
In-Network Leader Selection for Acyclic Graphs
Stacy Patterson

Abstract—We study the problem of leader selection in leader-
follower multi-agent systems that are subject to stochastic dis-
turbances. This problem arises in applications such as vehicle
formation control, distributed clock synchronization, and dis-
tributed localization in sensor networks. We pose a new leader
selection problem called the in-network leader selection problem.
Initially, an arbitrary node is selected to be a leader, and in all
consequent steps the network must have exactly one leader. The
agents must collaborate to find the leader that minimizes the
variance of the deviation from the desired trajectory, and they
must do so within the network using only communication between
neighbors. To develop a solution for this problem, we first show
a connection between the leader selection problem and a class of
discrete facility location problems. We then leverage a previously
proposed self-stabilizing facility location algorithm to develop a
self-stabilizing in-network leader selection algorithm for acyclic
graphs.

I. INTRODUCTION

We consider a class of multi-agent systems called leader-
follower systems. One or more agents in the network are
leaders; the states of these agents serve as the reference states
for the system. The remaining agents are followers that update
their states based on relative information about their own states
and the states of their neighbors. Hence, a system owner may
control the entire network by controlling the leader agents.
These dynamics arise in applications such as vehicle forma-
tion control [1], distributed clock synchronization [2], and
distributed localization in sensor networks [3], for example.

It has been shown that the performance of leader-follower
systems, where the followers are subject to stochastic distur-
bances, depends on the location of the leaders in the net-
work [4], [5]. This relationship naturally raises the question of
how to choose leaders, from among all agents in the network,
that give the best performance. The k-leader selection problem
posed in [5], is to select k leaders that minimizes the network
coherence, an H2 norm of the leader-follower system that
quantifies the variance of the nodes states from the target
states. The optimal leader set can be found by an exhaustive
search over all subsets of size k, but this solution is not
tractable in large networks.

Several recent works have proposed efficient approximation
algorithms for the k-leader selection problem. In these works,
the full network topology is known, and the leader set is
selected using an offline algorithm. In [6], the authors use
a convex relaxation of the combinatorial k-leader selection
problem, and they present an efficient interior point method
this relaxed problem. In [7], the authors show that the mean-
square deviation from the desired state is proportional to super-
modular set function [8]. As such, a greedy, polynomial time

S. Patterson is with the Department of Computer Science, Rensselaer
Polytechnic Institute, Troy, NY 12180, USA, sep@cs.rpi.edu

solution can be used to find a leader set for which the mean-
square error is within a provable bound of optimal. Other
works have explored the optimal leader selection in leader-
follower systems without stochastic disturbances [9] and in
systems where both the leaders and followers are subject to
stochastic disturbances and the leaders also have access to
relative state information [6]. Finally, recent work has shown
that the optimal single leader and optimal pair of leaders in a
network are those nodes with maximal information centrality
and joint centrality, respectively [10].

In this work, we investigate a variation on the k-leader
selection problem for k = 1 that we call the in-network leader
selection problem. We consider two performance measures,
the total variance of the deviation from the desired trajectory
and the maximum variance of this deviation, over all agents.
Initially, a single agent is selected as the leader, and the
network must have a single leader at all times. The agents must
collaborate to find the leader that minimizes the specified per-
formance measure (total or maximal variance), and they must
do so within the network using only communication between
neighbors. This problem may arise in a multi-agent system that
has limited bandwidth to the system owner. The system owner
controls the network through a single communication channel
with the leader. The system can determine the optimal leader
within the network and inform the owner when leadership
is transferred from one agent to another. Ideally, should the
network topology change, the leadership should be transferred
to the new optimal leader.

We first show a connection between optimal leader selection
and two discrete facility location problems, the p-median
problem and the p-center problem [11]. We then leverage
previously proposed algorithms for these facility location
problems to develop a solution for the in-network leader
selection problem for acyclic graphs. Our approach is self-
stabilizing, meaning that if, after the algorithm has found an
optimal leader, the network topology changes, the algorithm
will then find an optimal leader for the new topology.

The remainder of this work is organized as follows. In
Section II, we present the system model and background on
the leader selection problem. In Section III, we formalize
the in-network leader selection problem. Section IV gives our
algorithm and its analysis, including the relationship to the p-
median and p-center facility location problems. In Section V,
we show how our algorithm can be extended to leader-
follower systems in weighted graphs. Finally, we conclude in
Section VI.

II. BACKGROUND AND SYSTEM MODEL

We consider a system of n interconnected agents or nodes.
The communication structure is modeled by a connected,
undirected graph G = (V,E), where V is the set of of agents,

ar
X

iv
:1

41
0.

65
33

v1
 [

m
at

h.
O

C
]

 2
4

O
ct

 2
01

4

with |V | = n and E is the set of communication links, with
|E| = m. An edge (i, j) exists in E if and only if node i
and node j can send information between them. We denote
the neighbor set of a node i by N(i).

Every agent has a scalar-valued state xi(t), and the state
of the system is given by the vector x(t) ∈ Rn. A subset of
the agents U ⊆ V are leaders. We assume that the states of
these agents serve as a reference for the network; these states
remain fixed at an identical, constant trajectory x ∈ R, i.e.,

xi(t) = x, for all t ≥ 0, for all i ∈ U. (1)

The remaining agents, those in V \ U , are followers. Each
follower i updates its state based on its own state and those
of its neighbors using a simple noisy consensus algorithm,

ẋi(t) =
∑

j∈N(i)

xi(t)− xj(t) + wi(t), (2)

where wi(t) is a white stochastic disturbance with zero-mean
and unit variance.

Without loss of generality, we let the nodes be ordered so
that x(t) = [xf(t)T xl(t)T]T, where xf(t) denotes is the |V \U |-
vector containing the states of the follower agents and xl(t)
is the |U |-vector containing the states of the leader agents.
Let L be the Laplacian matrix of the graph induced by the
leader-follower dynamics. For now, we restrict our study to
consensus dynamics over an unweighted graph, and thus we
use the unweighted Laplacian matrix. In Section V, we show
how our problem formulation and solution can be extended to
dynamics that depend on a weighed Laplacian matrix. Each
component of L is defined as

Lij =

 −1 if (i, j) ∈ E and i is a follower
degree(i) i = j and i is a follower
0 otherwise.

L can be decomposed according to the leader/follower desig-
nations as

L =

[
Lff Lfl

0 0

]
,

where Lff defines the interactions between followers and Lfl
defines the impact of the leaders on the followers. We note
that (since G is connected), Lff is positive definite [5].

With this decomposition, the evolution of the states of the
follower nodes can be expressed as,

ẋf (t) = −Lffx(t) + wf (t), (3)

where wf (t) is the |V \ U |-vector of stochastic disturbances.
In the absence of the noise terms wi(t), the agents would

converge to the desired state x. With these noise terms,
the agents’ states do not converge, however, the steady-state
variance of their deviations from x are bounded (see e.g., [5]).
Formally, we define the steady-state variance of agent i as

σi = lim
t→∞

E
[
(xi(t)− x)2

]
.

It was shown in [4] that this variance is related to the (i, i)th

entry of L−1
ff as σi = 1

2 (L−1
ff)ii.

It has also been shown that, for |U | = 1, the steady-state
variance of a node i can also be expressed in terms of the

v x y

a b

Fig. 1. Example graph with optimal leaders. For LS-TV, the optimal leader
is node b, for which T ({b}) = 4.5 and M ({b}) = 1.5. For LS-MV, the
optimal leader is node a, for which T ({a}) = 5 and M ({a}) = 1.

resistance distance from i to the leader, where the resistance
distance is defined as follows. Let the graph represent an
electrical network where each edge is a unit resistor. The
resistance distance Ωij between two nodes i and j is the
potential difference between them when a one ampere current
source is connected from node j to node i.

Theorem 1 (See [12]): For a single leader s, the steady-
state variance of the deviation from x at an agent i is related
to the resistance distance between s to i as σi = 1

2Ωis.
In a general graph, resistance distance is a distance function.

For a simple, connected graph only, the resistance distance
between nodes i and j is equivalent to the conventional graph
distance Dij where Dij is the length of the shortest path
between i and j [13].

III. PROBLEM FORMULATION

The steady-state variance of each agent depends on the
choice of the leader set U . The leader selection problem
involves identifying a set U that minimizes a function of these
variances. We next define the functions that we use to measure
the performance of a leader set, followed by a formal definition
of the leader selection problems we address in this work.

A. Performance Measures

We quantify the relationship between the leader set and the
steady-state variance using two performance measures. The
first is the total steady-state variance, which is,

T (U) :=
∑
i∈V \U

σi.

This error measure, related to the coherence of the net-
work [14], has been studied in previous works on leader
selection [5], [6], [9]. We also consider the maximum steady-
state variance over all agents,

M (U) := max
i∈V \U

σi.

As far as we are aware, this error measure has not been
considered in previous works.

B. The Leader Selection Problem

The goal of the leader selection problem is to identify a
leader set U such that the steady-state variance of the agents
in minimized. The total variance k-leader selection problem
(k-LS-TV) is

minimize T (U)
subject to |U | = k.

(4)

The maximal variance k-leader selection problem (k-LS-MV)
is

minimize M (U)
subject to |U | = k.

(5)

For k = 1, we omit k from the naming convection, denoting
these problems by LS-TV and LS-MV. We note that the
optimal leader set may be different depending on which
performance measure is used. An example of this is given
in Figure 1 for k = 1.

A naive solution to the this problem is to compute T (U)
(M (U)) for all subsets U ⊆ V with |U | = k and to choose the
leader set for which this function is minimized. However, this
approach has combinatorial complexity. Several works have
proposed approximation algorithms for LS-TV, that run in
polynomial time. Notably, in [7], it was shown that T (U) is
proportional to a super-modular function, which implies that
a simple greedy (polynomial time) leader selection scheme
yields a leader set whose error is within a bounded approx-
imation of optimal. We note that the error function M (U)
is not super-modular. A proof this is given in Appendix A.
Therefore, the results for the approximation algorithm for LS-
TV do not necessarily extend to LS-MV.

C. The In-Network Leader Selection Problem

We now propose a variation on the k-leader selection
problem where agents collaborate to determine the optimal
leader set. For this initial investigation of the problem, we
restrict our focus to the case where k = 1 and where the
network is a connected, acyclic graph.

Initially, a single agent is selected as leader arbitrarily.
The state of this leader is the reference state x for the
network. In each round, every agent communicates with its
neighbors. During this communication, the leader agent may
choose to transfer the leadership role from itself to one of
its neighbors. Since the system is synchronous, the old and
new leader can schedule the leadership handoff so that it
occurs instantaneously. The new leader adopts the reference
state x and then follows the dynamics in (1). After an agent
transfers its leadership, it behaves as a follower according to
the dynamics in (2). The dynamics of the remaining nodes
remain unchanged after the handoff. The goal is for the
leadership role to eventually be transferred to and remain at the
leader u for which F ({u}) is minimized, where F (·) = M (·)
or F (·) = T (·).

Our aim is to develop algorithms for in-network leader
selection that are self-stabilizing, which is formally defined
as follows.

Definition 1: A leader selection algorithm is self-stabilizing
if, starting with any initial leader, the leadership role is
transferred to the optimal leader in a finite number of steps
(convergence) and it remains there for all subsequent steps
(closure).
A self-stabilizing algorithm is robust to changes in the net-
work. For example, suppose the optimal leader is selected,
and then the network topology changes. Provided that after
this change, the network topology remains stable for “long
enough”, the algorithm will then find the optimal leader for
the new topology.

The standard definition of a self-stabilizing algorithm [15]
requires that the algorithm converge to the desired solution
from any initial state. Definition 1 differs from this definition
slightly in that we require that a single leader is selected in
the initial state. This assumption implies that a self-stabilizing
leader selection algorithm need not be robust to agent failures
since the failure of the leader agent violates the assumption.
Conceivably, under certain assumptions about the frequency of
failures, a distributed leader election algorithm [16] could be
used to replace a failed leader agent. The integration of leader
election and optimal in-network leader selection is a subject
for future work.

IV. IN-NETWORK LEADER SELECTION ALGORITHM

In this section, we present our algorithms for in-network
leader selection. To develop our algorithms, we leverage
connections between the leader selection problem and two
discrete facility location problems, the p-median problem and
the p-center problems. We next present a summary of these
problems, followed by a description of our algorithms and
their analysis.

A. The p-Median and p-Center Problems

The p-median and p-center problems belong to a larger class
of discrete facility location problems [11]. In this class of
problems, there is a discrete set of demand nodes, a discrete
set of candidate facility locations, and specified distance dij
between each demand node i and candidate location j. Each
demand node will be assigned to the closest facility. The
objective is to select a set of p facility locations that minimizes
some function of the distances between the demand nodes and
their assigned facilities.

In both the p-median and p-center problems, the candidate
facility locations coincide with the locations of the demand
nodes. We denote this set of nodes by V . For the p-median
problem, p ≤ |V | facility locations are selected so as to
minimize the sum of the distances between each demand node
and its assigned facility,

minimize
∑
i∈V

min
u∈U

diu

subject to U ⊆ V, |U | = p.
(6)

In the p-center problem, p facility locations are selected to
minimize the maximum distance between any demand node
and its assigned facility,

minimize max
i∈V

min
u∈U

diu

subject to U ⊆ V, |U | = p.
(7)

In general, the p-median problem is NP-Hard, and the p-center
problem is NP-complete. In simple graphs, however, these
problems can be solved in polynomial-time [17].

If we consider the agents of the network as the set of de-
mand nodes/candidate facility locations and let the dij = Ωij
for all nodes i, j, then for p = 1, a solution to the p-median
problem gives a solution to LS-TV. Similarly, a solution to the
p-center problem gives a solution to LS-MV.

Algorithm 1 Algorithm for in-network leader selection for
LS-TV.

Send si(t) to all agents j in N(i)
Receive sj(t) from all j ∈ N(i)
if |N(i)| = 1 then

si(t+ 1)← 1
else

si(t+ 1)← 1 +
∑(

S−i (t)
)

end if
if (leader = TRUE) and

(sj(t) > si(t+ 1) for some j ∈ N(i)) then
k = arg maxj∈N(i) sj(t)
leader← FALSE
transfer leadership to agent k

else if receive leadership transfer from neighbor then
leader← TRUE

end if

B. Self-Stabilizing Leader Selection Algorithm

We now describe our in-network leader selection algorithm
for acyclic graphs. Recall that in an unweighted, acyclic,
connected graph, the resistance distance Ωij between nodes
i and j is equal to the graph distance Dij

1. When the distance
dij in (6) and (7) is given by the graph distance, a solution to
the 1-median problem is called a median of the graph and a
solution to the 1-center problem is called a center of the graph.
Thus, a median of the graph is an optimal leader for LS-TV,
and a center of the graph is an optimal leader for LS-MV.
A graph may have more than one median or center; should
the graph have multiple medians or centers, any one can be
selected as the optimal leader.

Our approach for in-network leader selection is based on
a simple self-stabilizing approach for finding the median and
center of graph that was proposed in [18], which we summa-
rize below. For ease of presentation, we adopt a synchronized
communication model. Communication takes place in rounds,
and in each round, an agent exchanges information with all of
its neighbors. We note median and center-finding algorithms
have been proven correct under much less restrictive commu-
nication models.

In the median finding algorithm, each agent has a variable
si(t).These variables are called the s-values of the agents.
Since the algorithm is self-stabilizing, there is no need to
specify an initial value for si(0); the algorithm will converge
to the correct solution from any initial value. In each round,
the agent sends its si(t) to all of its neighbors. Let S−i (t) be
the set of values si(t) received from j ∈ N(i) in round t, with
one maximum sj(t) removed. The agent then updates si(t) as
follows,

si(t+ 1) =

{
1 if |N(i)| = 1
1 +

∑(
S−i (t)

)
otherwise. (8)

Here
∑(

S−i (t)
)

denotes the sum over the elements in the set
S−i (t).

1The resistance distance between neighboring nodes i and j is Ωij = 1.

The center finding algorithm operates in a similar manner.
Each agent has a variable hi(t). These variables are called the
h-values of the agents. In each round, all neighbors exchange
their h-values. Let H−i (t) be the set of values hi(t) received
from j ∈ N(i), with one maximum hj(t) removed. The agent
updates hi(t) as follows,

hi(t+ 1) =

{
0 if |N(i)| = 1
1 + max

(
H−i (t)

)
otherwise. (9)

Here max
(
H−i (t)

)
denotes the maximal value in the set

H−i (t).
The following theorem gives a formal statement of the

convergence and closure guarantees of these algorithms
Theorem 2 (See [18]): There exists a finite time T such

that si(t + 1) = si(t) (hi(t + 1) = hi(t)) for all i ∈ V ,
for all t ≥ T . For all t ≥ T , the medians (centers) of the
graph are the only nodes with si(t) ≥ sj(t) (hi(t) ≥ hj(t))
for all j ∈ N(i).
This theorem implies that there is a time T after which the
s-values (h-values) of the agents do not change. When the
system reaches this time T , we say that the s-values (h-values)
have stabilized.

While the self-stabilizing graph median and graph center
algorithms can be used to identify an optimal leader (an agent
whose s or h-value is greater than or equal to all of its
neighbors), it does not solve the in-network leader selection
problem completely. We also require that the network has a
single leader throughout the execution of the algorithm, not
just after the values stabilize. Our in-network leader selection
algorithm leverages the self-stabilizing algorithms above to
locate the optimal leader. It also ensures that the network has
a single leader at all times. The leadership role is transferred
from agent to agent. After the h-values or s-values stabilize,
the leadership role is transferred to an optimal leader in finite
time, and this leader remains the leader for all future rounds
of the algorithm.

Our self-stabilizing algorithm for in-network leader selec-
tion for LS-TV is given in Algorithm 1. One agent is initially
selected as leader. The agents each have an s-value si(t)
with an arbitrary initial value. The algorithm executes in
synchronous rounds. Each round is divided into two phases. In
the first phase, the agents update their si(t) values according
to (8). In the second phase, the agent that currently holds
the leadership role checks if it has any neighbors j with
sj(t) > si(t + 1). If so, the leader transfers leadership to
a neighbor k with maximal sk(t).

The algorithm for LS-MV is nearly identical to Algorithm 1.
The only difference is that agents each store hi(t) instead
of si(t), and they update this variable according to (9).
The leadership transfer phase is identical, with the h-values
replacing s-values. Psueodocode for this algorithm is given in
Appendix B.

C. Algorithm Analysis

We now prove the that Algorithm 1 is a self-stabilizing
algorithm for in-network leader selection that selects the leader
u that minimizes T ({u}).

Theorem 3: Algorithm 1 is a self-stabilizing in-network
leader selection algorithm for LS-TV.

To prove this theorem, we first introduce some useful
definitions and results from [18]. We define a directed graph
G(s) = (V (s), E(s)) induced by the s-values of the agents
after these values have stabilized. The vertex set V (s) is equal
to the vertex set V of the original undirected graph G. The
edges in E(s) are defined as,

E(s) = {(i, j) | j ∈ N(i) and
(s(j), j) is lexicographically the largest}.

It has been shown that the undirected underlying graph of
G(s) is connected, contains exactly one cycle, and this cycle
is of length 2 [18]. Let i and j be the nodes that belong to
the unique cycle. Deleting (i, j) and (j, i) from G(s) results
in two directed trees, Ti(s), rooted at i and Tj(s), rooted at
j.

Theorem 4 (Proposition 4.3 and Theorem 4.4 from [18]):
Each edge in Ti(s) and in Tj(s) is directed from a node to
its parent, and if k is a non-leaf node in Ti(s) or Tj(s), then
sk > sl for each child l of k.

We now prove Theorem 3.

Proof: It is clear that, since exactly one node is initially
the leader, and the leadership role is passed from one node to
another, there is exactly one leader at any time. What remains
is to show that the algorithm satisfies the convergence and
closure properties in Definition 1.

The values si(t), i ∈ V are updated according to the
algorithm in (8). As this algorithm is self-stabilizing, in finite
time, the s-values stabilize; there is a time T after which no
si(t) changes. We denote the stable value of si(t) by si. The
optimal leaders for LS-TV are those nodes i such that si ≥ sj
for all i ∈ j.

To show that the closure property holds, we must show
that, if one of the medians is the leader agent and the s-values
have stabilized, then this agent remains the leader in all future
rounds of the algorithm. Suppose that in a round t ≥ T , i is the
leader and i is such that si(t) ≥ sj(t) for all j ∈ N(i). Then,
in phase two of the algorithm round, since i does not have
any neighbor j with sj(t) > si(t), agent i will not transfer its
leadership. Therefore, the closure property is satisfied.

To show that the convergence property holds, we must show
that given any initial values for si(0), i ∈ V and any initial
leader assignment, in finite time, the s-values will stabilize and
the leadership role will be at a median of the graph. Theorem 2
guarantees that the s-values will stabilize in finite time.

Suppose, after the s-values stabilize, a node u has the
leadership role, but it is not a median of the graph. We show
that in finite time, the leadership role will be transferred to a
median of the graph.

When a leader transfers leadership to a neighbor, it selects
the neighbor with the maximal s-value among all its neighbors.
Therefore, leadership is only transferred across edges in the
directed graph G(s). Suppose, without loss of generality, that
the leadership role is at a node k 6= i in the subtree Ti(s).
By the definition of G(s), the neighbor l of k with maximal

sl is the parent of k in the tree. Further, by Theorem 4, sl >
sk. Therefore, in the next round, the leadership role will be
transferred to agent l. By similar reasoning, in a finite number
of rounds, the leadership role will be transferred up the tree
until it reaches agent i. If si > sj , then i is the unique median
of the graph, since si > sk for all k ∈ N(i). Similarly, if
si = sj , then both i and j are medians of the graph. In either
of these cases, the leadership role has reached a median. If
sj > si, j is the unique median of the graph, since sj > sk
for all k ∈ N(i). Since si < sj and all other neighbors k of i
are such that sk < si, in the next round, agent i will transfer
leadership to agent j.

A similar result also holds for the in-network leader se-
lection algorithm that selects the leader u that minimizes
M ({u}). We omit this proof since it is similar to the proof
of Theorem 3.

Theorem 5: Algorithm 2 is a self-stabilizing in-network
leader selection algorithm for LS-MV.

For Algorithm 1, the number of rounds until the s-values
stabilize, starting from any initial state, is in Θ(d), where d
is the maximum distance from the edge of the network (the
nodes i with |N(i)| = 1) to a median. Once the s-values
stabilize, it takes at most d rounds for the leadership role to
be transferred to the median node. Therefore the running time
of Algorithm 1 is in Θ(d).

For Algorithm 2, the number of rounds until the h-values
stabilize is Θ(r) where r is the radius of the graph. Once the
h-values stabilize, it takes at most r rounds for the leadership
role to be transferred to the center. Therefore the running time
of Algorithm 2 is in Θ(r).

V. EXTENSION TO WEIGHTED GRAPHS

Several recent works have investigated a generalization of
the k-leader selection problem where the objective is for every
agent to maintain specified differences between its state and
the states of its neighbors,

xi(t)− xj(t) = pij for all (i, j) ∈ E, (10)

where pij denotes the desired difference, for example, the
position of node i relative to node j [4], [19], [7].

The states of the leaders are the reference states. Let x̂
denote vector of desired states that satisfy (10) when the leader
states are fixed. A follower updates its state based on noisy
measurements of the differences between its state and the
states of its neighbors. The dynamics of each follower agent
is given by

ẋi(t) = −
∑

j∈N(i)

Wij (xi(t)− xj(t)− pij + εij(t)) ,

where Wij is the weight for link (i, j) and εij(t), (i, j) ∈ E,
are independent, identically distributed zero-mean white noise
processes with autocorrelation functions E [εij(t)εij(t+ τ)] =
νijδ(τ). The link weights are chosen so that Wij =

νij
∆i

,
where ∆i =

∑
j∈N(i)

1
νij

, which correspond to the best linear
unbiased estimator of the leader agents state when xj(t) = x̂j
for all j ∈ N(k) [4].

In this system, the leader-follower dynamics are depend on a
weighted Laplacian matrix, also called the conductance matrix,
which defined as

Lij =

− 1
νij

if (i, j) ∈ E
∆i if i = j
0 otherwise.

Note that if νij = 1 for all (i, j) ∈ E, then L is standard,
unweighted Laplacian matrix. We assume that the weights are
symmetric, meaning νij = νji for all (i, j) ∈ E.

Let σi be the steady-state variance of the deviation from x̂,

σi = lim
t→∞

E [xi(t)− x̂i]2 .

As with the unweighted Laplacian, σi = 1
2 (L−1

ff)ii, where Lff
is the follower-follower submatrix of the weighted Laplacian.
It has also been shown that σi = 1

2Ωij , where Ωij is the
resistance distance between i and j in the electrical network
where each edge (i, j) has a νij resistor [4].

If we define dij = Ωij , then, as before, a solution to the
p-median problem for p = 1 is a solution to LS-TV, and a
solution to the p-center problem for p = 1, is a solution to
LS-MV. It is also straightforward to extend our in-network
leader selection algorithms to this weighted graph setting.

Let Ĝ = (V, Ê) be a weighted, connected acyclic graph,
where the weight of edge (i, j) is cij = 1/νij . In this graph,
the resistance distance between nodes i and j is equal to
the graph distance, where the graph distance is the sum of
the weights of the edges in the path between nodes i and
j [13]. Our in-network leader selection algorithms must find
the median and center for this weighted graph.

We first state an important theorem about the medians of
acyclic graphs with positive edge weights

Theorem 6 (Lemma 7.2 in [18]): The medians of an
acyclic, connected graph remain unchanged independent of
any change in the weight of the edges.
Since the location of the graph medians, and hence the identity
of an optimal leader, do not depend on the edge weights,
Algorithm 1 also solves the in-network leader selection for
LS-TV in acyclic weighted graphs.

It has been shown that the self-stabilizing center finding
algorithm in (9) can be extended to weighed graphs by making
small modifications [18]. Let Ĥ−i (t) be defined as follows,

Ĥ−i (t) = {hj(t) + cij | (i, j) ∈ N(i)}
−max{hj(t) + cij | (i, j) ∈ N(i)}.

The modified center-finding algorithm is as follows,

hi(t+ 1) =

{
0 if |N(i)| = 1

1 + max
(
Ĥ−i (t)

)
otherwise.

By incorporating these small changes to the update to the h-
values, Algorithm 2 can be used to solve the in-network leader
selection problem for LS-MV in acyclic weighted graphs.

VI. CONCLUSION

In this work, we have posed a new leader selection problem
called the in-network leader selection problem, whereby agents

v x y

Fig. 2. Example network demonstrating that the error measure M (·) is
not super-modular. Let A = {x} and B = {x, y}. Then, M (A) = 2,
M (A ∪ {v}) = 2, M (B) = 1.5, and M (B ∪ {v}) = 1. Thus, M (A)−
M (A ∪ {v}) < M (B)−M (B ∪ {v}).

must collaborate to find the leader that optimizes a chosen
performance measure. We have considered two performance
measures, the total steady-state variance of the deviation and
the maximal steady-state variance of the deviation. We have
shown that finding a leader that minimizes the total variance
is equivalent to solving the p-median facility location problem
for p = 1 and that finding a leader that minimizes the maximal
variance is equivalent to the p-center facility location problem
for p = 1. Leveraging the connections to these problems, we
have developed two self-stabilizing in-network leader selection
algorithms, one for each performance measure. Finally, we
have shown how our algorithms can be extended to weighted
graphs. In future work, we plan to investigate generalizing our
approach to in-network algorithms for the k-leader selection
problem where k is greater than one.

Algorithm 2 Algorithm for in-network leader selection for
LS-MV.

Send hi(t) to all agents j in N(i)
Receive hj(t) from all j ∈ N(i)
if |N(i)| = 1 then

hi(t+ 1)← 0
else

hi(t+ 1)← 1 + max
(
H−i (t)

)
end if
if (leader = TRUE) and

(hj(t) > hi(t+ 1) for some j ∈ N(i)) then
k = arg maxj∈N(i) hj(t)
leader← FALSE
transfer leadership to agent k

else if receive leadership transfer from neighbor then
leader← TRUE

end if

APPENDIX A
ILLUSTRATION THAT M (·) IS NOT SUPER-MODULAR

A super-modular function is defined as follows. Let V be
a finite set and let A and B be sets with A ⊆ B ⊆ V . A
function f is super-modular if and only if for all v ∈ V \B,

f(A)− f(A ∪ {v}) ≥ f(B)− f(B ∪ {v}).

In Figure 2, we give an example that illustrates that M (·) is
not a super-modular function.

APPENDIX B
PSEUDOCODE FOR IN-NETWORK LEADER SELECTION

ALGORITHM FOR LS-MV

Pseudocode for the self-stabilizing algorithm that solves LS-
MV is given in Algorithm 2.

REFERENCES

[1] W. Ren, R. W. Beard, and T. W. McLain, “Coordination variables and
consensus building in multiple vehicle systems,” Cooperative Control,
vol. 309, pp. 171–188, 2005.

[2] J. Elson, R. M. Karp, C. H. Papadimitriou, and S. Shenker, “Global syn-
chronization in sensornets,” in Latin American Theoretical Informatics,
2004, pp. 609–624.

[3] P. Barooah and J. Hespanha, “Error scaling laws for linear optimal esti-
mation from relative measurements,” IEEE Transactions on Information
Theory, vol. 55, no. 12, pp. 5661–5673, Dec 2009.

[4] ——, “Graph effective resistance and distributed control: Spectral prop-
erties and applications,” in Proc. 45th IEEE Conf. on Decision and
Control, Dec 2006, pp. 3479=–3485.

[5] S. Patterson and B. Bamieh, “Leader selection for optimal network
coherence,” in Proc. 49th IEEE Conf. on Decision and Control, 2010,
pp. 2692–2697.

[6] F. Lin, M. Fardad, and M. Jovanovic, “Algorithms for leader selection
in stochastically forced consensus networks,” IEEE Transactions on
Automatic Control, vol. 59, no. 7, pp. 1789–1802, Jul 2014.

[7] A. Clark, L. Bushnell, and R. Poovendran, “A supermodular optimization
framework for leader selection under link noise in linear multi-agent
systems,” IEEE Transactions on Automatic Control, vol. 59, no. 2, pp.
283–296, Feb 2014.

[8] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of ap-
proximations for maximizing submodular set functions,” Mathematical
Programming, vol. 14, no. 1, pp. 265–294, 1978.

[9] A. Clark, B. Alomair, L. Bushnell, and R. Poovendran, “Minimizing
convergence error in multi-agent systems via leader selection: A su-
permodular optimization approach,” IEEE Transactions on Automatic
Control, vol. 59, no. 6, pp. 1480–1494, Jun 2014.

[10] K. Fitch and N. Leonard, “Information centrality and optimal leader
selection in noisy networks,” in Proc. 52nd IEEE Conf. on Decision
and Control, Dec 2013, pp. 7510–7515.

[11] H. W. Hamacher and Z. Drezner, Facility location: applications and
theory. Springer, 2002.

[12] A. Ghosh, S. Boyd, and A. Saberi, “Minimizing effective resistance of
a graph,” SIAM Review, vol. 50, no. 1, pp. 37–66, Feb 2008.

[13] D. Klein and M. Randic, “Resistance distance,” Journal of Mathematical
Chemistry, vol. 12, no. 1, pp. 81–95, 1993.

[14] B. Bamieh, M. Jovanovic, P. Mitra, and S. Patterson, “Coherence in
large-scale networks: Dimension-dependent limitations of local feed-
back,” IEEE Transactions on Automatic Control, vol. 57, no. 9, pp.
2235–2249, Sep 2012.

[15] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed control,”
Communications of the ACM, vol. 17, no. 11, pp. 643–644, Nov 1974.

[16] N. Lynch, Distributed Algorithms. USA: Morgan Kaufmann Publishers,
Inc., 1996.

[17] O. Kariv and S. L. Hakimi, “An algorithmic approach to network
location problems. ii: The p-medians,” SIAM Journal on Applied Math-
ematics, vol. 37, no. 3, pp. 539–560, 1979.

[18] S. C. Bruell, S. Ghosh, M. H. Karaata, and S. V. Pemmaraju, “Self-
stabilizing algorithms for finding centers and medians of trees,” SIAM
Journal on Computing, vol. 29, no. 2, pp. 600–614, 1999.

[19] P. Barooah and J. Hespanha, “Estimation from relative measurements:
Electrical analogy and large graphs,” IEEE Transactions on Signal
Processing, vol. 56, no. 6, pp. 2181–2193, Jun 2008.

	I Introduction
	II Background and System Model
	III Problem Formulation
	III-A Performance Measures
	III-B The Leader Selection Problem
	III-C The In-Network Leader Selection Problem

	IV In-Network Leader Selection Algorithm
	IV-A The p-Median and p-Center Problems
	IV-B Self-Stabilizing Leader Selection Algorithm
	IV-C Algorithm Analysis

	V Extension to Weighted Graphs
	VI Conclusion
	Appendix A: Illustration that M() is not Super-Modular
	Appendix B: Pseudocode for In-Network Leader Selection Algorithm for LS-MV
	References

