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Robust Pl Passivity—based Control of Nonlinear Systems: Aglication to
Port—Hamiltonian Systems and Temperature Regulation

S. Aranovskiy R. Ortegd and R. Cisnerds

Abstract— This paper deals with the problem of control of Motivated by the discussion above in this paper we iden-
partially known nonlinear systems, which have an open—loop tify a class of (input affine) nonlinear systems for whichsit i
stable equilibrium, but we would like to add a Pl controller to possible to design a Pl controller with the following featsir

regulate its behavior around another operating point. Our main ) )
contribution is the identification of a class of systems for wich ~ F1 Regulation of the closed—loop system around the desired
(non—zero) operating point should be guaranteed.

a globally stable PI can be designed knowingnly the systems
input matrix and measuring only the actuated coordinates. The  E2 The PI controller should bebust in the sense that re-

construction of the PI is done invoking passivity theory. Thke

difficulties encountered in the design ofadaptive PI controllers

with the existing theoretical tools are also discussed. Asna
illustration of the theory, we consider port—Hamiltonian systems
and a class of thermal processes.

duced knowledge of the system parameters is required.

F3 To simplify the controllers commissioning, a well de-

fined admissible range of variation for the PI pro-
portional and integral gains, preserving closed—loop

stability, should be provided.

. INTRODUCTION We propose the construction of a Pl controller with the
In many practical applications the plant to be controlledeatures F1-F3 for plants with unknown dynamics verifying
has an open-loop stable equilibriumg, at the origin, and the following assumptions.

we would like to add a controller to regulate its behaviora1 the open—loop system ignknownbut has a stable
around another operating point. In the case of linear sys- equilibrium at the origin

tems the dynamics remains invariant under coordinatesshiftao The desired equilibrium belongs to the assignable set
therefore this task can be easily accomplished using the  ,,4 admits aonvexLyapunov function.

incremental model of the plant. Unfortunately, this is i@t A3 The Lyapunov function is the sum of two functions

case for nonlinear_ systgms, fqr which there is no obvious depending on the un—actuated and actuated coordinates,

advantage of working with the incremental model. respectively. The first function isinknownwhile the
Another common requirement in applications is the use of  gacond one is separable and linearly parameterized in

standard proportional-integral (PI) controllers, whicken terms of somainknown parameters

whelmingly dominate the industrial market. Although com-a4 The input matrix is constant, known and has m zero

miss.ioning a PI to operate around a single operating poipt is rows, wheren andm are the dimensions of the state
relatively easy, the performance will be below par in wide 4.4 input vectors, respectively.

operating regimes, which is the scenario in modern high—

performance applications. To overcome this drawback tH%S |nd|tcat$d n t.h.? artg:le; mlt?] we explc;lt thle_futndarluﬂnt
current practice is to re—tune the gains of the PI contrsllefPr OPEMty OTpassvi yto design the proportional-integral pas-

based i del of the plant luated at vari l%vity based contrpller, whi_ch will be_refgrred in the selque
ased on a finear modet o fhe plant evaluaied at varno s PI-PBC. The first step in the design is to, relying on Al

operating points, a procedure known as gain—scheduling; : :
There are several disadvantages of gain—scheduling ingjud bove, invoke the celebrated theorem of Hill and Moylan

the need to switch (or interpolate) the controller gains anH‘.]thtot'dent'f); a f.mtatk;]le Lpasswe o?tpu; for tfhteh system,
the non-trivial definition of the regions in the plants stat Ith storage function the Lyapunov function of the open—

space where the switching takes place—both problems areP SySt.Tg]'. Slncetrc])ur mter(;?t IS thﬁ re?u?t'?n of nton—
exacerbated if the dynamics of the plant is highly nonlineaf €0 €quriibnia, we hen use the resufts o [ ]_ 0 create a
Another common commissioning procedure is to use aut 1eW passive output fo_r Fhe incremental model W'Fh a_storage
tuners, that heavily rely on the availability of a “good” diar unction that has a minimum at the desired equilibrium. As

approximation of the plant dynamics. To avoid the need t Towntln"[Z], feeding tbzﬁ!: th?trﬁ)asdswg %UtpUt.l.th.ct):T?h a
rely on linearization it is necessary to develop a procedu controfier ensures stabliity of Ihe desired equitior

to design robust Pl controllers for nonlinear systems wittql tpoguveﬂ?eflmte_P_l gains. ltt "E |mtp:ortant :Obllj_ngggfgoore
uncertain parameters. at, since the passivity property has been establis r

incremental model, the equilibrium can also be stabilized
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and, consequently, we cannot compute neither the passieros. Giveru; € R, i € nn := {1,...,n}, we denote with
output noru*. It is at this point that we invoke A3 and A4 col(a;) the n—dimensional column vector and diag} the
above to prove that, under these assumptions, it is possiltigonaln xn matrix with elements;;. Forz € R™, |z| is the
to define ranges for the proportional and integral gainguclidean norm. For mappings of scalar argumgniR —
that make the PI-PBC implementable and, consequentl§’, ¢" andg” denote first and second order differentiation,
guarantee stability of the equilibrium. Another importanrespectively. For mappingé: R" — R, V[ := (g—fﬁ)T and
feature of the proposed PI-PBC is that it requires only partiv2f .— %_ For the distinguished element € R™ and
measurement of the state, namely, only thetate variables any mappingr : R” — R* we denoteF™* := F(z*) and the
associated to the non—zero rows of the input matrix, reflerresrror signalF'(z) := F(x) — F*.
in the sequel asctuatedcoordinates.

Several practical applications of PI-PBC have been re- II. PROBLEM FORMULATION

ported in the literature. This mclud_e, R.LC circuits [3] vier In this section we formulate the control problem addressed

converters [4], fuel cells [5], electric drives [6] and macit in the paper, enunciate the assumptions made on the plant to

cal systems [7]. In [8] a procedure to add an integral action tsolve it and’make some remarks on these assumptions

a non—passive output for a class of port—Hamiltonian system ‘

was first proposed, and later extended in [9], [10]. To th& Rropust PI control problem

best of our knowledge, the present paper is the first attempt

to design PI-PBCs with guaranteed stability properties for Consider the nonlinear, input affine, system

systems with partially known dynamics. i = f(@) + Gu (1)
A natural question that arises at this point is the incorpo- ’

ration of adaptation in the design of the PI (or PID). In thavherez € R", u € R™, n > m, f : R®» — R" is an

power converter application of [4] a parameter that enters iunknownsmooth mappingx € R™*™ is constantverifying

the definition of the passive outpute, the load resistance, rank'G) = m.

is adaptively identified—however, all other parameters are The following is a key assumption made throughout the

assumed to be known. In the interesting paper [11] it ipaper.

shown that it is possible to adaptively estimate for a  Assumption 1:The matrixG hasn — m zero rows. With-

general nonlinear system with scalar input, keeping thgut lost of generalif} it is assumed of the form
estimate in a known interval, provided the passive output is

known. In spite of a large number of publications the problem G — |:0(n—m)><m:| @)
of designing grovably stableadaptive PID for systems with G ’
unknown parameters remains, as far as we know, open. Th

mXm
difficulty of this task was identified already in 1984 in [12].""?‘%?(;2 €R ; 1S knot:”” spviatedintroducing stat
As is well-known [13], the stability of indirect adaptive Is assumption can be eastipviatedintroducing state

methods relies on parameter convergence that, in its tur%nd input changes of coordinates. Indeed, it is well—known—

requires persistency of excitation—a property that is n(ﬁée,e.g, Theorem 2 of Section 2.7 of [14}—that for any full

satisfied in the regulation tasks where PI control is eféecti rank,_ matrixG nexlfnxm therew?ffts (elementary) full rank
On the other hand, the application of direct methods i@atrlcesT €R andS € R such that
stymied by the absence of a suitable parameterization of
this structure—constrained controller. For the PI-PBdistl
in this paper the main difficulty is the need to estimate ) .
two objects, that appear multiplicatively in the Lyapunovconsequently, introducing= Tz andv = S~ 'u the system
analysis: the passive output and the ideal control signal (@) takes the desired form
This point is further elaborated in Subsection V-B. 0
. . . s (n—m)xm

The remaining of the paper is organized as follows. Z—w(z)+[ 1, }U,
Section[I presents the problem formulation. To streamline
the presentation of the main result, which is given in Sectiowherew(z) = T f(T~'z). We should note, however, that
V] some preliminary lemmata are given in Sectlad Ill. Ina change of state representation destroys—in general—the
Section[¥ we discuss the reasons that stymie the use @figinal structure of the system, whose knowledge may
adaptation and the inability to state a robustness resattcha be critical for the verification of the second assumption
on continuity and approximate prior knowledge of the plantoelow. This fact is clearly illustrated in the physical exzHeas
Sectior[V] is devoted to application of the proposed PI-PBcConsidered in Sectidn V1. For this reason, we prefer to leave
for port—-Hamiltonian (pH) systems [1] and a temperaturé as an standing assumption.
regulation problem. The paper is wrapped—up with conclud- Motivated by Assumptiohl1 we find convenient to define a

m

0
_ (n—m)xm
TGS = [ I } .

ing remarks in Sectiop V. partition of the state vector into its un—actuated and detlia
Notations I, is then x . identity matrix and,, s is ann x s 1See R6 in the next subsection and Subsedfion] V-A for morergene

matrix of zeros,0,, is an n—dimensional column vector of forms of G.



components as

T Tpn—m+1

. Ty L ] L Tn—m-+2
T = Ta y Loy = : y Lag = :
Tn—m T

It is assumed thabnly x, is available for measurement.
The unforced system, that ig; = f(x), has a stable
equilibrium at the origin with goartially known Lyapunov

C. Discussion

The following remarks regarding the assumptions are in
order.

R1 Although the sef is not known, it is reasonable to
assume that we have enough prior knowledge about the
plant to select the desired operating point as a feasible
equilibrium. Hence, Assumptidd 2 is reasonable.

R2 A corollary of Assumptiofi]2 is that the constant input
u*, that assigns the equilibrium, is uniquely defined as

: . : . . .
function. We are mterest_efd in contro_lllng_the system wnh ut = (GQTGQ) [Omxnem) G3]f*  (5)
a Pl at a non-zero equilibrium—a situation that arises in

most practical applications. Thus, we are given a desired Notice that, without knowledge of (x), this constant

equilibrium point,z* € R™, and the control goal is to ensure

cannot be computed.

stability of this equilibrium using a PI control law of the form R3 Since the open—loop systel (1) has a stable equilibrium

z - —K]’IZ)(IG,CC*)
u = —pr(xa,:v*)-l-z,

wherez € R™ is the controller stateKp € R™*™ and
K; € R™*™ are tuning gains ang : R™ x R® — R™

at the origin Assumptiof]3 (i) follows as a corollary
of Lyapunov’s converse theorems [15]. As will become
clear below Assumptioh] 3 (ii) and (iv) are required to
prove passivity of the incremental model as done in [2].
R4 We underscore that no assumption, beyond twice dif-
ferentiability and convexity, is imposed on the un-

is a mapping designed with the partial knowledge of the  known componentt,, (z,) of the Lyapunov function

aforementioned Lyapunov function.

of the open-loop systent (xz). On the other hand,

The following, practically reasonable, assumption is made  stricter conditions are imposed on the second compo-

throughout the paper.
Assumption 2:The desired equilibrium point* belongs
to the assignable equilibrium set, that is,

2 €& ={2€R" | [ Inom | Opm-myxn | f(z)=0}.
®)

B. Assumptions on the open—loop plant

The following assumption identifies the class of vector
fields f(z) for which we provide an answer to the problem.

Assumption 3:For the system[{1) there exists a twice—

differentiable, positive definite functiod/ : R™ — R,
verifying the following.

() [VH()]" f(z) <0.
(i) [VH(z) = VH(@*)] f(z) = —Q(z) <0.
(iii) The function H () is of the form
H(z) = Hy(2u) + Ho(2a)
with
Hi)= Y dodw), @)

1=n—m-+1

where the functiorf{,, : R*~™ — R and the constants
d; > 0 areunknownbut the the functiong; : R — R
areknown

(iv) The functionsH,(z,) and¢;(x;) are convex

nentH,(z,), with uncertainty captured by the unknown
constantsi;.

R5 Assumptiond 13 (iii) and Assumptionl 1 are the key
requirements imposed on the plant to design the robust
PI-PBC. This assumption is satisfied by a large class of
physical systems, including a class of port—Hamiltonian
[1] and thermal systems studied in Section VI.

R6 Regarding Assumptiors 1, in the more general case
when@ is not of the form[(R) an additional shuffling of
the rows ofG is needed in the design. This procedure
is explained in Subsectidn V}A.

R7 For quadratic Lyapunov functions of the foli(z) =
xT Pz, with P > 0, Assumption B (ii) is satisfied if
the open-loop system isonvergentin the sense of
Demidovich [16]. That is, if it satisfies

PV f(x)+ [V f(z)] P <0.
Ill. PRELIMINARY LEMMATA

Unless otherwise indicated, throughout the rest of the
paper Assumptiofi]1 holds. Define for the systdm (1) the
output

y=G'VH(z) = Gy D®(z,), (6)
where

I 0 .0

0 dn—my2 ... O
D = ) . . . >0
I 0 0 co. dp
[ (b;zferl(xn—m-ﬁ-l)
CI)(xa) =
L ¢’ (zn)




A corollary of the theorem of Hill and Moylan [1] is that, if whereA; > 0. The time derivative of the Lyapunov function
Assumptior B (i) holds, the systei (1] (6) defines a passiwdong the trajectories of the closed-loop system is
mappingu — y with storage functiort (z). W= Q)+ e+ 5T AL

To operate the system at a non-zero equilibrium it is . - . (15)
necessary to shift the minimum of the storage function and =-Q(z) —e Kpe+z e—2 ArKje.
define the passivity property between the incremental inpuyt .. o1
and the output error. Towards this end, we recall PropcusitioléemngAI = K yields
1 of [2] and state it as a lemma below. W = —Q(z) — e Kpe.
Lemma 1:Consider the incremental model of the system ) ) )
@, @) The proof is complete invoking standard Lyapunov argu-
i = f(z) + Gu* + G, @ ments [15]. ]
¢ =Gy D®(x), IV. THE ROBUST PI-PBC

whered = u — u* is the incremental input. Under Assump- As indicated in R4 of Subsectidn TI}C the matrix is
tions[AEB the mapping — e is passive with storage function unknown. Hence, the error signalcannot be constructed

U :R™ — R=q given by and the PI-PBC[(10) is not implementable. This motivates
- our main result given below.
U(x) = H(z) — 2y VH; — x, D®* + k, (8) Proposition 1: Consider system[{1) verifying Assump-

) ) tions 1-3 in closed—-loop with the robust PI-PBC
wherek is a constant that ensur&%0) = 0. More precisely,

u=—Kp®(z,) + 2

U=— T4 9 ~ 16
Q(z) +e'a, 9 = Kyb(a), (16)
whereQ(z) is def_ine_d in AssumptioE_]3 (ii). _ with the controller gains
One of the main interests of passive systems is that they
can be globally stabilized with PI controls (with arbitrary Kp = G;ll“p
positive definite gains). This weI.I—kn.own fact is stgted in K = G;'T;. (17)
the lemma below, whose proof is given to streamline the
presentation of our main result. For all diagonal, positive definite matricés € R™*™ and
Lemma 2: Consider the systerfil(1) verifying Assumptionst 7 € R™*™ we have the following.
[IH3 in closed—loop with the PI-PBC (i) All trajectories are bounded and the equilibrium point
S (z,z) = (z*,u*) is globally stable(in the sense of
e =Gy DP(z,) Lyapunov).
i=—Kje (10) (i) The augmented error signal, defined in [(11L) verifies
u=—Kpe+z. 2. _
(i) If e, is a detectable output for the closed—loop system
For all positive definite gain matrice&p € R™>*™ and then the equilibrium point is globallyasymptotically
K; € R™*™ all trajectories are bounded, the equilibrium stable.
point (z,z) = («*,u*) is globally stable(in the sense of Proof: Some simple manipulations prove that

Lyapunov) and the augmented error signal ~ ~
yapunov) J J Kp®(z,) = Gy 'TpD G, "GJ D®(z,) = Ape, (18)

x
€q = [ Qg ) } : (11)  where we defined the matrix
— -1 1T
whereQ(z) is defined in Assumptiohl 3 (ii), verifies Ap:=Gy TpD™ G, (19)
lim eq(f) = 0 (12) and used the definition efin (Z0). Invoking Sylvester's Law
t—oo VT of Inertia [14], and the fact thdtp and D are diagonal and
Moreover, if e, is a detectable output for the closed-loog?0Sitive definite, we have thatp > 0.
system then the equilibrium point @symptoticallystable. Next choose -
Proof: Defining 7 := z — u* the last two equations of Ap:= G,y DI "G, (20)
the controller[[1D) may be written in the form that is, also, positive definite for all diagonal, positivefidite
= —Kje w3 T';. Then - - ,
e —Kpeti 1K18(z) = G Db(za) = . (21)

Consider the Lyapunov function candidate Replacing[(IB) and_(21) in the controller equations yields

1 4 =—Ape+Z
W) = U(e) + 55 Ar2, (14) NS

IS 3



Consequently, the time derivative of the Lyapunov functionvhereI'p and I'; are arbitrary, diagonal, positive definite
(I5) becomes now matrices.
. Before closing this subsection we remark that our con-
= — —_— T . . . . .
W=-Q(x)—e Ape, (22) structioncritically relies on the assumption of existence of
completing the proof. m n—m zerorows inG. Indeed, it is possible to show that if

To obtain an implementable version of the robust PIthis is not the case, even assumifgz) of the form
PBC it was necessary to carry—out two tasks. First, to make n
the damping injection, introduced by the proportional term H(x) = Zdi¢i($i)
function of the unknown matrixD. Indeed, replacind (19) in i=1
(18) we get and definingD,, = diag{d;}, it is not possible to find an
TN 1 —1-T m x m positive definite matrix\, which will depend onD,,,
Kp®(r) =Gy TpD™ Gy e such that the matribxAG ' D,, is independenof D,,. The
Second, make the gaihn; of the Lyapunov function[{14) fact that this isnot possiblefor all matricesG is obvious
also a function ofD—see [(2D). considering the counterexampfe = col(1, 1). Hence, the
An important observation is that, even though the conassumption of existence efm zero rows inG is necessary
troller only requires measurement of the actuated terms & solve the problem.

the stater,, it achieves regulation of the full state vector. T .
“ 9 B. Difficulties for adaptation

V. ADDITIONAL REMARKS ON THE PI-PBC A natural alternative to the robust PI-PBC presented above
In this section we explain how to proceed whénis not is to assume a parametrisation pfx) and try to estimate
of the form [2), discuss the reasons that stymie the use #fis parameters or, in a direct approach, estimate the xnatri
adaptation and the inability to state a robustness resaéicha D that defines the passive output. The indirect approach, as
on continuity and approximate prior knowledge of the matrixs well-known, relies on parameter convergence that reguir

D. persistency of excitation—a property that is not satisfied i
. the regulation tasks where PI control is effective.
A. GeneralG (with n —m zero rows) Let us see what are the difficulties for the application of

Instrumental to design the robust PI-PBC was the partia direct adaptation approach. Towards this end, we propose
ular form of H(z) defined in Assumptiofl3 (iii). In view the adaptive PI-PBC
of the construction of the robust PI-PBC, it is clear that if

G is not of the form[(2) the assumption must be modified D = F(z,z)
redefining the actuated and un—actuated coordinates. e =Gl D d(x,)
To avoid cluttering the notation we will explain the proce- b= —Ke

dure only for the case whem = 3 andm = 2—the general R

case followsverbatim Assume, furthermore, that is of the u=—Kpétz

form T where the parameter adaptation l&n R™ x R™ — R™*"

91 is to be defined. Defining é := ¢ — e the last two equations

G = 01§2 of the controller may be written in the form
e F=—Ki(e+é)

The form of H(z) given in Assumptior]3 (iii) must be, N o

accordingly, modified to u=-Kplete)+z

The time derivative of the Lyapunov functidn {14) withy =
H(z) = Hy(x2) + digp(z1) + dzd(xs). K7'is now
In this case the passive outpuffor the incremental model W= —Qx) — eTKpe—ilé

becomes .
= —Q(z) —é'Kpé —i' Gy DO(x,)

GT|VH(x) — VH(z*)] = G, { d 0 ] [ (1) ] . where we underscore the presence of the last right hand term.

0 d :
3 5(23) If @ were known the standard procedure of augmenting the
where Lyapunov function with a term tra¢® " D) and cancelling
G, = [ g1 | g3 ] . the sign—indefinite term with a suitable choice Bfz, 2)
o would do the job. Alasy* is not known, hence this approach
The robust PI-PBC is given by is not feasible.
51(@) Adding an adaptation for the constant is also not

u=—-G;'Tp +z a trivial task, because of the bilinear nature of the joint

estimation problem.

: _ e . .
2 =—G, 1F1 ~1( 1) , Notice that, in contrast to the robust PI-PBC, we have asduie the
full state is measurable.



C. Comments on robustness based on continuity 1) System DescriptionSimilarly to [17], [18] we con-
The availability of abona fide Lyapunov function for sider the following model of rapid thermal processes
the known parameters PI-PBCeg., W (z, ), suggests that
stability will be preserved if the matri¥ is replaced by a
“good”, constantestimate of it, sayD,. More precisely, it is

expected that replacing the controller](10) by

T - Al [\I/(T) - \IJ(Trad)] + AQ (T - Tconv) + GU, (24)

where ' € RY, represents the vector of temperatures,

U(T) = coI(Tﬁ andTrq4, Teonv € R, are, respectively,

ep = GQT DO&;(%) the vectors of temperatures related to the radiation heat
emission from environment and the convection air flows. The
constant matricesl;, 4, € R™*™ are Hurwitz and contain

the radiation and the convection heat transfer coefficients

z= —K[€0

u=—Kpeg+ z,

where Also, the entries ofG € R™*™ correspond to the heat
D = Do+ A, A :=diag{s;} transfer coefficients of the heating elements. Finallg R™
o . - is the controlled power applied to the heating elements.
would ensure stability ifcol(d;)| is sufficiently small. Un- In the model above, as in [18], it is considered tiaf (24)

fortunately, since the Lyapunov function fot strict this s heated almost uniformly so that the contribution of egerg
conjecture cannot be analytically validated. Indeed, i8 th¢om conduction is too small with respect to the radiation

case thgfime derivative of the Lyapunov functibnl(14) withyansfer. Hence, the conduction heat transfer is neglected
Ar =K~ is now To simplify the notation we re—write the system](24) in
W=-Q@) +e u—7 (c— Gy Ad(z,)) the form

—Q(z) — eg Kpeg — (Kpeg — 2) T Gy Ad(z,). T = 4,9(T) + A;T + E + Gu,

While the terme] KpGJ A®(z,) can be dominated for where

“small” A, there is no way we can dominate the remaining

term 2T K ;G4 A®(z,) and the Lyapunov analysis cannot be E = =A1Y(Traq) — AsTeonv-

completed with standard techniques. . . . .
This unfortunate situation does not mean, of course, thatLélnllke A1, 4; and E that are highly uncertain, the input

continuity result of this type cannot be established. Ity matr_ix G—.that_i_s defined by the ir)duge(.j heat flow—cgn be
nurty rest ISP I Eim eoreC|ser identified. Theontrol objectiveis then to design

a robust Plj.e, that does not require the knowledge of the
uncertain parameters, to regulate the process around some

the ideal case.

VI. EXAMPLES desired temperature, which i®t equalto the open—loop
Two examples of physical systems which are amenable f&quilibrium, but belongs to the assignable equilibrium set
at is,

robust PI-PBC are given below. Attention is concentrated o
the verification of Assumptiof]3. Hence, unless otherwise

* n 1 _
indicated, Assumptiofl 1 is not imposed. T* e {T €REy | G AY(T) + AT + B] =0}, (25)

A. A C|ass Of port_Ham”tonian System Whel’eGJ‘ (S R(n—m)xn iS a fu||-l‘ank |eft-annihi|at0r OG.

To place the problem in the context of Proposition 1 we
first shift the equilibrium of the open—loop system to the
t=(J —R)VH(z) + Gu (23) origin and then proceed to verify Assumptibh 3. For, we
introduce the standard change of coordinates

Proposition 2: The pH system

with constantinterconnection7 = —7 " and dampingR =
RT > 0 matrices satisfies Assumptibh 3 (i) and (ii). r=T-T,
Proof: Assumptior B (i) is obviously satisfied because

VT H@)(T - R)VH(z) = -V H@)RVH(z) < 0. whereT' is the open—loop equilibrium that satisfies

Similarly, AssumptioriB (i) holds since AY(T) + AT+ E = 0. (26)
[VH(z) — VH(z*)]"(J — R)[VH(z) — VH(z*)] =  Thus, the systeni{24) in the new coordinates takes the form
—[VH(z) — VH(z*)]"R|VH (z) — VH(z*)] <0. @) with

[ ] f(@) =AU (x+T)+ Ax(z+T) + E, (27)

B. Application to temperature regulation Associated to the desired temperatifeé we define the

In this subsection we design a robust PI-PBC for thequilibrium to be stabilised
temperature regulation of a class of thermal systems—the B
so—called, rapid thermal processes. a* =T -T. (28)



2) Passivity of the thermal systenThe lemma below is monotonically decreasing [16]. That is, for allb € R",
identifies conditions under which the systelml(24) satisfies T
Assumption[B without imposing Assumptior]1, that is, [h(a) = h(b)]" (a - b) < 0.
avoiding the partition of the coordinates into actuated anGonsequently,
un—actuated. Towards this end, the following assumption is _ _
needed. g P & T (z)PAsa = [h(z +T) — h(T)]Tz <0
Assumption 4The matrix A; is diagonally stable[19].  completing the proof of point (i).
That is, there exist® € R"*", P = diag{p;} > 0 suchthat  To prove point (ii) we notice that

PA; + Al P =: 25 <0. (29) f(x) = A ®(x) + A,
Moreover, the matrix4, verifies while
Ag Pdiag{T?} + diag{T*} P A, < 0. (30)
Conditions for diagonal stability of a matrix have beer1€NC€: the claim is established invoking the same arguments
studied intensively, see [19] for a survey. Necessary arped above and defining
sufficient conditions were first reported in [20]—see alst| [2 Qx) = 0" (2)SP(x).

for a simple proof. A sufficient condition, given in [22], is
that it is a Metzler matrix (namely, its non diagonal elensent
are nonnegative). o (x;) = A(w; + T;)® = AT?,
Since A, is Hurwitz, condition[(3D) is trivially satisfied if
A, is diagonal which is the case in some physical exampleg¥hich is non—negative becausg > 0. Hence, the functions
Lemma 3:1f Assumption[# holds the vector field (27) ¢i(zi) are convex as requested by condition (iv) of Assump-

VH(z) — VH(z*) = P®(z).

Finally, the second derivative of the functiopgz;) yields

satisfies Assumptiofl 3 with tion[3. This completes the proof.
[ |
H(z) = Zp'¢'(x’) +k (31) Direct application of Lemma 1 leads to the following.
A Corollary 1: If Assumption[# holds, the thermal system
where (24) defines a passive map — e with storage function
1 -5 — U(x), where
Gi(ws) = = (2 + T3)° — Wi (Th)x; (32) .
5 e = G'Pd(z)
and T * * *\ T *
1M U(x) = H(z)—z P®(z")— H(z")+ («¥) PP(z™).
k= 3 Zpin- 3) Robust PI-PBC of the thermal systerfio present

the robust PI-PBC for systems verifying Assumption 1 we

. i=1 o i
Proof: Point (iii) of Assumptior[B is trivially satisfied partition the vector of temperatures into its un—actuated a

by (31).
We proceed now to prove point (i). Replacir@(32)(31)acwated components

and grouping terms yields T Ton—m+1

1 n wu TQ Tn7m+2

H(x) = 23 pilai +T0)° =T PU(T) + k, = [ a ] A I R : ’
Now, notice that partition P as
VH(z) = P®(z), p_ Py 0(n—m)xm

where B B 0rnx (n—m) D ’

O(z) = V(z+T) - ¥(T). (33) " and do the same with the vector function 7).
On the other hand, fron{(P6) it follows that the systems The following proposition is a consequence of Lenima 3
vector field may be written as and Propositiof]l. .

Proposition 3: Consider the systeni _(R4) verifying As-
f(z) = A1®(z) + Asz. sumptiong 1l and]4. Fix any desired temperaflitererifying

Consequently (29) and define the PI-PBC

U= —Kp\ija(Ta) +z

[VH ()] f(x,0) ® ' () P[A18() + Aza] . N
= 0" (2)S®(z) + @ (z)PAsz, i =KV, (To),

where we have usefl (29) to obtain the second identity. No@nd the controller gain&'p and K are given by[[Il7)For

g : " " all diagonal, positive definite matricesp € R™>*™ and
condition [30) ensures that the function R" — R 'y € R™*™ all trajectories are bounded and the equilibrium

h(x) := Ay PU(x), point (T, z) = (T*,u*) is globally asymptotically stable



Proof: The proof of stability is established invoking [7]
item (i) of Proposition 1 and identifying

So(2a) g1, 1, = Va(Tu).

To prove asymptotic stability we invoke item (ii) and observ o]
that the augmented error signal(11) is given in this case by

(8]

_[¥T(1)s] g
o [ G3D }W(T)' [10]
Sincee, verifies [12) andS is positive definite we conclude
that U'(T'(t)) — 0 and consequentl§y’(t) — T™. m (1]
Physically, considering matri& as [2) means that fon [12]

heating elements there are— m measured points that are
not directly heated by these elements.

[13]
VII. CONCLUDING REMARKS

In this work we identify a class of nonlinear systems f0|[14]
which it is possible to design robust PI controllers with15]
guaranteed stability properties. The class consists aitinp!18]
affine systems with known, constant input matti and
n —m zero rows. We assume that only the states associatid]
to the non—zero rows af are measurable.The systems have
an open-loop stable equilibrium, but is different from the
desired operating point. To handle this situation, we fello
[2] and generate new passive outputs for the incrementaf!
model, hence the name PI-PBC. Associated to the open-—
loop stable equilibrium a Lyapunov function of the forinh (4)[19]
is assumed to exist. We underscore that, besides convex'[%]
there is no assumption on the functidf,(«,), which is
unknown. Moreover, the controller does not require the mea-
surement ofz,,. The functionsg; (z;) are assumed convex (1]
and known, but the coefficiemt are unknown. Under these
conditions, we show that, for a well identified class of Pl
tuning gains, sed (17), global stability of the proposed pI22]
PBC is guaranteed. Conditions that ensure global asyraptoti
stability, are also derived.
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