Step 1.1, we start from the empty subset of G, i.e., we
let G′ = GΣ∗ , and verify whether K1 is co-observable w.r.t.
L(GΣ∗) = Σ∗. Fortunately, by examining the strings in K1,
we find that K1 is co-observable w.r.t. Σ∗.

Thus we conclude that K1 is co-observable w.r.t. L(G) by
Proposition 1 and Corollary 1.

2. Verification whether K2 = L(SpecRCVR) is co-
observable w.r.t. L(G).

Step 2.1, we start from the empty subset of G, i.e., we
let G′ = GΣ∗ , and verify whether K2 is co-observable w.r.t.
L(GΣ∗) = Σ∗. This is true.

Thus we conclude that K2 is co-observable w.r.t. L(G) by
Proposition 1 and Corollary 1.

3. Verification whether K3 = L(SpecSEQ) is co-
observable w.r.t. L(G).

Step 3.1, we start from the empty subset of G, i.e., we
let G′ = GΣ∗ , and verify whether K3 is co-observable w.r.t.
L(GΣ∗) = Σ∗.

It is easy to find that K3 is not co-observable w.r.t. Σ∗.
There is a very short counter example t = ε ∈ K3 ∩ L(G′),
σ = p ∈ Σc,2, tσ = p ∈ L(G′)\K3, t′ = g, P2(t) =
P2(t′) = ε, t′σ = gp ∈ K3 ∩ L(G′). Controller two cannot
distinguish between tσ = p and t′σ = gp, thus σ = p cannot
be disabled. Since σ = p /∈ Σc,1, controller one cannot
disable p either.

Step 3.2, check whether this counter example is accepted
by all the other components. It can be found that neither
the plant subsystem RECEIVER nor the specification au-
tomaton SpecRCVR accept this counter example. We select
SpecRCVR. Since SpecRCVR has already been verified to

5451

be co-observable in Step 2.1, we can thus add it to plants
according to Proposition 5. Then G′ = GΣ∗ becomes G′ =
GΣ∗ ||SpecRCVR = SpecRCVR.

Step 3.3, verify whether K3 is co-observable w.r.t.
L(G′) = L(SpecRCVR) = K2.

It is also easy to find that K3 is not co-observable w.r.t.
L(G′) = L(SpecRCVR). Counter example: t = g ∈ K3 ∩
L(G′), σ = g ∈ Σc,1, tσ = gg ∈ L(G′)\K3, t′ = grs0p,
P1(t) = P1(t′) = g, t′σ = grs0pg ∈ K3 ∩ L(G′). For
controller one, it cannot distinguish between tσ = gg and
t′σ = grs0pg, thus σ = g cannot be disabled. For controller
two, σ = g /∈ Σc,2, hence σ = g cannot be disabled either.

Step 3.4, check whether this counter example is accepted
by all the other components. It can be found that both the
plant subsystem SENDER and the specification automaton
SpecSNDR do not accept this counter example. We select
SpecSNDR. Since SpecSNDR has already been verified to
be co-observable in Step 1.1, we can thus add it to plants
according to Proposition 5. Then G′ = SpecRCVR becomes
G′ = SpecRCVR||SpecSNDR.

Step 3.5, verify whether K3 is co-observable w.r.t.
L(G′) = L(SpecRCVR||SpecSNDR) = K2||K1.

It is also not hard to find that K3 is not co-observable w.r.t.
L(G′) = L(SpecRCVR||SpecSNDR). Counter example: t =
gs0ra0

∈ K3 ∩ L(G′), σ = g ∈ Σc,1, tσ = gs0ra0
g ∈

L(G′)\K3, t′ = gs0rs0pa0ra0
, P1(t) = P1(t′) = gs0ra0

,
t′σ = gs0rs0pa0ra0g ∈ K3 ∩ L(G′). For controller one,
it cannot distinguish between tσ = gs0ra0g and t′σ =
gs0rs0pa0ra0

g, thus σ = g cannot be disabled. For controller
two, σ = g /∈ Σc,2, hence σ = g cannot be disabled either.

Step 3.6: check whether this counter example is accepted
by all the other components. It can be found that only
the plant subsystem G3 = CHANNEL does not accept
this counter example. Thus G′ = SpecRCVR||SpecSNDR
becomes G′ = SpecRCVR||SpecSNDR||CHANNEL.

Step 3.7: verify whether K3 is co-observable w.r.t.
L(G′) = L(SpecRCVR||SpecSNDR||CHANNEL) =
K2||K1||L(G3).

It can be found that K3 is co-observable w.r.t. L(G′) =
K2||K1||L(G3).

Since K2 and K1 are both co-observable w.r.t. L(G), we
thus conclude that K = K1||K2||K3 is co-observable w.r.t.
L(G) by Propositions 5 and 6.

In the above example, we verify each specification compo-
nent individually. In addition, the most complex step involves
only four out of six automata in the system. Further, the
complete plant does not need to be composed together.

VI. CONCLUSION

In this paper, we introduce an approach called incremental
verification of co-observability. We present results that pro-
vide the technical foundation of the method. We then present
our algorithm and a classical communication example. This
new approach allows decentralized control to be applied to
larger systems, as it allows co-observability to be verified
using only a portion of the system at a given time.

Future work will further demonstrate this approach using
more examples, and develop heuristics to determine how best
to select the next component of the system to verify in our
incremental verification algorithm.

REFERENCES

[1] G. Barrett and S. Lafortune, “Decentralized supervisory control with
communicating controllers,” Automatic Control, IEEE Transactions
on, vol. 45, no. 9, pp. 1620–1638, 2000.

[2] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson, “A note on reli-
able full-duplex transmission over half-duplex links,” Communications
of the ACM, vol. 12, no. 5, pp. 260–261, 1969.

[3] B. A. Brandin, R. Malik, and P. Malik, “Incremental verification
and synthesis of discrete-event systems guided by counter examples,”
Control Systems Technology, IEEE Transactions on, vol. 12, no. 3, pp.
387–401, 2004.

[4] C. G. Cassandras and S. Lafortune, Introduction to discrete event
systems (second edition). Springer, 2008.

[5] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya, “Supervisory
control of discrete-event processes with partial observations,” Auto-
matic Control, IEEE Transactions on, vol. 33, no. 3, pp. 249–260,
1988.

[6] H. Flordal and R. Malik, “Compositional verification in supervisory
control,” SIAM Journal on Control and Optimization, vol. 48, no. 3,
pp. 1914–1938, 2009.

[7] H. Flordal, R. Malik, M. Fabian, and K. Åkesson, “Compositional
synthesis of maximally permissive supervisors using supervision
equivalence,” Discrete Event Dynamic Systems, vol. 17, no. 4, pp.
475–504, 2007.

[8] J. Y. Halpern and L. D. Zuck, “A little knowledge goes a long way:
knowledge-based derivations and correctness proofs for a family of
protocols,” Journal of the ACM (JACM), vol. 39, no. 3, pp. 449–478,
1992.

[9] F. Lin and W. M. Wonham, “On observability of discrete-event
systems,” Info. Sci., vol. 44, pp. 173–198, 1988.

[10] H. Liu, R. J. Leduc, R. Malik, and S. L. Ricker, “Ver-
ifying co-observability in discrete-event systems using an in-
cremental approach,” Technical report. Department of Com-
puting and Software, McMaster University [Online]. Available:
http://www.cas.mcmaster.ca/cas/0template1.php?601, November 2013.

[11] S. Mohajerani, R. Malik, and M. Fabian, “A framework for com-
positional synthesis of modular nonblocking supervisors,” Automatic
Control, IEEE Transactions on, vol. 59, no. 1, pp. 150–162, 2014.

[12] P. N. Pena, J. E. Cury, and S. Lafortune, “Testing modularity of local
supervisors: An approach based on abstractions,” in Discrete Event
Systems, 2006 8th International Workshop on. IEEE, 2006, pp. 107–
112.

[13] K. Rudie, “Decentralized control of discrete-event systems,” Ph.D.
dissertation, Department of Electrical and Computer Engineering,
University of Toronto, Toronto, Ont., 1992.

[14] K. Rudie and J. C. Willems, “The computational complexity of
decentralized discrete-event control problems,” Automatic Control,
IEEE Transactions on, vol. 40, no. 7, pp. 1313–1319, 1995.

[15] K. Rudie and W. M. Wonham, “Think globally, act locally: Decentral-
ized supervisory control,” Automatic Control, IEEE Transactions on,
vol. 37, no. 11, pp. 1692–1708, 1992.

[16] A. S. Tanenbaum, Computer Networks (fourth edition). Englewood
Cliffs, NJ: Prentice Hall, 2003.

5452

