
This is a repository copy of Abstractions and sensor design in partial-information, reactive
controller synthesis.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/156437/

Version: Accepted Version

Proceedings Paper:
Fu, J., Dimitrova, R. and Topcu, U. (2014) Abstractions and sensor design in
partial-information, reactive controller synthesis. In: 2014 American Control Conference.
American Control Conference - ACC 2014, 04-06 Jun 2014, Portland, OR, USA. IEEE , pp.
2297-2304. ISBN 9781479932726

https://doi.org/10.1109/acc.2014.6859309

© 2014 AACC. Personal use of this material is permitted. Permission from AACC must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Abstractions and sensor design in partial-information, reactive controller

synthesis

Jie Fu, Rayna Dimitrova and Ufuk Topcu

Abstract— Automated synthesis of reactive control protocols
from temporal logic specifications has recently attracted con-
siderable attention in various applications in, for example,
robotic motion planning, network management, and hardware
design. An implicit and often unrealistic assumption in this
past work is the availability of complete and precise sensing
information during the execution of the controllers. In this
paper, we use an abstraction procedure for systems with partial
observation and propose a formalism to investigate effects
of limitations in sensing. The abstraction procedure enables
the existing synthesis methods with partial observation to be
applicable and efficient for systems with infinite (or finite
but large number of) states. This formalism enables us to
systematically discover sensing modalities necessary in order
to render the underlying synthesis problems feasible. We use
counterexamples, which witness unrealizability potentially due
to the limitations in sensing and the coarseness in the abstract
system, and interpolation-based techniques to refine the model
and the sensing modalities, i.e., to identify new sensors to
be included, in such synthesis problems. We demonstrate the
method on examples from robotic motion planning.

I. INTRODUCTION

Automatically synthesizing reactive controllers with

proofs of correctness for given temporal logic specifications

has emerged as a methodology complementing post-design

verification efforts in building assurance in system operation.

Its recent applications include autonomous robots [1], [2],

hardware design [3], and vehicle management systems [4].

This increasing interest is partly due to both theoretical

advances [5], [6] and software toolset developments [7]–[9].

An implicit and often unrealistic assumption in the past

work on reactive synthesis is the availability of complete

and precise information during the execution of controllers.

For example, while navigating through a workspace, a robot

rarely (if ever) has global awareness about its surrounding

dynamic environment and its sensing of even its own config-

uration is imprecise. This paper takes an initial step toward

explicitly accounting for the effects of such incompleteness

and imperfectness in sensing (and other means through which

information is revealed to the controller at runtime).

More specifically, we use an abstraction procedure for

games with partial observation [10] and propose a formalism

to investigate the effects of limitations in sensing. The

abstraction reduces the size of the control synthesis problem

with sensing limitations by focusing on relevant properties

of the control objective and enables automatic synthesis

This work was supported in part by the AFOSR (FA9550-12-1-0302) and
ONR (N00014-13-1-0778).

The authors are with the University of Delaware (USA), Max Planck In-
stitute for Software Systems (Germany), and the University of Pennsylvania
(USA), respectively.

for systems with potentially large state spaces using the

solutions for partial-information, turn-based, temporal-logic

games [11], [12]. Given unrealizable specifications, where a

potential cause for unrealizability is the lack of runtime infor-

mation, a simple question we investigate is what new sensing

modalities and with what precision shall be included in order

to render the underlying synthesis problem feasible. We focus

on particular safety type temporal logic specifications for

which counterexamples witness the unrealizability. Using

such counterexamples and interpolation-based techniques

[13], the method searches for predicates to be included in the

abstraction. We interpret addition of such newly discovered

predicates as abstraction refinements as well as adding new

sensing modalities or increasing the precision of the existing

sensors. Besides the partial-information, turn-based games

(see [14], [15] in addition to the earlier references mentioned)

the problem we study in this paper has similarities with

the partially observable Markov decision processes [16]–

[18]. The main deviation in the formalism we employ is

the inclusion of a second player which represents a dynamic,

possibly adversarial environment, particularly well suited for

reactive synthesis in a number of applications, for example,

autonomous navigation.

The rest of the paper is organized as follows. We be-

gin with an overview of the setup, problem, and solution

approach. In section III, we discuss some preliminaries as

they build toward a formal statement of the problem. The

solution approach is detailed in the following two sections

in which first an abstraction procedure and then refinements

in abstractions based on counterexamples are presented. This

presentation partly follows the development in [10]. Section

VI gives an interpretation of the results in the reconfiguration

of sensing modalities and section VII is on a case study.

Throughout the paper, we consider motivating and running

examples loosely from the context of autonomous robotic

motion planning subject to temporal logic specifications.

II. OVERVIEW

We begin with a running example and an overview of the

problem and our solution approach.

Example 1: Consider a robot in the environment as shown

in Fig. 1 with two other dynamic obstacles. The position

of this robot is represented by variables x and y in the

coordinate system and the initial position is at x0 = 4 and

y0 = 3. At each time instance, it can apply the control input

u to change its position. The domain of u is Dom(u) =
Σ = {σ1 = (2, 0)T , σ2 = (−2, 0)T , σ3 = (0, 1)T , σ4 =
(0,−1)T }. At each time, with input σ1 (resp. σ2) the robot

can move in the x-direction precisely with 2 (resp. −2) units,

however, in the y-direction there is uncertainty: by σ3 (resp.

σ4), the robot proceeds some distance ranging from 1 to 1.5
(resp. from −1.5 to −1) unit. There are two uncontrollable

moving obstacles, obj1 and obj2, whose behaviors are not

known a priori but are known to satisfy certain temporal logic

formulas. Suppose as an example design question that the

available sensor for y has slow sampling rate, for example,

the value of y cannot be observed at every time instance.

Can it eventually reach and stay in R2 while avoiding all

the obstacles and not hitting the walls?

obj2

x

y

R1 R2

Robot

-4

-3

-2

-1

0

1

2

3

4

-1 0 1 2 3 4 5 6 7 8 9

obj1

Fig. 1: An environment including a robot (represented by the

red dot) and two dynamic obstacles, obj1, obj2. Regions R1

and R2 are connected by a door.

A reactive controller senses the environment and decides

an action in response based on that sensor reading (or a finite

history of sensor readings). For control synthesis in reactive

systems with partial observation, two problems are critical.

One is a synthesis problem: given the current sensor design,

is there a controller that realizes the specification? Another is

a design problem: given an unrealizable specification, would

it be possible to find a controller by introducing new sensing

modalities? If so, what are the necessary modalities to add?

To answer these questions, we consider the counterexam-

ple guided abstraction refinement procedure for two-player

games with partial observation in [19] . First, we formalize

the interaction between a system and its environment as

a (concrete) game. A safety specification determines the

winning conditions for both players. Then, an initial set of

predicates is selected to construct an abstract game with

finite state space. The abstraction is sound in the sense that

if the specification is realizable with the system’s partial

observation in the abstract game, then it is so in the concrete

game. However, if there does not exist such a controller, a

counterexample that exhibits a violation of the specification

can be found. The procedure checks whether this counterex-

ample exists in the concrete game. If it does not, i.e., it is

spurious, then the abstract game is refined until a controller

is obtained, or a genuine counterexample is found.

In the latter case, the task is not realizable by the system

with its current sensor design. Then, we check whether it

is realizable under the assumption of complete information,

using the same abstraction refinement procedure. If the

answer is yes, then the set of predicates obtained in the

abstraction refinement indicates the sensing modalities that

are sufficient, with respect to the given specification.

III. PROBLEM FORMULATION

In this section we provide necessary background for pre-

senting the results in this paper. For a variable x we denote

with Dom(x) its domain. Given a set of variables X , a state

v is a function v : X →
⋃

x∈X Dom(x) that maps each

variable x to a value in Dom(x). For Y ⊆ X , we write

v(Y) for the projection of v on Y . Let the set of states over

X be V . A predicate (atomic formula) p is a statement over

a set of variables X . For a given state v, p has a unique value

—true (1) or false (0). We write p(v) = 1 if p is evaluated

to true by the state v. Otherwise, we write p(v) = 0. Given

a state v ∈ V , we write v |= ϕ, if the valuation of ϕ at

v is true. Otherwise, we write v 6|= ϕ. Given a formula ϕ
over a set of predicates P , let Preds(ϕ) ⊆ P be the set of

predicates that occur in ϕ. A substitution of all variables X
in ϕ with the set of new variables X ′ is denoted ϕ(X ′).

A. The model

A (first-order) transition system symbolically represents

an infinite-state transition system [13].

Definition 1: A transition system (TS) C is a tuple

〈X, T , ϕinit〉 with components as follows.

• X is a finite set of variables.

• T (X,X ′) is a (quantifier-free) first-order logic formula

describing the transition relation. T relates the variables

X which represent the current state, with the variables

X ′ which represent the state after this transition.

• ϕinit is a (quantifier-free) first-order formula over X
which denotes the set of initial states of C.

The interaction between system and its environment is

captured by a reactive system formalized as a TS.

Example 2: We consider a modified version of Example

1 in which the environment does not contain any obstacle or

internal walls. The set of variables is X = {x, y, u, t} where

t is a Boolean variable. When t = 0, the values of variables

x, y, u are updated. Formally, the transition relation is
T :=

(
t ∧ t′ = ¬t ∧ x′ = x ∧ y′ = y ∧ (∨σi∈Σu

′ = σi)
)

∨
(
¬t ∧ t′ = ¬t ∧

(
(u = σ1 ∧ x

′ = x+ 2 ∧ y′ = y)
∨(u = σ2 ∧ x

′ = x− 2 ∧ y′ = y)∨
(u = σ3 ∧ x

′ = x ∧ y′ ≥ y + 1 ∧ y′ ≤ y + 1.5)∨
(u = σ4 ∧ x

′ = x ∧ y′ ≤ y − 1 ∧ y′ ≥ y − 1.5)
))
.

Initially, ϕinit := x = 4 ∧ y = 3 holds.

A TS can be considered in a game formulation in which

the system is player 1 and the environment is player 2. For

this purpose, the set of variables X is partitioned into XI ∪
XO ∪{t}, where XI is the set of input variables, controlled

by the environment, and XO is the set of output variables,

controlled by the system, and t is a Boolean turn variable

indicating whose turn it is to make a transition: 1 for the

system and 0 for the environment. In Example 2, the set of

input variables is XI = {x, y}, the set of output variables is

XO = {u}, and the turn variable is t. We assume the domain

of each output variable is finite. Without loss of generality 1,

1For a set of output variables, each of which has a finite domain, one
can always construct a single new output variable to replace the set, and
the domain of this new variable is the Cartesian product of the domains of
these output variables.

let XO be a singleton XO = {u} and Dom(u) = Σ, which

is a finite alphabet.

A TS C defines a game structure. In this paper, we

assume that the system and its environment do not perform

concurrent actions, and thus the game structure is turn-based.

Definition 2: A game structure capturing the interactions

of a system (player 1) and its environment (player 2) in a

TS C = 〈X, T , ϕinit〉 is a tuple G = 〈V, T, I〉

• V = V1∪V2 is the set of states over X . V1 = {v ∈ V |
v(t) = 1} is the set of states at which player 1 makes

a move (t = 1). V2 = V \ V1 consists of the states at

which player 2 makes a move.

• T = T1 ∪ T2 is the transition relation:

– ((xI , xO, 1), (x
′
I , x

′
O, 0)) ∈ T1 if and only if xI = x′I

and T ((xI , xO, 1), (x
′
I , x

′
O, 0)) evaluates to true.

– ((xI , xO, 0), (x
′
I , x

′
O, 1)) ∈ T2 if and only if xO =

x′O and T ((xI , xO, 0), (x
′
I , x

′
O, 1)) evaluates to true.

• I = {v ∈ V | v |= ϕinit} is the set of initial states.

A run is a finite (or infinite) sequence of states ρ =
v0v1v2 . . . ∈ V ∗ (or ρ ∈ V ω) such that (vi, vi+1) ∈ T ,

for each 0 ≤ i < |ρ| where |ρ| is the length of ρ. We assume

the game is nonblocking, that is, for all v ∈ V , there exists

v′ ∈ V such that (v, v′) ∈ T . This can be achieved by

including “idle” action in the domain of the output variable.

Definition 3 (Sensor model): Assuming the output vari-

able u and the Boolean variable t are globally observable, the

sensor model is given as a set of formulas {Ox | x ∈ XI},

where for each input x ∈ XI , Ox is a formula over the

set of input variables XI such that the value of the input

variable x is observable at state v if and only if the formula

Ox evaluates to true at the state v.

For a state v ∈ V , the set of observable variables at

v is ObsX(v) = {x ∈ XI | v |= Ox} ∪ {t, u}. The

observation of v is Obs(v) = v(ObsX(v)), which is the

projection of v onto the set of variables observable at v. Two

states v, v′ are observation-equivalent, denoted v ≡ v′ if

and only if Obs(v) = Obs(v′). The observation-equivalence

can be extended to sequences of states: let Obs(ǫ) = ǫ and

Obs(vρ) = Obs(v)Obs(ρ), for v ∈ V and ρ ∈ V ∗(or V ω).

Two runs ρ, ρ′ ∈ V ∗(V ω) are observation equivalent, denoted

ρ ≡ ρ′, if and only if Obs(ρ) = Obs(ρ′).
This sensor model is able to capture both global and local

sensing modalities: if a variable x is globally observable

(globally unobservable), Ox = ⊤ (resp. Ox =⊥). Here

⊤ and ⊥ are symbols for unconditional true and false,

respectively. As an example of a local sensing modality,

consider a sensor model in which an obstacle at (px, py)
is observable if it is in close proximity of the robot at (x, y),
can be described as Opx = (−2 ≤ px − x ≤ 2) ∧ (−2 ≤
py − y ≤ 2) ∧ Ox ∧ Oy .

B. Specification language

We use Linear temporal logic (LTL) formulas [20] to

specify a set of desired system properties such as safety,

liveness, persistence and stability.

In this paper, we consider safety objectives: the given

specification is in the form �¬ϕerr, where � is the LTL

operator for “always” and ϕerr is a formula specifying a set

of unsafe states E = {v ∈ V | v |= ϕerr}. The objective of

the system is to always avoid the states in E and the goal

of the environment is to drive the game into a state in E.

Let v0 ∈ I be the designated initial state of the system.

We obtain the game Gc = 〈V, v0, T, E〉, corresponding to

the reactive system C with the initial state v0. From now on,

Gc and C are referred to as the concrete game and concrete

reactive system, respectively. The state set V is the set of

concrete states. A run ρ ∈ V ω is winning for player 1 if it

does not contain any state in the set of unsafe states E.

A strategy for player i is a function fi : V
∗Vi → Vj which

maps a finite run ρ into a state fi(ρ) ∈ Vj , to be reached, such

that (v, v′) ∈ T , where v is the last state in ρ, v′ = fi(ρ) and

(i, j) ∈ {(1, 2), (2, 1)}. The set of runs in G with the initial

state v0 ∈ I induced by a pair of strategies (f1, f2) is denoted

by Outv0
(f1, f2). Given the initial state vo, a strategy f1 is

winning for player 1, if and only if for any strategy f2 of

player 2, any run in Outv0
(f1, f2) is winning for player 1.

A winning strategy for player 2 is defined dually.

Since the system (player 1) has partial observability, the

strategies it can use are limited to the following class.

Definition 4: An observation-based strategy for player 1

is a function f1 : V ∗V1 → V2 that satisfies: (1) f1 is a

strategy of player 1; and (2) for all ρ1, ρ2, if ρ1 ≡ ρ2, then

given v = f1(ρ1), v
′ = f1(ρ2), it holds that for the output

variable u, v(u) = v′(u), and v(t) = v′(t).
For a game with partial observation, one can use knowledge-

based subset construction to obtain a game with complete

observation. The winning strategy for player 1 in the latter

is an observation-based winning strategy for player 1 in the

former. The reader is referred to [21] for the solution of

games with partial observation.

C. Problem statement

We now formally state the problem investigated in this paper.

Problem 1: Given a transition system C with the initial

state v0 ∈ I , with a sensor model {Ox | x ∈ XI} and a

safety specification �¬ϕerr, determine whether there exists

an observation-based strategy (i.e. controller) f1 such that

for any strategy of the environment f2 and for any ρ ∈
Outv0(f1, f2), ρ |= �¬ϕerr. If no such controller exists,

then determine a new sensor model for which one can find

such a controller, if there exists one.

IV. PREDICATE ABSTRACTION

Since the game Gc may have a large number of states, the

synthesis methods for finite-state games cannot be directly

applied or are not efficient. To remedy this problem, we apply

an abstraction procedure which combines predicate abstrac-

tion and knowledge-based subset construction and yields an

abstract finite-state game with complete information Ga from

the (symbolically represented) concrete game Gc.

A. An abstract game

Given a finite set of predicates, the abstraction procedure

constructs a finite-state reactive system (game structure). Let

P = {p1, p2, . . . , pN} be an indexed set of predicates over

variables X . The abstraction function αP : V → {0, 1}|P|

maps a concrete state into a binary vector as follows.

αP(v) = s ∈ {0, 1}|P| iff s(i) = pi(v), for all pi ∈ P,

where s(i) is the ith entry of binary vector s. The concretiza-

tion function γP : {0, 1}|P| → 2V does the reverse:

γP(s) = {v | ∀ pi ∈ P. pi(v) = s(i)}.

In the following, we omit the subscript P in the notation

for the abstraction and concretization functions wherever

they are clear from the context. The following lemma shows

that with a proper choice of predicates, we can ensure that

a set of concrete states grouped by the abstraction function

shares the same set of observable and unobservable variables.

Lemma 1: Let
⋃

x∈XI
Preds(Ox) ⊆ P . Then for any

binary vector s ∈ {0, 1}|P| and any two states v, v′ ∈ γ(s) 6=
∅, it holds that ObsX(v) = ObsX(v′).

Proof: Since for any v, v′ ∈ γ(s), α(v) = α(v′) =
s, for any p ∈ P , p has the same truth value at states v
and v′. Thus, for any x ∈ XI , the formula Ox, for which

Preds(Ox) ⊆ P , has the same value at v and v′. Hence,

if x is observable (or unobservable) at v, then it must be

observable (or unobservable) at v′ and vice versa.

Intuitively, by including the predicates in the formulas

defining the sensor model, for each s ∈ {0, 1}|P|, the set

of concrete states γ(s) share the same sets of observable

and unobservable variables. Hence, we use Xv(s) to denote

set of observable/visible input variables in s and Xh(s) =
XI\Xv(s) for the set of unobservable/hidden input variables.

A predicate p is observable at a state v if and only if the

variables in p are observable at v. According to Lemma 1,

if there exists v ∈ γ(s) such that p is observable at v,

then p is observable for all v ∈ γ(s) and we say that p
is observable at s. Slightly abusing the notation Obs(·), the

observation of a binary vector s is Obs(s) = {(pi, s(i)) |
pi is observable at s}, which is a set of assignments for ob-

servable predicates. Two binary vectors s, s′ are observation-

equivalent, denoted s ≡ s′, if and only if Obs(s) = Obs(s′).
The abstraction of the concrete game Gc = 〈V, v0, T, E〉

with respect to a finite set of predicates P is a game with

complete information α(Gc,P) = Ga = 〈Sa, sa0 , T
a, Ea〉:

• Sa = Sa
1 ∪ Sa

2 is the set of abstract states with sets of

player 1’s and player 2’s abstract states respectively,

Sa
1 = {sa | ∃v ∈ V1. s

a ⊆ {s | s ≡ α(v)}, sa 6= ∅} and

Sa
2 = {sa | ∃v ∈ V2. s

a ⊆ {s | s ≡ α(v)}, sa 6= ∅}.

• sa0 = {s ∈ {0, 1}|P| | s ≡ α(v0)} is the initial state.

• T a = T a
1 ∪ T a

2 where

– (sa1 , s
a
2) ∈ T a

1 if and only if the following conditions

(1), (3) and (4) are satisfied.

– (sa1 , s
a
2) ∈ T a

2 if and only if the following conditions

(2), (3) and (4) are satisfied.

(1) for every s ∈ sa1 and every v ∈ γ(s), there exist

s′ ∈ sa2 and v′ ∈ γ(s′) such that (v, v′) ∈ T1;

(2) there exists s ∈ sa1 , v ∈ γ(s), s′ ∈ sa2 and v′ ∈ γ(s′)
such that (v, v′) ∈ T2;

(3) for every s′ ∈ sa2 , there exist s ∈ sa1 , v ∈ γ(s) and

v′ ∈ γ(s′) such that (v, v′) ∈ T ;

(4) for every s′1, s
′
2 ∈ α(V), if s′1 ∈ sa2 , s′1 ≡ s′2 and

there exist s ∈ sa1 , v ∈ γ(s) and v′ ∈ γ(s′2) with

(v, v′) ∈ T , then also s′2 ∈ sa2 .

• Ea = {sa | ∃s ∈ sa. ∃v ∈ γ(s). v ∈ E} is the set of

unsafe states.

In what follows, we refer to a state sa ∈ Sa as an abstract

state. By definition, each sa in Ga is a set of observation-

equivalent binary vectors in α(V).

We relate a binary vector s ∈ {0, 1}|P| with a formula

[s] that is a conjunction such that [s] = ∧0≤i≤|P|hi where

if s(i) = 1, then hi = pi, otherwise hi = ¬pi. Further, for

any sa ∈ Sa, we define the following formula in disjunctive

normal form [sa] = ∨s∈sa [s].

Example 2 (cont.): We assume x is globally observable

and y is globally unobservable and require that the robot shall

never hit the boundary, that is, �¬ϕerr where ϕerr =
(
t =

0∧ (x ≥ 9∨ y ≥ 4∨x ≤ −1∨ y ≤ −4)
)
. Let ϕinit := (x =

4 ∧ y = 3 ∧ u = σ1 ∧ t = 1). Let P = {x ≥ 9, y ≥ 4, x ≤
−1, y ≤ −4, u = σ1, u = σ2, u = σ3, u = σ4, t = 1}. The

initial state of C is v0 = (4, 3, σ1, 1), and the corresponding

initial state in Ga is sa0 = {(000010001)} where the values

for the predicates in sa0 are given in the same order in which

they are listed in P . Given v′ = (4, 3, σ2, 0), since (v0, v
′) ∈

T , we determine (sa0 , s
a
1) ∈ T a where sa1 = {(000001000)}

indicating u = σ2 and t = 0.

We show that by a choice of predicates, it is ensured that for

any sa ∈ Sa, all concrete states in the set {v | ∃s ∈ sa. v ∈
γ(s)} share the same observable and unobservable variables.

Lemma 2: If
⋃

x∈XI
Preds(Ox) ⊆ P , then for any sa ∈

Sa and v, v′ ∈ {v | ∃s ∈ sa. v ∈ γ(s)}, it holds that

ObsX(v) = ObsX(v′).

Proof: By Lemma 1, since for any s ∈ {0, 1}|P|,

for any v, v′ ∈ γ(s) 6= ∅, ObsX(v) = ObsX(v′), then it

suffices to prove that for any s, s′ ∈ sa, Xv(s) = Xv(s
′)

and Xh(s) = Xh(s
′). By definition, s ≡ s′ implies that the

set of observable (unobservable) predicates is the same in

both s and s′. Thus, the set of observable (unobservable)

variables that determines the observability of predicates has

to be the same in both s and s′. That is, Xv(s) = Xv(s
′)

and Xh(s) = Xh(s
′).

Let Xv(s
a) (resp. Xh(s

a)) be the observable (resp. unob-

servable) input variables in the abstract state sa. That is,

Xi(s
a) = Xi(s) for any s ∈ sa, for i ∈ {v, h}.

B. Concretization of strategies

In the abstract game Ga, there exists a winning strategy for

one of the players. We show that a winning strategy for the

system in Ga can be concretized into a set of observation-

based winning strategies for the system in Gc.

For (i, j) ∈ {(1, 2), (2, 1)}, the concretization of a strategy

fi : (S
a)∗Sa

i → Sa
j in Ga is a set of strategies in Gc, denoted

γ(fi) and can be obtained as follows. Consider ρc ∈ V ∗,

ρ ∈ S∗, ρa ∈ (Sa)∗ in the following, where

ρc = v0 v1 v2 . . . vn ,
ρ = s0 s1 s2 . . . sn ,
ρa = sa0 s

a
1 s

a
2 . . . s

a
n .

and vi ∈ γ(si), si ∈ sai for each i : 0 ≤ i ≤ n. Given

fi(ρ
a) = san+1, the output f ci (ρ

c) = vn+1 such that there

exist s ∈ san+1 and vn+1 ∈ γ(s) such that (vn, vn+1) ∈ T .

In other words, vn+1 is a concrete state reachable from the

current state vn and can be abstracted into a binary vector s
in the abstract state san+1. Intuitively, given the run ρc, one

can find a run in the abstract system ρa, and uses the output

of fi on ρa to generate an abstract state. Then f ci picks a

reachable concrete state, which can also be abstracted into

a binary vector contained this abstract state. A strategy f is

concretizable if γ(f) 6= ∅. Otherwise it is spurious.

Theorem 1: The concretization γ(f1) of a player 1’s win-

ning strategy f1 : (Sa)∗Sa
1 → Sa

2 in Ga is a non-empty

set that consists of observation-based winning strategies for

player 1 in the concrete game Gc.

Proof: Follows from the proof in [10].

In case there is no winning strategy for player 1 in Ga, the

synthesis algorithm gives us a winning strategy for player 2

in Ga, which we refer to as counterexample. Then we need

to check if it is spurious, as explained in the next section.

V. ABSTRACTION REFINEMENT

We consider an initial set of predicates P which consists

of the predicates occurring in ϕerr, the predicates describing

the output u of the system, and those occurring in the sensor

model. With this initial choice of predicates, if player 1

wins the game Ga = α(Gc,P), then the abstraction does

not need to be further refined, according to Theorem 1, the

winning strategy of player 1 is concretizable in the concrete

game. However, if player 2 wins, there exists a deterministic

winning strategy f2 : (Sa)∗Sa
2 → Sa

1 in the game Ga. The

next step is to check if f2 is spurious. If it is, then the abstract

model is too coarse and needs to be further refined.

A. Constructing abstract counterexample tree

We construct a formula from the strategy tree generated

from this counterexample that characterizes the concretiz-

ability of this counterexample in the concrete system C, and

then we construct a formula from the tree. If the formula is

satisfiable, then the counterexample is genuine.

Given the initial state sa0 , the abstract counterexample tree

(ACT) for f2 is T(f2, s
a
0) = (N , E) where N are nodes and

E ⊆ N × N are edges. Each node n in N is labeled by a

state sa ∈ Sa and we denote the labeling n : sa. A node

n : sa belongs to player i if sa ∈ Sa
i , for i = 1, 2.

In the case of a safety specification, T(f2, s
a
0) is a finite

tree in which the following conditions hold. 1) The root 0 is

labeled by sa0 , that is, 0 : sa0 . 2) If n : sa is a player 1’s node

and n is not a leaf, then for each ta such that (sa, ta) ∈ T a,

add a new child m of n and label m with ta. Let n
σ
−→ m

for which [ta] =⇒ u = σ. 3) If n : sa is a player 2’s node

and n is not a leaf, then add one child m of n, labeled with

ta = f2(ρ), where ρ is the sequence of nodes’ labels (states)

on the path from the root to the node n. Let n
ǫ
−→ m where ǫ

is the empty string. 4) For a node n : sa, n is a leaf if either

sa ∈ Ea or there is no outgoing transition from sa. 5) Each

node has at most one parent.

We illustrate the ACT construction on the small example.

Fig. 2 shows a fragment of ACT for Example 2. First we

define the root 0, labeled with the abstract state sa0 . At sa0 ,

player 1 can select any output in Σ. Therefore, the children

of 0 are 1, 2, 3, 4, one for each input in Σ. For instance, the

output σ2 labels the edge from 0 to 2 and we have 2 : sa2 .

The only child of 2 is 6, labeled with sa6 = {(001001001)}.

Clearly, the actual value of x after executing σ2 is 2. Yet the

reached state sa6 in which the predicate x ≤ −1 is true is

because there exists some x ∈ (−1, 1] at state sa2 , and will

make x ≤ −1 satisfied after action σ2. This is caused by the

coarseness of the abstraction. If player 1 takes action σ3, then

it will have no information about the value of the predicate

(y ≥ 4), as this predicate is not observable. In Fig. 2, each

state sai , 0 ≤ i ≤ 7 is related with a formula [sai] (shown

below the figure).

σ3

ǫ

σ2 σ4

ǫǫ ǫ

σ1

1, s
a
1

0, s
a
0

3, s
a
32, s

a
2

5, s
a
0

4, s
a
4

7, s
a
76, s

a
6 8, s

a
8

[sa0] u = σ1 ∧ t = 1 ∧ φ0 [sa1] u = σ1 ∧ t = 0 ∧ φ0
[sa2] u = σ2 ∧ t = 0 ∧ φ0 [sa3] u = σ3 ∧ t = 0 ∧ φ0
[sa4] u = σ4 ∧ t = 0 ∧ φ0 [sa6] u = σ1 ∧ t = 1 ∧ φ6
[sa7] u = σ2 ∧ t = 1 ∧ φ7 [sa8] u = σ4 ∧ t = 1 ∧ φ8

Fig. 2: A fragment of ACT for Example 2. Note that nodes 5
and 0 are labeled with the same state sa0 . In the formulas [sai],
φ0 = ¬(x ≥ 9) ∧ ¬(x ≤ −1) ∧ ¬(y ≥ 4) ∧ ¬(y ≤ −4),
φ6 = ¬(x ≥ 9) ∧ (x ≤ −1) ∧ ¬(y ≥ 4) ∧ ¬(y ≤ −4),
φ7 = ¬(x ≥ 9) ∧ ¬(x ≤ −1) ∧ ¬(y ≤ −4),
φ8 = ¬(x ≥ 9) ∧ ¬(x ≤ −1) ∧ ¬(y ≥ 4).

For a node n ∈ N , C(n) is the set of children of n and

Paths(n) ⊆ N ∗ is the set of paths from the node n to a leaf.

For a path ρ ∈ N ∗, the trace of ρ, denoted Trace(ρ) ∈ Σ∗, is

the sequence of labels on the edges in the path. A node n ∈
N is related with a set of traces Traces(n) = {Trace(ρ) |
ρ ∈ Paths(n)}. For a leaf, Traces(n) = {ǫ} by default. For

example, Trace(0
σ1−→ 1

ǫ
−→ 5) = σ1ǫ = σ1.

Note that in the tree structure defined here, for each node

n ∈ N , there exists exactly one path from the root to n, and

hence there is one trace w ∈ Σ∗ that labels that path.

We annotate each node n : sa with a set of variables Xn

as n : sa : Xn where Xn = {Xn,w | w ∈ Traces(n)}
and Xn,w = (Xn

v , X
n,w
h , un, tn) where Xn

v ∪ {tn, un} are

observable variables in sa and Xn,w
h are hidden variables in

sa when the trace from n is w. For example, we annotate

0 with X 0 = {X0,w = (x0, y0,w, u0, t0) | w ∈ Traces(0) =
{σ1, σ2, σ3, σ4}} as y is not observable. With this annotation,

the unobservable variables Xh at node n can be assigned

with different values for different traces from n. It corre-

sponds to the fact that the concrete states, grouped into an

abstract state, share the same values for observable variables

but may have different values for unobservable ones.

In what follows, we relate a trace with a trace formula. By

checking the satisfiability of a tree formula, built from trace

formulas with a Satisfiability Modulo Theories (SMT) solver,

we can determine whether the counterexample is spurious.

B. Analyzing the counterexample

Given a trace w ∈ Traces(n), the trace formula F (n,w)
is constructed recursively as follows.

• If n : sa : Xn is a leaf, then Xn = {Xn,ǫ}
is a singleton. Let F (n,w) = [sa](Xn,ǫ), which is

satisfiable if there exists a concrete state v for Xn,ǫ

such that [sa](v) = true.

• If n : sa : Xn is a player 1’s node and not a leaf,

then for each w = σw′ ∈ Traces(n), for each child

m : ta : Xm such that n
σ
−→ m, let

F (n,m,w) = F (m,w′) ∧ [sa](Xn,w)

∧ [ta](Xm,w′

) ∧ um = σ ∧ T (Xn,w, Xm,w′

)

where F (m,w′) is false if w′ /∈ Traces(m). Then

let F (n,w) = ∨m∈C(n),um=σF (n,m,w). Intuitively,

F (n,m,w) can be satisfied if there exist a state v for

Xn,w and v′ for Xm,w′

such that [sa] and [ta] evaluate

to true at v and v′, respectively; action σ enables the

transition from v to v′; and F (m,w′) is satisfied. The

disjunction is needed because for a node n, there can

be more than one σ-successors.

• If n : sa : Xn is a player 2’s node and not a leaf,

there exists exactly one child of n, say, m : ta : Xm,

then for each w ∈ Traces(n), let F (n,w) = F (m,w)∧
[sa](Xn,w) ∧ [ta](Xm,w) ∧ T (Xn,w, Xm,w).

The tree formula is

F (0) = ∧w∈Traces(0)(F (0, w) ∧ ϕinit(X
0,w)).

Theorem 2: Let f2 be a winning strategy for the envi-

ronment in the game Ga, the strategy f2 is genuine, i.e.,

γ(f2) 6= ∅, if and only if the tree formula F (0) is satisfiable.

Proof: The reader is referred to [19].

Example 2 (cont.): Consider, for instance, the trace

σ1w
′ ∈ Traces(0) corresponds to a labeled path

0
σ1−→ 1

ǫ
−→ 5 and w′ ∈ Traces(5). Since 0

σ1−→
1, we have F (0, σ1w

′) = F (1, w′) ∧ [sa0](X
0,σ1w

′

) ∧
[sa1](X

1,w′

)∧ u1 = σ1 ∧T (X0,σ1w
′

, X1,w′

) where X1,w′

=
(x1, y1,w

′

, u1, t1). Then given 1
ǫ
−→ 5, F (1, w′) =

F (5, w′) ∧ [sa1](X
1,w′

) ∧ [sa5](X
5,w′

) ∧ T (X1,w′

, X5,w′

),
where X5,w′

= (x5, y5,w
′

, u5, t5). In above equations, for

instance [sa0](X
0,σw′

) = ¬(x0 ≥ 9 ∨ x0 ≤ −1 ∨ y0,σw
′

≤
−4 ∨ y0,σw

′

≥ 4) ∧ u0 = σ1 ∧ t
0 = 1.

C. Refining the abstract transition relations

Given a node n and a trace w ∈ Traces(n), if F (n,w) is

unsatisfiable, then the occurrence of the spurious counterex-

ample is due to the approximation made in abstracting the

transition relation. To rule out this counterexample, we need

to refine the abstract transition relation. For this purpose, we

define a node formula F̃ (n,w) as described below.

First, we define the pre-condition of a formula: for a

formula ϕ and σ ∈ Σ, the pre-condition of ϕ with respect

to σ, PRE1(σ, ϕ) is a formula such that v |= PRE1(σ, ϕ)
if and only if there exists v′ ∈ V such that v′ |= ϕ,

v′(u) = σ and (v, v′) ∈ T1. Intuitively, at any state v that

satisfies this formula PRE1(σ, ϕ), the system, after initiating

the output σ, can reach a state v′ at which ϕ is satisfied. Let

PRE1(ϕ) = ∨σ∈ΣPRE1(σ, ϕ). Correspondingly, PRE2(ϕ) is

a formula such that v |= PRE2(ϕ) if and only if there exists

v′ ∈ V , v′ |= ϕ and (v, v′) ∈ T2.

Now, we define the node formula F̃ (n,w) as follows.

• If n : sa is a leaf node, then w = ǫ and F̃ (n, ǫ) =
∨s∈sa,[s] =⇒ ϕerr

[s].
• If n : sa belongs to player 1 and is not a leaf, and

w = σw′, then

F̃ (n,w) = [sa] ∧ PRE1(σ,∨ℓ∈C(n),uℓ=σF̃ (ℓ, w
′)),

where F̃ (ℓ, w′) is false if w′ /∈ Traces(ℓ). Here, the set

{ℓ ∈ C(n) | uℓ = σ} is a set of σ-successors of n.

• If n : sa belongs to player 2’s and is not a leaf, then

F̃ (n,w) = [sa] ∧ PRE2

(
F̃ (m,w)

)

where m ∈ C(n) is the unique child of node n.

We augment the current set P with all predicates that occur

in the formula F̃ (n,w), i.e., P ′ := P ∪Preds(F̃ (n,w)). For

each node n and each w ∈ Traces(n) such that F (n,w)
is unsatisfiable, the procedure generates a set of predicates

Preds(F̃ (n,w)), which are then combined with the current

predicate set to generate a new abstract game. We repeat this

procedure iteratively until a set of predicates is found such

that for any n and any w ∈ Traces(n), F (n,w) is satisfiable.

D. Refining the abstract observation equivalence

If each trace formula for the considered counterexample

tree is satisfiable, but the tree formula is not, then we need to

check whether the existence of a counterexample is because

of the coarseness in the abstraction observation-equivalence.

We are in the case when for all w ∈ Traces(0), F (0, w)∧
ϕinit(X

0,w) is satisfiable. Let Φ = {F (0, w)∧ϕinit(X
0,w) |

w ∈ Traces(0)}. Since F (0) = ∧φ∈Φφ is unsatisfiable, there

exists a subset Ψ of Φ such that ψ = ∧φ∈Ψφ is satisfiable

and a formula ϕ ∈ Φ\Ψ such that ϕ∧ψ is unsatisfiable. Let

the sets of free variables in ψ and ϕ be Y and Z respectively.

Since only observable variables are shared between different

traces, Y ∩ Z only consists of observable variables.

A Craig interpolant [22] for the pair (ψ(Y), ϕ(Z)) is a

formula θ(Y ∩ Z) such that 1) ψ(Y) implies θ(Y ∩ Z),
2) ϕ(Z) ∧ θ(Y ∩ Z) is unsatisfiable. To illustrate, consider

the following example. Let ϕ1 = (y5 = y0 + 1) ∧ (y5 ≥ 4)
and ϕ2 = (y0 ≤ 1). Clearly, ϕ1 ∧ ϕ2 ≡⊥ because y0 in ϕ1

needs to satisfy y0 ≥ 3. Then the formula θ = y0 ≥ 3 is an

interpolant for the pair of formulas (ϕ1(y
0, y5), ϕ2(y

0)). For

a number of logical theories commonly used in verification,

including linear real arithmetic, Craig interpolants can be

automatically computed [23].

After computing the interpolant θ for (ψ,ϕ), we update

the set of predicates to be P ′ := P ∪ Preds(θ). In the end,

Algorithm 1 describes the refinement procedure.

Algorithm 1: AbstractAndRefine

Input: the concrete game Gc = 〈V, v0, T, E〉 and the

sensor model {Ox | x ∈ XI}.

Output: a tuple including the abstract game, the set of

predicates, the winner, the strategy of the

winner (Ga,P, winner, f).
begin

P := Preds(ϕerr) ∪ (∪x∈XI
(Preds(Ox))

∪(∪σ∈Σ{u = σ});
Ga :=Abstract (Gc,P);
(winner, f) := Solve (Ga) ;

while winner = player 2 do

T(f, sa0) = ConstructACT (f, sa0) ;

if F (0) is satisfiable then
return (player 2, f)

/* Unsatisfiable */

else
if ∃w ∈ Traces(0), F (0, w) is unsatisfiable

then

R := TraceRefinement (F (0, w));
else

R := TreeRefinement (F (0));

P := P ∪R;

Ga := Abstract (Gc,P);
(winner, f) := Solve (Ga);

return (Ga,P, winner, f).

VI. SENSOR RECONFIGURATION

Suppose the task specification is unrealizable given the

current sensor model. Then, a prelude to refining the sensor

is identifying whether the source of unrealizability is limited

sensing. To this end, we first check whether it is realizable

under the assumption that the system has perfect observation

over its environment. For this purpose, we run the procedure

AbstractAndRefine with the concrete game Gc and a

sensor model defined as {Ox = ⊤ | x ∈ XI}, which means

all the input variables are globally observable. If player 1

wins the abstract game, then we can conclude that the task

is not realizable because of the limited sensing capability.

The procedure SensorReconfigure, shown as Algo-

rithm 2, computes a set of predicates that we need to observe

in order to satisfy a given specification. The algorithm takes

the concrete system, its current sensor model and an unre-

alizable specification as input. Then by making all variables

observable, we use the procedure AbstractAndRefine

to determine if the task is realizable given complete observa-

tion. If AbstractAndRefine terminates with a positive

answer, then, the set of predicates obtained by the refinement

suffices for realizing the specification. Further, the predicates

involving unobservable variables indicate the set of new

sensing modalities to be added, and provide the requirements

on the sensors’ precision and accuracy for both observable

and unobservable variables.

Algorithm 2: SensorReconfigure

Input: the concrete game Gc = 〈V, v0, T, E〉, and the

sensor model {Ox | x ∈ XI}. There is no

realizable winning strategy for the system.

Output: a tuple of the winner, its strategy and the set

of predicates (winner, f,P).
begin

Õ = {Ox = ⊤ | x ∈ XI};

(Ga,P, winner, f) :=
AbstractAndRefine (Gc, Õ) ;

if winner = player 2 then

return (winner, f,P); /* Unsatisfiable

even with full observation. */

else

return (winner, f,P);

VII. CASE STUDY

We demonstrate the method by revisiting Example 1. As-

suming the dynamics of obstacle obj1 with position (xp, yp)
is given in form of logical formula ϕp := ((x ≤ 6 ∧ x′p ≥
7) ∨ (x > 6 ∧ x′p ≥ 6)) ∧ ¬ϕhit where ϕhit is a formula

that is satisfied when the obstacle hits the wall or the robot.

For obstacle obj2 (xo, yo), we have ϕo := ((x ≤ 6 ∧ x′o <
4) ∨ (x > 6 ∧ x′o ≤ 7)) ∧ ¬ϕhit. Here we have a liveness

condition which specifies that the robot has to visit and

then stay within region R2. To enforce such constraint,

we introduce a Boolean variable err and set err = 1 if

x ≥ 6 ∧ x′ < 6, which means if the robot in R2 returns to

R1, an error occurs and the system reaches an unsafe state.

Case 1: Due to the limited sampling rate in the sensor

for variable y, the system receives the exact value of y
intermittently (every other step). In this case, we introduce a

predicate ps such that if ps = 1 then the exact value of y is

observed, otherwise there is no data sampled. The transition

relation T (X,X ′) is modified to capture this type of partial

observation. For example, given u = σ3, the transition is

t ∧ (u = σ3) ∧ y′ ≥ y + 1 ∧ y′ ≤ y + 1.5 ∧ x′ =
x ∧ ϕp ∧ ((¬ps ∧ y

′
s = y + 1 ∧ y′n = y + 1.5) ∨ (ps ∧ y

′
s =

y′ ∧ y′n = y′)) ∧ p′s = ¬ps ∧ t′ = ¬t where ys and yn
are auxiliary variables used by the robot to keep track of

the upper and lower bounds, respectively, for the value of y.

Intuitively, when there is no data received, the robot makes

a move such that for every y within the upper and lower

bounds, for all possible changes in its obstacles, it will not

encounter any unsafe state. Then the sensor data received in

the next step resolves the ambiguity it had earlier about y
and an action is selected accordingly.

The abstraction refinement procedure starts with an initial

set of 11 predicates. After 17 iterations, we obtained an

abstract game in which the system has a winning strategy.

The abstract game is computed from 45 predicates and has

2516 states. The computation takes 5.8 min in a computer

with 4 GB RAM, Intel Xeon processors. The obtained

predicates relating to the variable y falls into the following

categories: (1) Predicates over the unobservable variable y:

y ≤ −4, y ≥ 4, y ≤ −2.5, y ≥ 3.5, y ≤ −1, y ≥ 2.5,

y < 1.5, y ≤ 1.5, y ≤ 0, y ≥ 2, y ≤ yo, y < ys.

(2) Predicates over the observable variable ys: ys ≤ 1.5,

ys ≥ 1.5. And (3) there is no predicate over the upper

bound variable yn. The predicates relating to the obstacles

(xp, yp), (xo, yo) are the following: xp ≤ x, x ≤ xo, xp ≤ 2,

xp ≤ 7, xp ≤ 6, xo ≤ x, xo < 4, xp ≤ 6, xo > 4, y ≤ yo.

With the obtained set P of predicates, we can decide the

requirement on the precision of sensor for this task. For every

p ∈ P , the constants in p has at most one decimal place,

for example, y ≥ 2.5. Thus, a sensor which can reliably

measure just one decimal place would suffice. Besides, there

is no need to keep track of the upper bound yn for y and

also the value of yp for obj2.

Case 2: In this case we consider the sensor model with

an extra limitation: the robot cannot observe obj2 if it is in

R1, or obj1 when it is in R2. To capture this local sensing

modality, we made xo, yo, xp, yp unobservable and introduce

another four auxiliary observable variables xcp, y
c
p and xco, y

c
o.

When the robot is in R1, the values of xco, y
c
o equal that of xo

and yo. But when it is in R2, (xco, y
c
o) can be any point in R1

following the dynamic in robot’s assumption of obj1. Similar

rules applied to xcp and ycp. For the same task specification,

after 21 iterations, which takes about 30 min, the abstraction

refinement outputs an abstract system with 8855 states using

60 predicates and finds the robot a winning strategy.

VIII. CONCLUSION AND FUTURE WORK

We took a first step toward explicitly accounting for the

effects of sensing limitations in reactive protocol synthe-

sis. The formalism we put forward is based on partial-

information, turn-based, temporal-logic games. Using wit-

nesses for unrealizability in such synthesis problems and

interpolation methods, we proposed an abstraction refinement

procedure. An interpretation of this procedure is systematical

identification of new sensing modalities and precision in

existing sensors to be included in order to construct feasible

control policies in reactive synthesis problems.

A potential bottleneck of the proposed formalism is the

rapid increase in the problem size due to, for example

knowledge-based subset construction. A pragmatic future

direction is to consider so-called lazy abstraction methods

[24] for partial observation control synthesis, so that different

parts of the concrete game can be abstracted using different

sets of predicates. In this manner, the system is abstracted

with different degree of precision and thus its sensor model

can also be configured “locally” for different parts of the

system. Furthermore, besides precision, one would also be

interested in refinements in sensing with respect to accuracy;

therefore, extensions to partially observable stochastic two-

player games are also of interest.

REFERENCES

[1] H. Kress-Gazit, T. Wongpiromsarn, and U. Topcu, “Correct, reactive
robot control from abstraction and temporal logic specifications,” IEEE

Robotics and Automation Magazine, vol. 18, pp. 65–74, 2011.

[2] T. Wongpiromsarn, U. Topcu, and R. Murray, “Receding horizon
temporal logic planning,” IEEE Transactions on Automatic Control,
vol. 57, no. 11, pp. 2817–2830, 2012.

[3] R. Bloem, S. Galler, N. Piterman, A. Pnueli, and M. Weiglhofer,
“Automatic hardware synthesis from specifications: A case study,” in
Proc. Design, Automation and Test in Europe, 2007.

[4] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Formal synthesis
of embedded control software for vehicle management systems,” in
Proc. AIAA Infotech Aerospace, 2011.

[5] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,”
in Proc. Symposium on Principles of Programming Languages, 1989,
pp. 179–190.

[6] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1)
designs,” in Proc. International Conference on Verification, Model

Checking, and Abstract Interpretation, vol. 3855, 2006, pp. 364–380.
[7] A. Pnueli, Y. Saar, and L. D. Zuck, “Jtlv: A framework for developing

verification algorithms,” in Computer Aided Verification. Springer,
2010, pp. 171–174.

[8] R. Bloem, A. Cimatti, K. Greimel, G. Hofferek, R. Könighofer,
M. Roveri, V. Schuppan, and R. Seeber, “RATSY–a new require-
ments analysis tool with synthesis,” in Computer Aided Verification.
Springer, 2010, pp. 425–429.

[9] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray,
“TuLiP: a software toolbox for receding horizon temporal logic
planning,” in Proceedings of the 14th International Conference on

Hybrid systems: Computation and Control. ACM, 2011, pp. 313–
314.

[10] B. F. R. Dimitrova and B. Finkbeiner, “Abstraction refinement for
games with incomplete information,” Reports of SFB/TR 14 AVACS
43, SFB/TR 14 AVACS,, Tech. Rep., October 2008.

[11] K. R. Apt and E. Grädel, Lectures in game theory for computer

scientists. Cambridge University Press, 2011.
[12] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin, “Al-

gorithms for omega-regular games with imperfect information,” in
Computer Science Logic. Springer, 2006, pp. 287–302.

[13] A. Cimatti, S. Mover, and S. Tonetta, “SMT-based verification of
hybrid systems.” in AAAI, 2012.

[14] A. Arnold, A. Vincent, and I. Walukiewicz, “Games for synthesis of
controllers with partial observation,” Theoretical computer science,
vol. 303, no. 1, pp. 7–34, 2003.

[15] M. Wulf, L. Doyen, and J.-F. Raskin, “A lattice theory for solving
games of imperfect information,” in Hybrid Systems: Computation and

Control, ser. Lecture Notes in Computer Science, J. Hespanha and
A. Tiwari, Eds. Springer Berlin Heidelberg, 2006, vol. 3927, pp.
153–168.

[16] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelli-

gence, vol. 101, no. 1, pp. 99–134, 1998.
[17] J. Pineau and S. Thrun, “High-level robot behavior control using

pomdps,” in AAAI-02 Workshop on Cognitive Robotics, vol. 107, 2002.
[18] H. Kurniawati, D. Hsu, and W. S. Lee, “SARSOP: Efficient point-

based pomdp planning by approximating optimally reachable belief
spaces.” in Robotics: Science and Systems, 2008, pp. 65–72.

[19] R. Dimitrova and B. Finkbeiner, “Abstraction refinement for games
with incomplete information,” in FSTTCS, ser. Dagstuhl Seminar
Proceedings, R. Hariharan, M. Mukund, and V. Vinay, Eds., vol.
08004. Internationales Begegnungs- und Forschungszentrum fuer
Informatik (IBFI), Schloss Dagstuhl, Germany, 2008.

[20] E. A. Emerson, “Temporal and modal logic.” Handbook of Theoretical

Computer Science, Volume B: Formal Models and Sematics (B), vol.
995, p. 1072, 1990.

[21] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin, “Al-
gorithms for omega-regular games with imperfect information,” in
Computer Science Logic, ser. Lecture Notes in Computer Science,
Z. Ésik, Ed. Springer, 2006, vol. 4207, pp. 287–302.

[22] R. M. Smullyan, First-order logic. Courier Dover Publications, 1995.
[23] K. L. McMillan, “Interpolants from z3 proofs,” in Proceedings of

the International Conference on Formal Methods in Computer-Aided

Design, ser. FMCAD ’11. Austin, TX: FMCAD Inc, 2011, pp. 19–27.
[24] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy abstrac-

tion,” in ACM SIGPLAN Notices, vol. 37, no. 1. ACM, 2002, pp.
58–70.

