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Abstract— This paper addresses the design of input sig-
nals for the purpose of discriminating among a finite set of
models dynamic systems within a given finite time interval.
A motivating application is fault detection and isolation. We
propose several specific optimization problems, with objectives
or constraints based on signal power, signal amplitude, and
probability of successful model discrimination. Since these
optimization problems are nonconvex, we suggest a subopti-
mal solution via a random search algorithm guided by the
semidefinite relaxation (SDR) and analyze the accuracy of the
suboptimal solution. We conclude with a simple example taken
from a benchmark problem on fault detection for wind turbines.

I. INTRODUCTION

In many applications of control and automation there will
occur events that necessitate re-identifying a system model
or detecting that the dynamics have changed. For example, it
may be that the system dynamics have slowly changed due
to aging, or abruptly changed to a fault. It is desirable to
adjust the current control law accordingly or fix the fault.
In this paper we investigate design of “probing signals” that
improve the reliability of such a process. In particular, we
consider the problem of discriminating among a fixed finite
set of models, and finding the one which best matches the
current system behaviour.

There is a long history of research into input design for
system identification. The majority of papers have considered
continuous parameterizations of models, with identification
quality measured by estimated parameter variances or the
Fisher information matrix. Basic approaches are summarised
in [1], [2], including pseudo-random binary signals and op-
timized multi-sine signals. In [3] semidefinite programming
was used to design optimal signals in the frequency domain
subject power constraints. Robust procedures were proposed
in [4]. In [5], [6], time domain signals were designed
subject to power and amplitude constraints using semidefinite
relaxation.

Discriminating among a finite set of models is obviously
more limiting in some ways than a continuous parameteriza-
tion, but it also offers certain advantages, e.g. one can easily
have different models of different order and structure. In the
case of fault detection and isolation, there are frequently a
finite number modes of operation, corresponding to failures
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of different components, each of which is well understood:
see, e.g., [7] and references therein.

The majority of papers on fault detection assume the input
signal is “given”, and cannot be adjusted, and focus on the
statistical estimation [7]. In this paper we consider the case
when the input can be adjusted to some small degree. The
input design problem then could be posed in two general
formats: maximize model discrimination probability subject
to signal constraints related to nominal system operation, or
minimize probing signal magnitude (in some sense) subject
to constraints on reliability of model discrimination. These
are related to the “traditional” and “least costly” input design,
respectively, for continuously parameterized model sets [8].

In [9], a frequency-domain approach to input design
problem was proposed for model discrimination in terms
of cumulative sum and probability ratio tests. In [10] it
was assumed that initial conditions of the system and dis-
turbance signals are bounded by a known value, and the
objective is an input signal with the least power such that
it is impossible for models to have the same output signal.
Although this method brings an absolute discrimination, the
corresponding optimization problem is quite demanding. In
contrast, [11] proposes to maximizing the Kullback-Leibler
(K-L) divergence [12] of the probability density functions
(PDFs), corresponding to the output signals of models, from
each other, assuming that initial conditions of the system can
be chosen and a measurement noise signal is an iid random
process with a normal distribution.

In the time domain, input-design problems have the struc-
ture of a nonconvex quadratic program. Recently, semidefi-
nite relaxation techniques have been applied successfully to
such problems in a wide variety of application areas [13] and
in some cases can be proven to be very accurate, e.g. [14].
In this paper, we utilize and extend some of these methods
for the problem of model discrimination.

The main contributions of this paper are: Section II: a
model-selecting criterion, based on a modified version of the
prediction error method (PEM) [2] which admits rigorous
analysis in terms of hypothesis testing; Section III: a family
of optimization problems for input design, subject to dif-
ferent discrimination criteria and signal constraints; Section
IV: an approximate solution method for these (nonconvex)
optimization problems using semidefinite relaxation; Section
V: some cases when the proposed method is optimal, and VI:
an analysis of the quality of the solutions when the method
is sub-optimal. We conclude by presenting a simple example
based on a benchmark problem in fault detection for a wind
turbine. All the proofs of the main results are provided in
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APPENDIX.
We use the following notation conventions: | · | denotes

Euclidean norm of a finite-dimensional vector, | · |∞ is the
∞-norm of a vector, ‖ · ‖ is the induced norm of a matrix
with respect to |·|. The set of symmetric positive semidefinite
n×n matrices is denoted by Sn+, the operator diag(·) selects
the diagonal elements of a square matrix, the expectation
operator is denoted by E[·], and χ2

1−α,d is the critical value
of the chi-squared distribution with d degrees of freedom and
significance level α.

II. MODEL DISCRIMINATION

We consider an uncertain system of the form

y(t) = G0u(t) +H0s(t) + Ξ0x0 (1)

with single-input single-output (SISO) operators G0 and H0,
and where u is an input signal that we apply to the system,
y is an observed output signal, and s is an unobserved signal
that produces the additive disturbance, and x0 is an initial
condition (if present). We suppose that, based on a priori
knowledge of the system in (1), there is available a finite
number N of causal, linear time-invariant (LTI), discrete-
time, and SISO models

yn(t) = Gnun(t) +Hnsn(t) + Ξnxn, t = 0, 1, · · · (2)

for n = 1, · · · , N each of which satisfies the following:
1) The initial conditions of each model Gn is described

by a finite-dimensional vector xn = x̄n + Qnvn
where x̄n and Qn are predetermined vector and matrix,
respectively, and vn is a Gaussian random vector that
has a zero mean and a covariance matrix σ2

nI for some
constant σn.

2) The disturbance dynamics Hn is invertible and monic
and has a zero initial condition at time t = 0.

3) The signal sn(t), t = 0, 1, · · · is an iid random process
and is also independent of xn. Each sn(t) has a normal
distribution, denoted by fσn

, with a zero mean value
and some variance σ2

n.
Note that the appearance of σn in the first and third assump-
tion is just for notational simplicity, and does not involve
any loss of generality because of the flexibility in Qn.

Naturally, we assume that the models are distinct. Further-
more, the models may have different orders, which means
that the dimensions of xn’s may be different. For simplicity,
the elements of vn and sn(t) have the same variance σ2

n,
which works as a fitting parameter later.

Let T be a positive integer and represent the length
of an experiment. Then, using (2), we can describe the
output signal of the n-th model in “lifted form”: yn ,[
yn(0) · · · yn(T − 1)

]′
by

yn = Gnun + Ψnxn +Hnsn

= Gnun + Ψnx̄n + ΨnQnvn +Hnsn
(3)

with un =
[
un(0) · · · un(T − 1)

]′
and sn =[

sn(0) · · · sn(T − 1)
]′

where the matrices Gn, Ψn,
and Hn represent the n-th model. For example, if

(An, Bn, Cn, Dn) is a state-space representation of the n-
th model, then we have

Gn =


gn,0 0 · · · 0
gn,1 gn,0 · · · 0

...
...

. . .
...

gn,T−1 gn,T−2 · · · gi,0

 ,Ψn =


Cn
CnAn

...
CnA

T−1
n


with gn,0 = Dn and gn,i = CnA

i−1
n Bn for i = 1, 2, · · · . The

matrices Hn’s are defined similarly to Gn’s. Note that the
matrices Gn and Hn are lower triangular due to the causality
of the models and, in particular, the Hn’s are invertible.

For the purposes of model discrimination, given input-
output data of the real system: u =

[
u(0) · · · u(T − 1)

]′
and y =

[
y(0) · · · y(T − 1)

]′
, we construct for each

model a vector ṽn and a signal s̃n(t) like so:

p̃n ,

[
ṽn
s̃n

]
=
[
ΨnQn Hn

]+
(y −Gnu−Ψnx̄n) (4)

where s̃n ,
[
s̃n(0) · · · s̃n(T − 1)

]′
and + means the

Moore-Penrose pseudo inverse. These signals represent the
initial condition and noise signals that would have been
necessary for system n to have produced the observed input-
output data set, and parallels the use of “fictitious” reference
signals in unfalsified adaptive control (See, for example, [15]
and [16] for details).

If the elements of p̃n in (4) are plausible realisations of
the random process associated with the n-th model, then
we may conclude that the n-th model successfully describes
the input-output data u(t) and y(t). Note that if the initial
condition xn is a deterministic vector, i.e. Qn = 0, we
remove ṽn and ΨnQn in (4) and the signal s̃n(t) reduces
to the one-step-ahead prediction error [2] corresponding to
the n-th model. The presence of initial conditions for our
criterion is important in fault detection because we expect
to be examining the system during its normal operation, and
the statistics of the initial conditions may come from, e.g., a
bank of Kalman filters [7].

Based on the signals p̃n, we can use the maximum
likelihood method to select a particular model. Denote the
dimension of p̃n by Tn so that we have Tn = T + dim vn.
Also, denote by fσ the PDF of a Tn-dimensional multivariate
normal distribution with a zero mean vector and a covariance
matrix σ2I . Given p̃n =

[
ṽn
′ s̃n

′]′ in (4), an estimate

σ̂n = arg max
σ≥0

ln fσ(p̃n)

= arg min
σ≥0

Tn lnσ2 +
1

σ2
p̃n
′p̃n

=

(
1

Tn
p̃n
′p̃n

) 1
2

=

{
1

Tn
(ṽn
′ṽn + s̃n

′s̃n)

} 1
2

.

(5)

provides the maximum likelihood (over σ) for the n-th
model, and then we select a model that has the least value
for σ̂2

n, i.e.

n̂ = arg min
n∈{1,··· ,N}

σ̂2
n

= arg min
n∈{1,··· ,N}

1

Tn
(ṽn
′ṽn + s̃n

′s̃n) .
(6)



The selection criterion in (6) provides a definitive selection
and only one model stands after this method is applied to
collected data. On the other hand, sometimes we may want
to consider all the models that do not show some evident
inadequacy. We formulate this as a hypothesis testing for
each model with

Null Hypothesis : The n-th model produced the
data with some σn less than or equal to a known
value σ̄ ≥ 0.

Unless this null hypothesis is rejected based on the collected
data, we keep the n-th model as a potential origin of the
data. Thus, possibly multiple models remain as candidates
after this testing.

For the n-th model, we may reject the null hypothesis
if the data shows a significant evidence that the estimated
variance σ̂2

n in (5) is greater than σ̄2. Thus, using a chi-
squared test, we reject the null hypothesis when a statistic
Tnσ̂

2
n

σ̄2 is greater than χ2
1−α,Tn−1. Therefore, the candidate

models based on the collected data are described by a set{
n ∈ {1, · · · , N}

∣∣∣∣∣σ̂2
n ≤

χ2
1−α,Tn−1

Tn
σ̄2

}
. (7)

III. INPUT DESIGN FOR MODEL
DISCRIMINATION

If the real system in (1) is well-described by one of the
N models, it is important to be able to distinguish it from
other models. In this section, we consider design of a probing
input signal u that ensures the model selection procedure in
Section II is successful.

Suppose that we wish to discriminate between models
n1 and n2, when in reality the system in (1) is compatible
with model n1 with a noise variance bounded by a known
constant σn1

≤ σ̄. Then, using (3), the output signal y =[
y(0) · · · y(T − 1)

]′
is given by

y = Gn1
un1

+ Ψn1
x̄n1

+ Ψn1
Qn1

vn1
+Hn1

sn1
.

Now, if we test the data against model n2 by applying the
procedure in (4), we find that p̃n2

=
[
ṽn2
′ s̃n2

′]′ is

p̃n2
= µ̃n2n1

+ Σ̃n2n1
pn1

(8)

where pn1
=
[
vn1
′ sn1

′]′ and

µ̃n2n1 =
[
Ψn2

Qn2
Hn2

]+
(Gn1 −Gn2)u + ηn2n1

ηn2n1 =
[
Ψn2

Qn2
Hn2

]+
(Ψn1 x̄n1 −Ψn2 x̄n2)

Σ̃n2n1 =
[
Ψn2

Qn2
Hn2

]+ [
Ψn1

Qn1
Hn1

]
.

Similarly,

p̃n1 =
[
Ψn1

Qn1
Hn1

]+ [
Ψn1

Qn1
Hn1

]
pn1

= µ̃n1n2
+ Σ̃n1n2

p̃n2
.

(9)

Since pn1
is a Gaussian random vector with a zero mean

vector and a covariance σ2
n1
I , it follows, from (8), that p̃n2

is a normally distributed random vector with a mean vector
µ̃n2n1 and a covariance matrix σ2

n1
Σ̃n2n1Σ̃n2n1

′. Note in
particular that µ̃n2n1

is an affine function of u and all other

quantities are independent of u. In the following theorem it
is shown that if |µ̃n2n1 | is sufficiently large for any n2 6= n1,
then the hypothesis testing in Section II brings statistically
reliable results.

Theorem 1: Suppose that real system data are compatible
with the n1-th model with some σn1

less than or equal to a
known value σ̄. If, for any n2 ∈ {1, · · · , N} \ {n1}, either

|µ̃n2n1
| >

(
χ1−α,Tn2−1 + χ1−α,Tn1−1

∥∥∥Σ̃n2n1

∥∥∥) σ̄ (10)

or

|µ̃n1n2 | >
(
χ1−α,Tn1

−1 + χ1−α,Tn2
−1

∥∥∥Σ̃n1n2

∥∥∥) σ̄ (11)

then, with at least 100×(1−α)% probability, only the n1-th
model is not rejected by the hypothesis test (7).

Note that the probability of the correct model being
selected increases as we increase the critical values of the
chi-squared distribution in (10) and (11).

Based on this proposition, we design an input signal
satisfying

|µ̃n2n1
| > γ(n1,n2) (12)

for all n1, n2 ∈ {1, · · · , N} satisfying n1 < n2 where

γ(n1,n2) = max
{(
χ1−α,Tn2−1 + χ1−α,Tn1−1

∥∥∥Σ̃n2n1

∥∥∥) σ̄,(
χ1−α,Tn1

−1 + χ1−α,Tn2
−1

∥∥∥Σ̃n1n2

∥∥∥) σ̄} .
Note that, for any given unordered pair (n1, n2) or any given
two models, there is only one condition imposed by (12).
Thus, the total number of conditions is N(N−1)

2 .
Roughly speaking, purpose of the conditions (10) and (11)

is to make p̃n1
and p̃n2

for any n2 6= n1 to be far apart from
each other with high probability by placing the vectors µ̃n2n1

and µ̃n1n2 away from the zero vector. This can be achieved
by suitably chosen u. Alternatively, when the dimensions of
p̃n1

and p̃n2
are the same, we can also pursue the same goal

by increasing the Kullback-Leibler divergence

DKL(f̃n2
||̃fn1

) =
1

2σ2
n1

|µ̃n2n1
|2 +

1

2

{
Tr
(

Σ̃n2n1
Σ̃n2n1

′
)

−Tn2
− ln det

(
Σ̃n2n1

Σ̃n2n1

′
)}

of f̃n1
from f̃n2

where f̃n2
and f̃n1

are the PDFs of p̃n2

and p̃n1 , respectively. This formulation was studied in [11],
however our condition in (12), combined with the hypothesis
testing in Section II, provides an explicit reliability measure
for model discrimination.

A. A Family of Nonconvex Quadratic Optimization Problems

We have shown that model discrimination is improved by
increasing the norm of the vectors µ̃n2n1

for each pair of
models n1, n2. With this in mind, there are a number of
reasonable formulations of specific optimization problems,
trading off different measures of signal size and model
discrimination ability.



Since each µ̃n2n1
is an affine functions of the control input

u, unless constraints are imposed on the input it is clear that
maximizing model discrimination leads to an unbounded and
ill-posed optimization problem. Given some positive bounds
ū, ȳ we consider some natural constraints:

Zi2(u) :=
1

ū2
|u|2, (13)

Zo2(u) :=
1

ȳ2
max

n∈{1,··· ,N}
|Gnu + Ψnx̄n|2, (14)

Zi∞(u) :=
1

ū
|u|∞, (15)

Zo∞(u) :=
1

ȳ
max

n∈{1,··· ,N}
|Gnu + Ψnx̄n|∞, (16)

where the subscripts refer to input and output, and 2-norm
and ∞-norm. Notice that the constraints on the output are
the maximum over all models in the set. There may be
other constraints that are natural to consider, e.g. move size
(change in u), or the size of other states in a state-space
model, or a weighted combination of inputs and outputs as
in a linear quadratic regulator. These could also easily be
used in the framework we propose.

Let M = N(N−1)
2 be the total number of the unordered

pairs of the models, and

Gm :=
[
Ψn2Qn2 Hn2

]+
(Gn1

−Gn2
) , (17)

ηm := ηn2n1
, γm := γ(n1,n2). (18)

We consider two natural measures of model discrimination,
a “worst case” criterion, derived from (12):

V∞(u) := min
m∈{1,··· ,M}

1

γ2
m

∣∣Gmu + ηm
∣∣2 (19)

and a somewhat easier “weighted average” case:

V2(u) :=
1

M

M∑
m=1

wm

γ2
m

∣∣Gmu + ηm
∣∣2 (20)

where wm’s are the weights. The latter may be appropriate
if based on prior data certain models are highly likely and
should be favored for discrimination.

Note that all of (13)-(16) and (19), (20) are convex
quadratic functions of u. With these signal properties and
discrimination factors, we can consider either the “least
costly” input signal for guaranteed discrimination:

min
u∈RT

Za(u)

s.t. Vb(u) ≥ 1
(21)

with a ∈ {i2, o2, i∞, o∞} and b ∈ {∞, 2}. Alternatively, we
can consider maximizing discrimination reliability subject to
hard constraints on the input:

max
u∈RT

Vb(u)

s.t. Za(u) ≤ 1.
(22)

Both of these formulations are nonconvex quadratic opti-
mization problems, due to the constraint in (21) and the
maximization in (22). There is no known polynomial-time

algorithm for nonconvex quadratic optimization, and it is
generally considered unlikely one will be found since they
belong to the class of NP-hard problems [13]. For this reason,
we pursue a convex relaxation technique.

IV. RELAXATION TO A SEMIDEFINITE PROGRAM

Semidefinite relaxation is a general approach for problems
of the form minx f0(x) subject to fi(x) ≤ 0 where x ∈
Rn−1 and fi(x) = x′Aix + 2b′ix + c, i = 0, 1, 2, ...,m. In
particular, it is not assumed that Ai are positive semidefinite
(which would bring convexity). These functions can be
homogenised as

fi(x) =

[
x
1

]′ [
Ai b′i
bi ci

] [
x
1

]
=: ξ′Qiξ.

The simple fact that ξ′Qiξ = Tr(ξ′Qiξ) = Tr(Qiξξ
′), and

the fact that any n × n matrix X = X ′ ≥ 0 which is rank
one can be decomposed as X = ξξ′ leads to the equivalent
problem:

min
X∈Sn

+

Tr(Q0X) : Tr(QiX) ≤ 0, Xn,n = 1, rank(X) = 1.

This is an exact reformulation of the problem, and all con-
straints are convex except for the rank constraint. Semidef-
inite relaxation consists of dropping the rank constraint,
which results in a semidefinite program [14], [13]. Relax-
ations always give an “optimistic” value, since they optimize
the same objective function over a larger feasible set. The
quality of a relaxation is determined by the gap between the
true optimum and the optimum of the relaxation.

To apply this idea to the model discrimination problem,
we construct homogenised forms of the key quantities from
the previous section. The discrimination factor is given by

∣∣Gmu + ηm
∣∣2 =

[
u
1

]′ [
Gm
′

ηm
′

] [
Gm ηm

] [u
1

]
(23)

and the various signal constraints can be represented as

|u|2 =

[
u
1

]′ [
I 0
0′ 0

] [
u
1

]
,

|Gnu + Ψnx̄n|2 =

[
u
1

]′ [
Gn
′

x̄n
′Ψn

′

] [
Gn Ψnx̄n

] [u
1

]
,

|ui|2 =

[
u
1

]′ [
eiei

′ 0
0′ 0

] [
u
1

]
,

|(Gnu + Ψnx̄n)i|
2

=

[
u
1

]′ [
Gn
′

x̄n
′Ψn

′

]
eiei

′ [Gn Ψnx̄n
] [u

1

]
.

(24)

where ei is the indicator vector for element i, and |x|∞ ≤ a
can be imposed for any vector by |xi|2 ≤ a2 ∀ i.

These can be equivalently represented in terms of a matrix



variable U ∈ ST+1
+ :∣∣Gmu + ηm
∣∣2 = Tr

([
Gm
′

ηm
′

] [
Gm ηm

]
U

)
|u|2 = Tr

([
I 0
0′ 0

]
U

)
|Gnu + Ψnx̄n|2 = Tr

([
Gn
′

x̄n
′Ψn

′

] [
Gn Ψnx̄n

]
U

)
|ui|2 = Tr

([
eiei

′ 0
0′ 0

]
U

)
|(Gnu + Ψnx̄n)i|

2
= Tr

([
Gn
′

x̄n
′Ψn

′

]
eiei

′ [Gn Ψnx̄n
]
U

)
.

with additional conditions UT+1,T+1 = 1, U ≥ 0, and
rank(U) = 1. The optimization problems are now described
in terms of U instead of u. The SDR is completed by
dropping the rank constraint rank(U) = 1.

Given the various Za(u) and Vb(u) from the previous
section, we denote the semidefinite relaxation forms of
these by Ẑa(U) and V̂b(U). So we can again have general
problems of the form

min
U∈ST+1

+

Ẑa(U) s.t. V̂b(U) ≥ 1, UT+1,T+1 = 1. (25)

or

max
U∈ST+1

+

V̂b(U) s.t. Ẑa(U) ≤ 1, UT+1,T+1 = 1. (26)

as relaxations of (21) and (22), respectively. Clearly, one
can also add multiple constraints (e.g. on the input and
output) and retain the same SDP structure, or alternative
cost functions such as LQR. We do not give every possible
permutation here, but for example, the relaxation of

max
u∈RT

V2(u)

s.t. Zi∞(u) ≤ 1,
(27)

is given by

max
U∈ST+1

+

V̂2(U)

s.t. Ẑi∞(U) ≤ 1,

UT+1,T+1 = 1.

(28)

where

V̂2(U) =
1

m

M∑
m=1

wm
γ̄2
m

Tr

([
Gm
′

ηm
′

] [
Gm ηm

]
U

)
, (29)

Ẑ∞(U) =
1

ū2
max

i∈{0,1,...,T}
Tr

([
eiei

′ 0
0′ 0

]
U

)
. (30)

The SDP relaxations generally give “optimistic” results,
i.e. under-estimations of required signal power in (21) and
over-estimations of discrimination power in (22). However,
the advantage is that they can be efficiently solved (polyno-
mial time to a given accuracy) using freely available solvers
such as Sedumi [17] and interfaces such as Yalmip [18] and
CVX [19].

V. OPTIMAL SOLUTIONS OF THE TRUE
PROBLEMS FROM THE RELAXATION

Although in general the objective value of (21) and (25),
or (22) and (26), will be different, there are some cases in
which they are the same. That is, there is no gap between the
optimal values of the relaxed problem and the true problem.
In particular, this is the case for either the “least costly”
formulation (21) or “traditional” formulation (22) under the
following situations:

1) The signal conditions Za(u) are of “power” type, i.e.
a = i2 or o2 or another quadratic, e.g. LQR, and

a) The model discrimination constraint is of the
weighted average form V2(u), or

b) The model discrimination is absolute V∞(u) but
there is only two models to discriminate between,
giving m = 1 in (19).

Under any of these scenarios, (21) or (22) become problems
to optimize (minimize or maximize) a quadratic function
subject to a single quadratic constraint. For this problem
structure, it is known that the semidefinite relaxation has
no gap [20], [21, Appendix B].

Let us also consider a more general case involving more
constraints or models to distinguish:

min
U∈ST+1

+

max
`∈{1,··· ,L}

Tr(P`U)

s.t. Tr(RkU) ≥ r, k = 1, · · · ,K
Tr(eT+1eT+1

′U) = 1,

(31)

where L and K are positive integers, r is a constant, and
P`’s and Rk’s are (T + 1)× (T + 1) matrices. It should be
clear that SDPs in (25) and (26) are special cases of this
SDP. In particular, the “zero gap” cases we described above
correspond to L = K = 1.

Then, the following proposition is a straightforward ex-
tension [22], [23], [24].

Proposition 1: If the optimization problem in (31) with
L = 1 has an optimal solution, then there exists an optimal
solution U∗ satisfying

rank(U∗) (rank(U∗) + 1)

2
≤ K + 1.

Remark 1: When L = K = 1, as in the cases described
above, Proposition 1 guarantees that a solution U∗ to the
corresponding SDP has rank 1, which implies that there
exists u∗ satisfying U∗ =

[
u∗′ 1

]′ [
u∗′ 1

]
. And, this u∗

is the optimal solution to the original optimization problem
and satisfies Ẑ(U∗) = Z(u∗) and V̂ (U∗) = V (u∗).

In the case that L > 1, we develop a slightly weaker result:

Proposition 2: If the optimization problem in (31) has an
optimal solution U∗1 , then there exists an optimal solution
U∗2 satisfying

rank(U∗2 ) (rank(U∗2 ) + 1)

2
≤ K + 2. (32)

The proof of this proposition provides a simple rank
reduction algorithm and we can employ this algorithm in



order to search for an optimal solution of the lowest possible
rank.

VI. SUBOPTIMAL SOLUTIONS VIA THE SDR AND
RANDOMIZATION

If an optimal solution U∗ of one of the SDPs in (25)
and (26) satisfies rank(U∗) = 1 as studied in Section V,
then the solution can be easily decomposed into an optimal
solution of the original optimization problem. If U∗ is of
low rank, but greater than 1, then this in a sense reduces
the dimensionality of the search space for a control input.
In fact, there are some cases where it can be proved that
near-optimal feasible solutions can be generated from the
relaxation and sampling schemes.

Considering problem (22) with input amplitude is con-
strained, i.e. with Za(u) = Zi∞(u), and the weighted
average model discrimination as an objective function, i.e.
V2(u), then the results of [14, Sec 4.1] can be directly applied
to prove that

2

π
V̂2(U∗) ≤ V2(u∗) ≤ V̂2(U∗).

Furthermore, a simple randomization procedure with round-
ing will achieve that accuracy in expectation. We omit details
here due to space, but it is the same as in the proof of the
main result in [14], and also applied in [5].

Moving to more general problems, consider the optimiza-
tion problem in (21) with the choice of (19) and its stochastic
version

min
Q,q

E
[
Z(Qξ + q)2

]
s.t. E

[
1

γ2
m

∣∣Gm (Qξ + q) + ηm
∣∣2] ≥ 1, m = 1, · · · ,M

with a random vector ξ ∈ RT that has a standard normal
distribution. Then, we can rewrite this stochastic optimization
problem as

min
Q,q

ZSDP

([
QQ′ + qq′ q

q′ 1

])2

s.t.
1

γ2
m

Tr

([
Gm
′

ηm
′

] [
Gm ηm

] [QQ′ + qq′ q
q′ 1

])
≥ 1,

m = 1, · · · ,M.
(33)

It can be shown that this optimization problem is the
same as the SDP in (25) in the sense that U∗ =[
Q∗Q∗′ + q∗q∗′ q∗

q∗′ 1

]
for an optimal solution U∗ to the SDP

in (25) and an optimal solution Q∗ and q∗ to the SDP in (33).
Thus, the SDP in (25) can be viewed as a stochastic version
of the original optimization problem in (21). Similarly, the
other SDPs can be viewed as stochastic versions of their
original optimization problems in (21) and (22), respectively.

In light of the fact that the SDPs are stochastic versions
of the original optimization problems, randomization ap-
proaches (e.g. [13] and [6]) are natural choices in order to
extract, from the solutions of the SDPs, a feasible solution to

the original optimization problems. We employ the following
algorithm for each optimization problem.

Algorithm 1: Given an SDP from (25) and (26), denote

its optimal solution by U∗ =

[
Q∗Q∗′ + q∗q∗′ q∗

q∗′ 1

]
.

Step 1 : Generate a realization ξ ∈ RT of a standard
normal distribution.

Step 2 : Search for a constant a∗ such that a∗Q∗ξ + q∗

(i) is a feasible solution to the original optimization problem
corresponding to the SDP and (ii) produces a better optimal
value for the original optimization problem than aQ∗ξ + q∗

with any other constant a. If such a constant does not exist,
go to Step 1.

Step 3 : Update û = a∗Q∗ξ + q∗ if this vector a∗Q∗ξ +
q∗ produces the best objective value so far through this
algorithm. If the number of the generations of ξ is less
than a certain positive number, then go to Step 1. Otherwise,
terminate the algorithm.

Even though the vectors that are generated in Step 1
suggest a solution to the original optimization problem in the
sense of average, each vector may not satisfy the constraints
of the original optimization problem. Thus, the vectors are
scaled by a∗ in Step 2 in order to meet the constraints and,
at the same time, to find a better solution than Q∗ξ + q∗.
This can be viewed as a line search.

It is possible that a constant a∗ in Step 2 does not exist
for some ξ. For example, consider the optimization problem
in (21) with a choice of (19) and its corresponding SDP in
(25) for Algorithm 1. If, for a vector ξ generated in Step 1,
there exists an m ∈ {1, · · · ,M} such that GmQ∗ξ = 0 and

1
γ̄2
m

∥∥Gmq∗ + ηm
∥∥2

< 1, then the scaling scheme does not
produce a feasible solution and, hence, Algorithm 1 returns
back to Step 1 and generate another vector. However, since
Gm’s and Q∗ are not zero matrices and a random vector
ξ has a continuous PDF, we have P

[
GmQ

∗ξ
]

= 0, which
means that there exists a∗ in Step 2, with probability 1. Thus,
every iteration of Algorithm 1 produces, with probability 1,
a feasible solution to the original optimization problems.

When Algorithm 1 is performed on an optimization prob-
lem whose optimal value is approximately known, we can
modify Algorithm 1 to be terminated in Step 3 if the
current vector a∗Q∗ξ + q∗ produces an objective which is
sufficiently accurate. In the next section, we construct such
an approximation of the optimal value.

A. Quality of the suboptimal solutions

Although the SDPs and Algorithm 1 can provide fairly
good solutions with high probability, the optimal values of
the original optimization problems are unknown. Instead, in
this section, we attain, for some optimization problems in
(21) and (22), regions where the optimal values reside in.
These regions can provide some ideas about the accuracy of
the computations via SDR.

We consider the optimization problem in (21) and its SDP
in (25) in Lemma 1 below. This lemma is an extension from
Theorem 1 in [13] and, thus, the proof of the lemma follows,
in general, the proof of the theorem.



Lemma 1: Let u∗ and U∗ =

[
Q∗Q∗′ + q∗q∗′ q∗

q∗′ 1

]
be

the optimal solutions of the optimization problems in (21)
with choices of V∞(u) in (19) and Z(u) in (13) or (15) and
its corresponding SDP in (25), respectively. Then, we have

Ẑ(U∗) ≤ Z(u∗) ≤
√

27

πρ
(M + 1)E

[
Z(Q∗ξ)2

] 1
2 + Z(q∗)

1
2

where ξ ∈ RT is a random vector with a standard normal
distribution and

ρ = min
m∈{1,··· ,M}

T∑
i=1

λ2
m,i

where λm,i, i = 1, · · · , T , are the singular values of
1
γm
GmQ

∗.

Note that, with the choice of Z(u) = Zi2(u) = 1
ū2 |u|2,

we have E
[
Z(Q∗ξ)2

] 1
2 = 1

ūTr(Q∗Q∗′)
1
2 and Z(q∗) =

1
ū2 |q∗|2. Further, if ηm = 0 ∀m ∈ {1, · · · ,M}, then
Proposition 3 below shows that q∗ = 0 and ρ ≥ 1, from
which it follows that E

[
Z(Q∗ξ)2

] 1
2 = Ẑ(U∗) and Z(q∗) =

0 and we have

Ẑ(U∗)2 ≤ Z(u∗)2 ≤ 27M2

π
Ẑ(U∗)2

where M+1 is replaced with M since there is no additional
constraint from homogenization (see Theorem 1 in [13]).

The upper bound in Lemma 1 depends on ρ, the least sum
of the squares of the singular values of 1

γm
GmQ

∗. A larger
value for ρ is preferable for a tighter bound and the following
proposition provides its property.

Proposition 3: Let u∗ and U∗ =

[
Q∗Q∗′ + q∗q∗′ q∗

q∗′ 1

]
be optimal solutions to the optimization problem in (21) with
choices of V (u) in (19) and Z(u) in (13) or (15) and the SDP
in (25), respectively. The constant ρ in Lemma 1 satisfies

ρ ≥ 1− max
m∈{1,··· ,M}

1

γ2
m

∣∣Gmq∗ + ηm
∣∣2 .

Furthermore, in the case that ηm = 0 ∀m ∈ {1, · · · ,M},
either we have q∗ = 0 or a matrix

[
Q∗Q∗′ 0
0′ 1

]
is also an

optimal solution to the SDP in (25), which leads to ρ ≥ 1.

VII. AN EXAMPLE

In this section, the input signal design algorithm is applied
to a fault detection problem for wind turbines.

A pitch angle y of a blade of a wind turbine is the angle
between the rotor plane and the blade chord line and, thus, a
pitch angle y = 0◦ means that the blade is aligned in parallel
with the rotor plane. The blade is rotated by a hydraulic
system and a popular model of this actuator is a closed-loop
transfer function between the pitch angle y and a reference
angle u

ω2

s2 + 2ζωs+ ω2
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Fig. 1. The designed input signal (Top) and the corresponding empirical
PDFs of σ̂2

1 and σ̂2
2 when the system is in the normal condition (Middle)

and in the faulty condition (Bottom).

where ζ and ω are the damping ratio and the natural
frequency, respectively. See, for example, [25] for the details.
In a normal condition, the parameters are ζ1 = 0.6 and
ω1 = 11.11.

There are two major faults that can happen in the pitch
angle control and we consider only one of them that is caused
by an abrupt drop of the hydraulic pressure. In this case, the
parameters change to ζ2 = 0.45 and ω2 = 5.73.

In order to detect the fault, i.e. to distinguish between
two models based on their input-output signal, we first
discretize two models of the actuators to obtain G1 and
G2 corresponding to (ζ1, ω1) and (ζ2, ω2), respectively. The
discretization is performed with a sampling time 0.01s and
a zero-order hold. In order to complete the model structures
as in (2), we use identity operators for both H1 and H2

and the initial conditions, the current pitch angle and pitch
angular velocity, of both models have mean vectors x̄1 =
x̄2 =

[
0.5◦ 0◦/s

]′
and Q1 = Q2 = I for their covariances.

And, we assume that the values σ1 and σ2 are less than or
equal to σ̄ =

√
2.

Then, we search for an input signal, for a time horizon
T = 100, using an optimization problem in (22) with choices
of V∞(u) in (19) and Zi2(u) in (13) combined with ū = 1.5,
i.e. we maximize the level of model discrimination while
keeping the power of the input signal below ū. As guaranteed
by Remark 1, its corresponding SDP in (26) has an optimal
solution of rank 1. Thus, this SDP is solved by the CVX
followed by a rank reduction procedure. The designed input
signal is shown in Fig. 1 (Top).

First, we apply the designed input signal to the first model
G1, which corresponds to the normal condition, with σ1 = 1
from time 0 to T = 100 and, then, compute estimates σ̂2

1

and σ̂2
2 . This simulation is repeated 1000 times to obtain

empirical PDFs of σ̂2
1 and σ̂2

2 , which are shown in Fig. 1
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Fig. 2. A step input signal (Top) and the corresponding empirical PDFs
of σ̂2

1 and σ̂2
2 when the system is in the normal condition (Middle) and in

the faulty condition (Bottom).

(Middle). As shown in the figure, the second model, which
corresponds to the faulty condition, produces greater values
for the estimate with high probability and, thus, the model
discrimination method in Section II selects the first model,
which is the correct model, with high probability. In Fig. 1
(Bottom), empirical PDFs of σ̂2

1 and σ̂2
2 are shown when the

system is in the faulty condition, from which it is evident that
the model discrimination method selects the correct model,
which is the second model, with high probability.

For comparison, we employ a step input signal with ū as
its amplitude, shown in Fig. 2 (Top), for the same simulation
and obtain empirical PDFs of σ̂2

1 and σ̂2
2 in Fig. 2 (Middle)

and (Bottom) when the system is in the normal condition
and the faulty condition, respectively. This input signal is
common in practice but, as can be seen from the figures,
model discrimination is impossible.

VIII. CONCLUSION

In this paper, we give a procedure for the design of
probing input signals for model discrimination and fault
detection over finite time intervals. The design method uses
a likelihood-based model selection criteria, which we obtain
from a modification of PEM to accommodate probabilistic
structures of initial conditions of models. From this, we
obtain conditions on input signals that guarantee that the
hypothesis testing distinguishes models from each other with
a given level of confidence.

From this general setting, several specific optimization
problems are constructed from different constraints on the
input, and different criteria for model discrimination. These
optimization problems are nonconvex, and difficult to solve
in general, so we suggest a solution procedure based on
semidefinite relaxation and sampling.

The quality of this relaxation scheme is assessed based
on some known results from duality of nonconvex quadratic
programming and randomization algorithms. The utility of
the method is assessed with an example of fault detection in
a wind turbine.

An interesting future application will be to combine this
design scheme with some preexisting control laws to form a
so-called dual control, that optimizes both model discrimina-
tion ability and some other control objectives. This may be
useful for switching adaptive control. It is straightforward to
include in our proposed method linear and quadratic costs,
so a natural controller to combine with would be MPC.

APPENDIX

A. Proof of Theorem 1

Since pn1
is a Gaussian random vector with a zero mean

vector and a covariance σ2
n1
I , we have, from the definition

of the value χ1−α,Tn1
−1,

P

[
|pn1 |2

σ2
n1

≤ χ2
1−α,Tn1

−1

]
= 1− α,

from which, together with (5) and the fact that |p̃n1
| =∣∣∣[Ψn1

Qn1
Hn1

]+ [
Ψn1

Qn1
Hn1

]
pn1

∣∣∣ ≤ |pn1 | and
σn1
≤ σ̄, it follows that

P

[
Tn1 σ̂

2
n1

σ̄2
≤ χ2

1−α,Tn1
−1

]
≥ 1− α. (34)

Pick any n2 ∈ {1, · · · , N} \ {n1}. (i) In the case that the
condition in (10) holds, it follows, from (9), that

|p̃n2 | ≥ |µ̃n2n1 | −
∣∣∣Σ̃n2n1 p̃n1

∣∣∣
> χ1−α,Tn2−1σ̄ +

(
χ1−α,Tn1

−1σ̄

|p̃n1
|

− 1

) ∣∣∣Σ̃n2n1
p̃n1

∣∣∣
and, thus, we have |p̃n2

| > χ1−α,Tn2
−1σ̄ when |p̃n1

| ≤
χ1−α,Tn1

−1σ̄, which implies that

P

[
Tn2 σ̂

2
n2

σ̄2
> χ2

1−α,Tn2
−1

∣∣∣∣Tn1 σ̂
2
n1

σ̄2
≤ χ2

1−α,Tn1
−1

]
= 1.

(35)
(ii) In the other case that the condition in (11) holds, we
obtain, using (9),

|p̃n1
| ≥ |µ̃n1n2

| −
∣∣∣Σ̃n1n2

p̃n2

∣∣∣
> χ1−α,Tn1

−1σ̄ +

(
χ1−α,Tn2−1σ̄

|p̃n2 |
− 1

) ∣∣∣Σ̃n1n2 p̃n2

∣∣∣
and, thus, we have |p̃n2

| > χ1−α,Tn2
−1σ̄ if |p̃n1

| ≤
χ1−α,Tn1−1σ̄. This also leads to (35), which implies that
either of conditions (10) and (11) guarantees (35).

Since n2 is arbitrarily selected, we have

P

[
Tn2 σ̂

2
n2

σ̄2
> χ2

1−α,Tn2
−1

∣∣∣∣Tn1 σ̂
2
n1

σ̄2
≤ χ2

1−α,Tn1
−1

]
= 1



∀n2 ∈ {1, · · · , N} \ {n1} and, thus,

P

[
Tn2

σ̂2
n2

σ̄2
> χ2

1−α,Tn2
−1 ∀n2 ∈ {1, · · · , N} \ {n1}∣∣∣∣Tn1

σ̂2
n1

σ̄2
≤ χ2

1−α,Tn1−1

]
= 1,

from which, together with (34), it follows that

P

[
Tn2 σ̂

2
n2

σ̄2
> χ2

1−α,Tn2
−1 ∀n2 ∈ {1, · · · , N} \ {n1}

and
Tn1

σ̂2
n1

σ̄2
≤ χ2

1−α,Tn1−1

]
= P

[
Tn2

σ̂2
n2

σ̄2
> χ2

1−α,Tn2
−1 ∀n2 ∈ {1, · · · , N} \ {n1}∣∣∣∣Tn1

σ̂2
n1

σ̄2
≤ χ2

1−α,Tn1
−1

]
P

[
Tn1 σ̂

2
n1

σ̄2
≤ χ2

1−α,Tn1
−1

]
≥ 1− α,

which completes the proof.

B. Proof of Proposition 2

This proposition is proved by constructing, from U∗1 ,
an optimal solution U∗2 satisfying (32). In the case that
rank(U∗

1 )(rank(U∗
1 )+1)

2 ≤ K + 2, we have U∗2 = U∗1 . Thus,
for the remaining of the proof, we suppose that

rank(U∗1 ) (rank(U∗1 ) + 1)

2
> K + 2. (36)

Since U∗1 ≥ 0 is a symmetric matrix, we can
find a unitary matrix W and a diagonal matrix Λ =
diag{λ1, · · · , λrank(U∗

1 )} with λ1 ≥ · · · ≥ λrank(U∗
1 ) > 0

satisfying U∗1 = W

[
Λ 0
0 0

]
W ′. Then, it is clear, from (36),

that there exists a rank(U∗1 )×rank(U∗1 ) nonzero symmetric
matrix Ŭ satisfying

Tr(P`Ŭ1) = 0, ` = `∗

Tr(RkŬ1) = 0, k = 1, · · · ,K
Tr(eT+1eT+1

′Ŭ1) = 0

(37)

where `∗ = arg max`∈{1,··· ,L}Tr(P`U
∗
1 ) and

Ŭ1 = W

[
Λ 0
0 I

] 1
2
[
Ŭ 0
0 0

] [
Λ 0
0 I

] 1
2

W ′.

And, further, we can find a unitary matrix W̆ and a diagonal
matrix Λ̆ = diag{λ̆1, · · · , λ̆rank(Ŭ)} with λ̆1 ≥ · · · ≥

λ̆rank(Ŭ) satisfying Ŭ = W̆

[
Λ̆ 0
0 0

]
W̆ ′. Notice that 1 ≤

rank(Ŭ) = rank(Λ̆) ≤ rank(U∗1 ).
Then, for any constant a, we have

U2(a) , U∗1 + aŬ1

= W

[
Λ 0
0 I

] 1
2
[
I + aŬ 0

0 0

] [
Λ 0
0 I

] 1
2

W ′

= W

[
Λ

1
2 W̆ 0
0 I

]I +

[
aΛ̆ 0
0 0

]
0

0 0

[W̆ ′Λ 1
2 0

0 I

]
W ′,

from which it follows that there exists a constant a∗ such
that

rank(U2(a∗)) = rank

(
I +

[
a∗Λ̆ 0
0 0

])
< rank(U∗1 )

(38)

and I +

[
a∗Λ̆ 0
0 0

]
≥ 0, which implies that

U2(a∗) ≥ 0. (39)

Moreover, we have, from (37), that

Tr(P`U2(a∗)) = Tr(P`U
∗
1 ), ` = `∗

Tr(RkU2(a∗)) = Tr(RkU
∗
1 ), k = 1, · · · ,K

Tr(eT+1eT+1
′U2(a∗)) = Tr(eT+1eT+1

′U∗1 ),

from which, together with (38) and (39), it follows that
U2(a∗) is also an optimal solution and its rank is less than
the rank of U∗1 .

From U2(a∗), we repeat the same procedure to obtain
another matrix of a smaller rank. We repeat this rank
reduction procedure until we obtain a matrix satisfying the
condition in (32).

C. Proof of Lemma 1

Due to the relaxation of the rank constraint, we have
Ẑ(U∗) ≤ Z(u∗).

For a given ξ, we search for an appropriate constant a ≥ 0
such that aQ∗ξ+q∗ is a feasible solution to the optimization
problem in (21). Such a constant exists with probability 1 and
we denote the constant by a∗. Then, it is clear that, for any
given constants β1, β2 > 0,

P
[
Z(a∗Q∗ξ + q∗) ≤ β1β2E

[
Z(Q∗ξ)2

] 1
2 + Z(q∗)

]
≥ P

[
a∗Z(Q∗ξ) ≤ β1β2E

[
Z(Q∗ξ)2

] 1
2

]
≥ P

[
a∗ ≤ β1 and Z(Q∗ξ) ≤ β2E

[
Z(Q∗ξ)2

] 1
2

]
= 1− P

[
a∗ > β1 or Z(Q∗ξ) > β2E

[
Z(Q∗ξ)2

] 1
2

]
≥ 1− P [a∗ > β1]− P

[
Z(Q∗ξ)2 > β2

2E
[
Z(Q∗ξ)2

]]
,

from which, together with the Markov’s inequality

P
[
Z(Q∗ξ)2 > β2

2E
[
Z(Q∗ξ)2

] ]
≤ 1

β2
2

and Proposition 4 below, it follows that

P
[
Z(a∗Q∗ξ + q∗) ≤ β1β2E

[
Z(Q∗ξ)2

] 1
2 + Z(q∗)

]
≥ 1−M max

{
1

β1
√
ρ
,

2 (rank(U∗)− 1)

(π − 2)β2
1ρ

}
− 1

β2
2

.
(40)

It follows, from Proposition 1 and 2, that rank(U∗) ≤√
2(M + 1) and, hence, for

β1 =
2(M + 1)
√
πρ

(
1− 1

β2
2

)−1

and β2 =
√

3,

we have
1

β1
√
ρ
≥ 2 (rank(U∗)− 1)

(π − 2)β2
1ρ

,



from which, together with (40), it follows that

P
[
Z(a∗Q∗ξ + q∗) ≤ β1β2E

[
Z(Q∗ξ)2

] 1
2 + Z(q∗)

]
≥ 1−

√
π

3
− 1

3
> 0.

This implies that there exists a vector ξ̂ ∈ RT satisfying

Z(u∗) ≤ Z(a∗Q∗ξ̂ + q∗)

≤
√

27

πρ
(M + 1)E

[
Z(Q∗ξ)2

] 1
2 + Z(q∗),

which completes the proof.
Proposition 4: For any β1 > 0, the random variable a∗ in

the proof of Lemma 1 satisfies

P [a∗ > β1] ≤M max

{
1

β1
√
ρ
,

2 (rank(U∗)− 1)

(π − 2)β2
1ρ

}
with the constant ρ in Lemma 1.

Proof: For any β1 > 0, it follows, from the definition
of a∗ in the proof of Lemma 1, that

P [a∗ > β1]

= P

[
∃ m ∈ {1, · · · ,M} s.t.

1

γm

∣∣Gm (β1Q
∗ξ + q∗) + ηm

∣∣ < 1

]
≤

M∑
m=1

P
[∣∣β1GmQ

∗ξ +Gmq
∗ + ηm

∣∣ < γm
]
.

(41)

Using the eigenvalue decomposition, we can find two uni-
tary matrices Vm and Wm and a diagonal matrix Λm =
diag{λm,1, · · · , λm,T } with λm,1 ≥ · · · ≥ λm,T ≥ 0
satisfying GmQ∗ = V ′mΛmWm, which leads to

P
[∣∣β1GmQ

∗ξ +Gmq
∗ + ηm

∣∣ < 1
]

= P
[∣∣∣β1Λmξ̃m + Vm

(
Gmq

∗ + ηm
)∣∣∣ < 1

]
≤ P

[∣∣∣β1Λmξ̃m

∣∣∣ < 1
] (42)

where ξ̃m =
[
ξ̃m,1 · · · ξ̃m,T

]′
= Wmξ. Note that

ξ̃m ∈ RT is also a random vector with the standard normal
distribution due to the unitary property of Wm.

For a given constant θ ∈ (0, 1), if λ2
m,1 ≥ θ

∑T
i=1 λ

2
m,i,

we have

P
[∣∣∣β1Λmξ̃m

∣∣∣ < 1
]
≤ P

[
β1λm,1|ξ̃m,1| < 1

]
≤ P

|ξ̃m,1| < 1

β1

√
θ
∑T
i=1 λ

2
m,i


≤
√

2

πβ2
1θ
∑T
i=1 λ

2
m,i

(43)

where the last inequality comes from the fact that ξ̃m,1 is a
random variable with a standard normal distribution.

On the other hand, if λ2
m,1 < θ

∑T
i=1 λ

2
m,i, we have

(rank(U∗)− 1)λ2
m,2 ≥

T∑
i=1

λ2
m,i−λ2

m,1 > (1− θ)
T∑
i=1

λ2
m,i

and, hence,

λ2
m,1 ≥ λ2

m,2 >
1− θ

rank(U∗)− 1

T∑
i=1

λ2
m,i,

which leads to

P
[∣∣∣β1Λmξ̃m

∣∣∣ < 1
]

≤ P
[
β1λm,1ξ̃m,1 < 1 and β1λm,2ξ̃m,2 < 1

]
≤ P

[
β1λm,1|ξ̃m,1| < 1

]
P
[
β1λm,2|ξ̃m,2| < 1

]
≤ 2 (rank(U∗)− 1)

πβ2
1 (1− θ)

∑T
i=1 λ

2
m,i

(44)

where the last inequality comes from the fact that ξ̃m,1 and
ξ̃m,2 are random variables with standard normal distributions.

We pick θ = 2
π . Then, we have, from (43) and (44),

P
[∣∣∣β1Λmξ̃m

∣∣∣ < 1
]

≤ max

 1√
β2

1

∑T
i=1 λ

2
m,i

,
2 (rank(U∗)− 1)

(π − 2)β2
1

∑T
i=1 λ

2
m,i


≤ max

{
1

β1
√
ρ
,

2 (rank(U∗)− 1)

(π − 2)β2
1ρ

} (45)

with the constant ρ in Lemma 1. The proof is completed by
combining (41), (42), and (45).

D. Proof of Proposition 3

It is clear that

1

γ2
m

Tr

([
Gm
′

ηm
′

] [
Gm ηm

]
U∗
)

=
1

γ2
m

(
Tr
(
GmQ

∗(GmQ
∗)′
)

+
∣∣Gmq∗ + ηm

∣∣2)
=

T∑
i=1

λ2
m,i +

1

γ2
m

∣∣Gmq∗ + ηm
∣∣2

≥ 1

(46)

for m = 1, · · · ,M where the last inequality comes from the
fact that U∗ satisfies the constraints in (25). This leads to

ρ = min
m∈{1,··· ,M}

T∑
i=1

λ2
m,i

≥ 1− max
m∈{1,··· ,M}

1

γ2
m

∣∣Gmq∗ + ηm
∣∣2 .
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