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Abstract— In the near future, massively parallel computing
systems will be necessary to solve computation intensive ap-
plications. The key bottleneck in massively parallel implemen-
tation of numerical algorithms is the synchronization of data
across processing elements (PEs) after each iteration, which
results in significant idle time. Thus, there is a trend towards
relaxing the synchronization and adopting an asynchronous
model of computation to reduce idle time. However, it is not
clear what is the effect of this relaxation on the stability and
accuracy of the numerical algorithm.

In this paper we present a new framework to analyze
such algorithms. We treat the computation in each PE as
a dynamical system and model the asynchrony as stochastic
switching. The overall system is then analyzed as a switched
dynamical system. However, modeling of massively parallel
numerical algorithms as switched dynamical systems results in
a very large number of modes, which makes current analysis
tools available for such systems computationally intractable. We
develop new techniques that circumvent this scalability issue.
The framework is presented on a one-dimensional heat equation
and the proposed analysis framework is verified by solving the
partial differential equation (PDE) in a nVIDIA TeslaTM GPU
machine, with asynchronous communication between cores.

I. INTRODUCTION

Exascale computing systems will soon be available to
study computation intensive applications such as multi-
physics multi-scale simulations of natural and engineering
systems. Many scientific and practical problems can be
described very accurately by ordinary or partial differential
equations which may be tightly coupled with long-range
correlations. These exascale systems may have O(105−106)
processors ranging from multicore processors to symmetric
multiprocessors [1]–[3]. Furthermore, such systems are likely
to be heterogeneous using both heavily multi-threaded CPUs
as well as GPUs. Many challenges must be overcome before
exascale systems can be utilized effectively in such appli-
cations. One such obstacle is the communication in tightly
coupled problems during parallel implementation of any
iterative numerical algorithm. This communication requires
massive data movement in turn leading to idle time as the
cores need to be synchronized after each time step.

Recent literature has proposed relaxing these synchro-
nization requirements across the PEs [4]. This potentially
eliminates the overhead associated with extreme parallelism
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and significantly reduces computational time. However, the
price to pay is loss of predictability possibly resulting in
calculation errors. Thus, a rigorous analysis of the tradeoff
between speed and accuracy is critical. This paper present
a framework for quantifying this tradeoff by analyzing the
asynchronous numerical algorithm as a switched dynamical
system [5]–[14]. While there is a large literature for analysis
of such systems, these techniques are not applicable to our
application. The reason is that due to the large number of
PEs, the switched system model has an extremely large
number of modes, which makes the available analysis tools
intractable. Key contributions in this paper include new
techniques for a) stability analysis, or quantification of
steady-state error with respect to the synchronous solution; b)
convergence rate analysis of the expected value of this error;
and c) probabilistic bounds on this error. These techniques
are developed to be computationally efficient, and avoid the
aforementioned scalability issue.

The paper is organized as follows. Section II addresses
the problems for the asynchronous numerical algorithm. In
section III, we introduce a switched system framework to
model the system structure for the asynchronous numerical
scheme. The stability results are presented in section IV,
and section V shows the convergence rate analysis. Then,
the error analysis in probability is developed in section VI.
Section VII demonstrates the usefulness of the proposed
method by examples. Finally, section VIII concludes this
paper.

II. PROBLEM FORMULATION

Notation: The symbol || · || and || · ||∞ stand for the
Euclidean and infinity norm, respectively. The set of positive
integers are denoted by N. Further, N0 , N∪{0}. Also, λ(·)
represents an eigenvalue of a square matrix. In particular,
λmax(·) and λmin(·) denote the largest and the smallest
eigenvalue in magnitude, respectively. The symbols⊗, det(·),
tr(·), and vec(·) denote Kronecker product, matrix determi-
nant, trace operator, and vectorization operator, respectively.
Finally, the symbol Pr(·) stands for the probability.

In this paper we demonstrate our framework and tech-
niques on the one-dimensional heat equation, given by

∂u

∂t
= α

∂2u

∂x2
, t ≥ 0, (1)

where u is the time and space-varying state of the tempera-
ture, and t and x are continuous time and space respectively.
The constant α > 0 is the thermal diffusivity of the given
material.
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The PDE is solved numerically using the finite difference
method by Euler explicit scheme, with a forward difference
in time and a central difference in space. Thus (1) is
approximated as

ui(k + 1)− ui(k)

∆t
= α

(
ui+1(k)− 2ui(k) + ui−1(k)

∆x2

)
,

(2)

where k ∈ N0 is the discrete-time index and ui is the
temperature value at ith grid space point. The symbols ∆t
and ∆x denote the sampling time and the grid resolution
in space, respectively. Further, if we define a constant r ,
α ∆t

∆x2 , then (2) can be written as

ui(k + 1) = rui+1(k) + (1− 2r)ui(k) + rui−1(k), (3)

It is important to observe that (3) is a discrete-time linear
dynamical system.

Fig. 1. Discretized one-dimensional domain with an asynchronous nu-
merical algorithm. the PE denotes a group of grid points, assigned to each
core.

Fig. 1 illustrates the numerical scheme over the discretized
1D spatial domain. A typical synchronous parallel implemen-
tation of this numerical scheme assigns several of these grid
points to each PE. The updates for the temperature at the grid
points assigned to each PE, occur in parallel. However, at
every time step k, the data associated with the boundary grid
points, where the communication is necessary are synchro-
nized, and used to compute ui(k+ 1). This synchronization
across PEs is slow, especially for massively parallel systems
(estimates of idle time due to this synchronization give
figures of up to 80% of the total time taken for the simulation
as idle time). Recently, an alternative implementation which
is asynchronous has been proposed. In this implementation,
the updates in a PE occur without waiting for the other
PEs to finish and their results to be synchronized. The data
update across PEs occurs sporadically and independently.
This asynchrony directly affects the update equation for the
boundary points, as they depend on the grid points across
PEs. For these points, the update is performed with the
most recent available value, typically stored in a buffer. The
effect of this asynchrony then propagates to other grid points.
Within a PE, we assume there is no asynchrony and data is
available in a common memory.

Thus, the asynchronous numerical scheme corresponding
to (3) is given by

ui(k + 1) = rui+1(k∗i+1) + (1− 2r)ui(k) + rui−1(k∗i−1),
(4)

where k∗i ∈ {k, k−1, k−2, . . . , k− q+ 1}, i = 1, 2, . . . , N ,
denotes the randomness caused by communication delays
between PEs. The subscript i in k∗i depicts that each grid
space point may have different time delays. The parameter
q is the length of a buffer that every core maintains to store
data transmitted from the other cores. In this paper, we treat
k∗i as a random variable and thus (4) can be considered to
be a linear discrete-time dynamical system with stochastic
updates.

Although (4) is derived for the 1D heat equation, the
treatment above can be developed for any parabolic PDEs.
This observation encourages us to consider using tools from
dynamical systems to analyze the effect of asynchrony in
parallel numerical algorithms. Therefore, the primary goal of
this study is to investigate the stability, convergence rate, and
error probability of the asynchronous numerical algorithm in
the framework of stochastic switched dynamical systems.

III. A SWITCHED SYSTEM APPROACH

Let us define the state vector Uj(k) ∈ Rn ,
[uj1(k), uj2(k), . . . , ujn(k)]>, where uji (k) stands for the ith

grid space point in the jth PE and n is the total number of
grid points in the jth PE. Therefore, (3) can be compactly
written as

U(k + 1) = AU(k), k ∈ N0,

where U(k) ∈ RNn , [U1(k)>, U2(k)>, . . . , UN (k)>]>, N
is the total number of PEs, n is the size of the state for each
PE, and system matrix A ∈ RNn×Nn is given by

A =



1 0 0 · · · · · · 0
r 1-2r r 0 · · · 0
0 r 1-2r r · · · 0
...

. . .
. . .

. . .
0 · · · r 1-2r r
0 · · · 0 0 1

 ∈ RNn×Nn.

Note that the first and the last row of A matrix specify
the Dirichlet boundary conditions (see pp. 150, [15]). i.e.,
we have the constant in time boundary temperatures for
simplicity.

Next, we define the augmented state X(k) ∈ RNnq ,
[U(k)>, U(k − 1)>, . . . , U(k − q + 1)>]>, where, as stated
before, q is the buffer length. For pedagogical simplicity (and
without loss of generality), we consider the case with q = 2
and N = 3. Further, we let n = 1, which implies there is
only one grid point in each PE. For this particular case, we
construct the following matrices,

W1 =



1 0 0 0 0 0
r 1-2r r 0 0 0
0 0 1 0 0 0

I 0

 , W2 =



1 0 0 0 0 0
0 1-2r r r 0 0
0 0 1 0 0 0

I 0

 ,

W3 =



1 0 0 0 0 0
r 1-2r 0 0 0 r
0 0 1 0 0 0

I 0

 , W4 =



1 0 0 0 0 0
0 1-2r 0 r 0 r
0 0 1 0 0 0

I 0

 ,



where I ∈ RNn×Nn and 0 ∈ RNn×Nn are the identity and
the zero matrices with appropriate dimensions. As in [4], we
assume that the condition 0 < r ≤ 0.5 holds from now on.
The asynchronous numerical scheme can then be written as
a switched system

X(k + 1) = WσkX(k), σk ∈ {1, 2, . . . ,m}, k ∈ N0, (5)

where the matrices Wσk ∈ RNnq×Nnq , are the subsystem
dynamics. In general, the total number of switching modes
is m = q2(N−2) that is obtained by considering all cases
to distribute every components r in W1 matrix, where the
number of r in W1 is given by 2(N − 2), into q numbers of
zero block matrix as in the above example. Therefore, the
number of modes increase exponentially with the number of
PEs, which is quite large for massively parallel systems.

At every time step, the numerical scheme evolves using
one of the m modes, which depends on the variable k∗i . In
this paper, we model the variable k∗i as a random variable that
evolves in an independently and identically distributed (i.i.d.)
fashion in time, and independently from one core to the next.
Hence, we let πj be the modal probability for Wj which is
assumed to be stationary in time. Let Π , {π1, π2, . . . , πm},
be the switching probabilities such that 0 ≤ πj ≤ 1, ∀j
and

∑m
j=1 πj = 1. The system in (5) is thus an i.i.d jump

linear system, which is a simpler case of the more well-
known Markovian jump linear systems [13]. Even though
the analysis theory for such systems is well developed, the
existing tools are not suitable for our application because of
the extremely large number of modes, particularly when N
is large. Thus, we now develop an analysis theory for the
i.i.d. jump linear systems which scales better with respect to
the number of modes.

IV. STABILITY

The first requirement is that of convergence of (5). Be-
cause of the Dirichlet boundary conditions, we expect the
temperature to converge to a constant value for every grid
point. We proceed to analyze the conditions for conver-
gence (or stability) of the system. To this end, we may try
to use the infinity norm and apply the sub-multiplicative
property to obtain ||X(k + 1)||∞ = ||WσkX(k)||∞ ≤
||Wσk ||∞||X(k)||∞ = ||X(k)||∞, where the last equality
holds since we have ||Wj ||∞ = 1, ∀j. This can be written
as

‖ X(k + 1) ‖∞
‖ X(k) ‖∞

≤ 1. (6)

The above result only shows that the solution from the
asynchronous algorithm is marginally stable and we are
unable to determine the steady-state solution.

In fact, we can show that the asynchronous scheme also at-
tains the same steady-state value as the synchronous scheme,
regardless of the specific realization of {σk}. Using spectral
decomposition, the matrices Wj can be expressed in terms
of the eigenvalues and corresponding eigenvectors as

Wj ∈ RNnq×Nnq =

Nnq∑
i=1

λjiv
j
i s
j
i , j = {1, 2, . . . ,m}, (7)

where λji ∈ R, vji ∈ RNnq×1, and sji ∈ R1×Nnq denote the
eigenvalues, right eigenvectors, and left eigenvectors of Wj ,
respectively.

Since max
i
|λji | ≤ ||Wj ||∞ = 1, ∀j, the spectral radius of

Wj , j = 1, 2, . . . ,m, is less than or equal to 1. Therefore,
we may order the eigenvalues as 1 ≥ |λj1| ≥ |λ

j
2| > · · · ≥

|λjNnq| ≥ 0. It can be shown that all Wj have two eigenvalues
with value 1, irrespective of the size of q and N . Therefore,
the eigenvalues for Wj are ordered as 1 = |λj1| = |λj2| >
|λj3| ≥ · · · ≥ |λ

j
Nnq| ≥ 0.

Moreover, the left and right eigenvectors for eigenvalues
equal to 1 are common eigenvectors for all matrices Wj ,
j = 1, 2, . . . ,m. These common left and right eigenvectors
are

1) Left eigenvectors:

s1 = [1, 0, · · · , 0 , 0 , · · · , 0 ] ∈ R1×Nnq, (8)

s2 = [0, · · · , 0, 1 , 0 , · · · , 0 ] ∈ R1×Nnq, (9)

2) Right eigenvectors:

v1 = [µ1, µ1, · · · , µ1]> ∈ RNnq×1, (10)

v2 = [µ2, µ2, · · · , µ2]> ∈ RNnq×1, (11)

where 0 ∈ R1×Nn denotes a row vector with all zero
elements, and µ1 , [1, Nn−2

Nn−1 , · · · ,
Nn−j
Nn−1 , · · · ,

1
Nn−1 , 0] ∈

R1×Nn, µ2 , [0, 1
Nn−1 ,

2
Nn−1 , · · · ,

j−1
Nn−1 , · · · ,

Nn−2
Nn−1 , 1] ∈

R1×Nn, j = 1, 2, . . . , Nn.
Notice that we have Wjvi = vi and siWj = si, i = 1, 2,

∀j. Then, the steady-state value for the asynchronous scheme
is given by the following result.

Proposition 4.1: Consider the i.i.d. jump linear system
in (5) with subsystem matrices Wj , j = 1, 2, . . . ,m and
a stationary switching probability Π. For a given initial
condition X(0), if we define Ψ , v1s1 + v2s2, where vi
and si, i = 1, 2, are given in (8)–(11), then, the steady-state
value Xss has the following form:

Xss , lim
k→∞

X(k) = ΨX(0),

irrespective of the switching sequence {σk}.
Proof: Let the eigenvalues of Wj be ordered in mag-

nitude by 1 = |λj1| = |λ
j
2| > |λ

j
3| ≥ · · · ≥ |λ

j
Nnq| ≥ 0. Also,

let vji and sji be the right and left eigenvector corresponding
to λji , respectively. Using the spectral decomposition, Wj can
be alternatively expressed by Wj =

∑Nnq
i=1 λjiv

j
i s
j
i = Ψ +∑

λji 6=1 f
j(i), where Ψ , v1s1 + v2s2 and f j(i) , λjiv

j
i s
j
i .

Then, starting with X(0), the realization of the switching
sequence σk results in

X(k) = Wσk−1
Wσk−2

· · ·Wσ1
Wσ0

X(0)

=
(

Ψ +
∑

λ
σk−1
i 6=1

fσk−1(i)
)
· · ·
(

Ψ +
∑
λ
σ0
i 6=1

fσ0(i)
)
X(0)

=
(

Ψk + g(k)
)
X(0),

where in above equation, g(k) represents all the other multi-
plication terms except Ψk term. Note that g(k) is formed



by the product of λji , where 0 ≤ |λji | < 1, ∀i > 2,
∀j. Consequently, if k → ∞, then g(k) is asymptotically
convergent to zero since the infinite number of multiplication
of the term λji , ∀i > 2, converges to zero. Therefore, we have

Xss = lim
k→∞

X(k) = lim
k→∞

ΨkX(0) = ΨX(0).

The last equality in above equation holds because Ψk =
Ψk−1 = · · · = Ψ, ∀k ∈ N.

V. CONVERGENCE RATE

In this section, we investigate how fast the expected value
of the state converges to the steady-state Xss by analyzing
the transient behavior of the asynchronous algorithm. Let
us define a new state variable e(k) , X(k) − Xss. The
expected value of e(k) is given by ē(k) , E[X(k)−Xss] =
E[X(k)] − Xss = X̄(k) − Xss, where X̄(k) , E[X(k)].
Therefore, the convergence rate of ||ē(k)|| will provide bound
for the convergence rate of ||X̄(k)−Xss||.

To obtain an upper bound for the convergence rate of
||ē(k)||, we use the following matrix transformation. As
described in (7), each modal matrix Wj can be alterna-
tively expressed by Wj =

∑Nnq
i=1 λjiv

j
i s
j
i , where λji , v

j
i ,

and sji denote the eigenvalues, right and, respectively, left
eigenvectors for Wj . If we define the transformed matrix
W̃j , Wj −

∑
λ1
i=1 λ

j
iv
j
i s
j
i = Wj − Ψ =

∑
λji 6=1 λ

j
iv
j
i s
j
i ,

then the modal dynamics with the corresponding state ej(k),
is given by

ej(k + 1) = W̃jej(k), j = {1, 2, . . . ,m}, k ∈ N0. (12)

Moreover, as in (5), the error state e(k) = X(k) − Xss, is
governed by

e(k + 1) = W̃σke(k), σk ∈ {1, 2, . . . ,m}, k ∈ N0. (13)

The system in (13) is also a switched linear system. The
transformed matrix W̃j are the modes of the error dynamics.
Generally, it is difficult to estimate the convergence rate of
the ensemble with stochastic jumps. Previous works [16]–
[19] have used the common Lyapunov function approaches,
to analyze stability and the convergence rate. However, the
existence of a common Lyapunov function is the only suffi-
cient condition for the system stability, and hence there may
not exist a common Lyapunov function for the asynchronous
algorithm. Moreover, extremely large values of m make it
very difficult to test every conditions for the existence of such
a common Lyapunov function. For this reason, we bound the
convergence rate of ē(k), instead of bounding e(k) directly.

Lemma 5.1: Consider an i.i.d. jump linear system
given by (13) with the switching probability Π =
{π1, π2, . . . , πm}. If the initial state e(0) is given and has
no uncertainty, the expected value of e(k) is updated by

ē(k) , E[e(k)] = Λke(0) or ē(k + 1) = Λē(k), (14)

where Λ ,
m∑
i=1

πiW̃i.

Proof: For an i.i.d. jump process with a given deter-
ministic initial error e(0), we have

E[e(k)] = E[W̃σk–1e(k–1)]

= E[W̃σk–1W̃σk–2 . . . W̃σ1
W̃σ0

e(0)]

= E[W̃σk–1 ]︸ ︷︷ ︸
=Λ

. . .E[W̃σ1
]︸ ︷︷ ︸

=Λ

E[W̃σ0
]︸ ︷︷ ︸

=Λ

e(0) = Λke(0).

Since the matrix Λ is given by Λ =
∑m
i=1 πiW̃i, the

computation of Λ requires all matrices Wj , j = 1, 2, . . . ,m.
As pointed out earlier, this calculation is intractable due
to the extremely large number of the switching modes m.
Therefore, instead of using (14), we provide a computation-
ally efficient method to bound ||ē(k)|| through a Lyapunov
theorem.

Consider a discrete-time Lyapunov function V (k) =
ē(k)>P ē(k), where P is a positive definite matrix. Since
it is shown that the original state X(k) is convergent to the
unique steady-state Xss as k → ∞ irrespective of {σk},
the expected error ē(k) , X̄(k) − Xss is asymptotically
stable. Therefore, one can employ the Converse Lyapunov
Theorem [20], which guarantees the existence of a positive
definite matrix P , satisfying the following linear matrix
inequality (LMI) condition Λ>PΛ − P < −Q, where Q is
some positive definite matrix. The matrix inequality can be
interpreted in the sense of positive definiteness. (i.e., A > B
means the matrix A−B is positive definite.) Then, the above
LMI condition results in ∆V (k) = V (k + 1) − V (k) =
ē(k)>(Λ>PΛ − P )ē(k) < −ē(k)>Qē(k) ≤ −λmin(Q)
‖ ē(k) ‖2. Also, the Lyapunov function V (k) satisfies

λmin(P ) ‖ ē(k) ‖2 ≤ V (k) ≤ λmax(P ) ‖ ē(k) ‖2,

resulting in − ‖ ē(k) ‖2≤ − V (k)

λmax(P )
. Therefore, we have

∆V (k) < −λmin(Q) ‖ ē(k) ‖2≤ −λmin(Q)

λmax(P )
V (k).

⇒ V (k + 1) <
(

1− λmin(Q)

λmax(P )

)
V (k). (15)

Hence, ‖ ē(k) ‖ is bounded by a following equation:

‖ ē(k) ‖2< K

(
1− λmin(Q)

λmax(P )

)k
‖ e(0) ‖2, (16)

where K > 0 is some constant.
Next, we bound the convergence rate for ||ē(k)|| by using

the result in (16) as follows.

Proposition 5.1: For a stable i.i.d. jump linear system
(13) with a stationary switching probability Π, consider
a Lyapunov candidate function for the state ē, given by
V , ē>P ē, where P is a positive definite matrix. In addition,
a Lyapunov candidate function for (12) is given by Vj ,
e>j Pjej , j = 1, 2, . . . ,m, where Pj is a positive definite
matrix. According to the Converse Lyapunov Theorem, there
exist Pj > 0 and P > 0 such that W̃>j PjW̃j − Pj <
−Qj , j = 1, 2, . . . ,m and Λ>PΛ−P < −Q, where Qj and



Q are any positive definite matrices. Then, with a particular
choice of these matrices, we assume that Pj and P satisfy
the following conditions:

W̃>j PjW̃j − Pj = −I, j = 1, 2, . . . ,m, (17)

Λ>PΛ − P ≤ −εjI, for some j, (18)

where εj ,
λmax(P )

λmax(Pj)
> 0, W̃j are the modal matrices in

(12), and Λ ,
m∑
j=1

πjW̃j .

Then, ||ē(k)||2 is bounded by

‖ ē(k) ‖2< K

(
1− 1

λmax(Pj)

)k
‖ e(0) ‖2, (19)

where K > 0 is some constant.

Proof: By applying the result in (16) into (18), we have

‖ ē(k) ‖2 < K

(
1− λmin(εjI)

λmax(P )

)k
‖ e(0) ‖2

= K

(
1− εj

λmax(P )

)k
‖ e(0) ‖2

= K

(
1− 1

λmax(Pj)

)k
‖ e(0) ‖2 .

The last equality in above equation holds by the definition
of εj .

Proposition 5.1 says that we can always guarantee the
bound for ||ē(k)|| if (18) holds. Consequently, the existence
of such a P , satisfying (18) is the major concern in order
to guarantee the bound ||ē(k)||. The following lemma and
theorem can be used to prove the existence of such a P .

Lemma 5.2: Suppose that Pj is a positive definite matrix,
satisfying (17). Then, the largest eigenvalue of Pj is strictly
greater than 1 for all j, i.e., λmax(Pj) > 1, ∀j.

Proof: From (17), Pj = W̃>j PjW̃j + I , ∀j. Then, with
the eigenvectors y ∈ RNnq of Pj , the largest eigenvalue of
Pj is given by its definition as follows:

λmax(Pj) = λmax(W̃>j PjW̃j + I)

= max
y

||y||2=1

y>(W̃>j PjW̃j + I)y

= max
y

||y||2=1

(
y>W̃>j PjW̃jy

)
+ y>y︸︷︷︸

=||y||2=1

Since Pj is a positive definite matrix, W̃>j PjW̃j becomes
a positive semi-definite matrix at least. Then, the scalar
term y>W̃>j PjW̃jy cannot be zero unless W̃>j PjW̃j is
a zero matrix or a triangular matrix with zero diagonal
components, which is not the case. Hence, it is guaranteed
that y>W̃>j PjW̃jy > 0, implying λmax(Pj) > 1, ∀j.

Theorem 5.1: Consider Lyapunov functions for (12) and
(13) given by Vj , e>j Pjej , j = 1, 2, . . . ,m, and V ,
ē>P ē, respectively, where the matrices Pj > 0,∀j and P >
0. By the Converse Lyapunov Theorem, we assume that the
matrices Pj , ∀j, satisfies the condition (17).

Then, there exists a positive definite matrix P such that

Λ>PΛ − P ≤ −εjI, for some j, (20)

where εj ,
λmax(P )

λmax(Pj)
> 0.

Proof: We prove by contradiction. Suppose that there
exist no such P > 0, satisfying (20), which is equivalent to
that for all matrices P > 0, the inequality Λ>PΛ − P >
−εjI holds ∀j. The above inequality can be interpreted in
the quadratic sense. In other words, for any non-zero vector
v that has a proper dimension, the following condition holds:

v>
(
Λ>PΛ − P + εjI

)
v > 0, ∀j (21)

As a particular choice of v, we let the vector v be the
eigenvector of the matrix Λ, i.e., Λv = λΛ, where λ is the
eigenvalue of Λ. Since (21) holds for any matrix P > 0, we

let P = I , which results in εj =
λmax(I)

λmax(Pj)
=

1

λmax(Pj)
.

Hence, we have

0 < v>
(

Λ>Λ − I +
1

λmax(Pj)
I

)
v

= ( Λv︸︷︷︸
=λv

)>( Λv︸︷︷︸
=λv

)− ||v||2 +
1

λmax(Pj)
||v||2

=

(
λ2 − 1 +

1

λmax(Pj)

)
||v||2, ∀j.

From the structure of the matrix Λ, it can be shown that
det(Λ) = 0. Therefore, one of the eigenvalues λ is zero.

Moreover, Lemma 5.2 states that
1

λmax(Pj)
< 1, ∀j. As a

consequence, with λ = 0, we have

0 <

(
−1 +

1

λmax(Pj)

)
︸ ︷︷ ︸

<0

||v||2︸ ︷︷ ︸
>0

< 0, ∀j.

which is a contradiction.
Remark 5.1: Proposition 5.1 provides a very efficient way

to bound the convergence rate for ||ē(k)||. According to the
proposed methods, it is unnecessary to compute the matrix
Λ and to keep all matrices Wj , j = 1, 2, . . . ,m since
||ē(k)|| is bounded by the proposed Lyapunov function. Also,
Theorem 5.1 guarantees the condition (18), which is assumed
in Proposition 5.1.

Note that we specify the modal matrix Wm in (5) as the
most delayed case – all PEs use the oldest value in the buffer.
Therefore, it can be inferred that λmax(Pm) ≥ λmax(Pj),
∀j, which results in

||ē(k)||2 < K
(

1− 1

λmax(Pm)

)k
||e(0)||2, (22)

where K is a positive constant. Therefore, the only infor-
mation required to compute the convergence rate of ||ē(k)||,
is the matrix Wm with the corresponding positive definite
matrix Pm. As a result, the rate of convergence can be
calculated by the proposed methods without any scalability
problems.



VI. ERROR ANALYSIS

In this section, we investigate the error probability, which
quantifies the deviation of the random vector X(k) from its
steady-state value Xss in probability. To measure this error
probability, the Markov inequality given by Pr

(
X ≥ ε

)
≤

E[X]

ε
, where X is a nonnegative random variable and ε is

a positive constant, is used. First of all, we investigate the
term vec

(
e(k)e(k)>

)
as follows:

vec
(
e(k)e(k)>

)
= vec

(
W̃σk−1

e(k − 1)e(k − 1)>W̃>σk−1

)
=
(
W̃σk−1

⊗ W̃σk−1

)
vec
(
e(k − 1)e(k − 1)>

)
. (23)

In the second equality of above equation, we used the
property that vec(ABC) = (C> ⊗A)vec(B).

By taking the expectation with new definitions y(k) ,
vec
(
e(k)e(k)>

)
, ȳ(k) , E[y(k)], and Γσk , W̃σk ⊗ W̃σk ,

(23) becomes

ȳ(k) , E[y(k)] = E
[
Γσk−1

y(k − 1)
]

=

m∑
r=1

E
[
Γσk−1

y(k − 1)
∣∣∣ σk−1 = r

]
Pr(σk−1 = r)

=

m∑
r=1

πrΓrE [y(k − 1)] ,

resulting in ȳ(k) = (
∑m
r=1 πrΓr) ȳ(k − 1), where in the

second line we applied the law of total probability and
the last equality holds by Pr(σk−1 = r) = πr for i.i.d.
switching.

By the exactly same argument given in Lemma 5.1 and
Proposition 5.1, the upper bound for ȳ(k) is obtained as
follows:

||ȳ(k)|| < K

(
1− 1

λmax(P̃m)

)k/2

||y(0)||, ∀k ∈ N, (24)

where K is some positive constant and P̃m is a positive
definite matrix, satisfying the condition Γ>mP̃mΓm − P̃m =
−I . However, unlike the positive definite matrix Pm ∈
RNnq×Nnq in (17), the dimension of the matrix P̃m is given
by P̃m ∈ R(Nnq)2×(Nnq)2 , which may be large in size, and
hence incurs computational intractabilities to obtain such a
P̃m. Therefore, we introduce the following proposition and
theorem in order to further facilitate the computation of
λmax(P̃m) as follows.

Proposition 6.1: Consider a positive definite matrix P̃m,
satisfying the condition Γ>mP̃mΓm−P̃m = −I , where Γm ,
W̃m⊗W̃m, and W̃m is any real square matrix. If we assume
that there exist finite, positive constants k0, c0, and c1 such
that

1 ≤ ||W̃ k
m||4 ≤ c0, for k ∈ [0, k0), (25)

||W̃ k
m||4 ≤ c1 < 1, for k ∈ [k0,∞), (26)

then, the largest eigenvalue of P̃m is bounded by the follow-
ing function:

λmax(P̃m) <

∞∑
k=0

||W̃ k
m||4 ≤ k0c0

(
1

1− c1

)
, (27)

Proof: The leftmost inequality in (27) can be proved
as follows. The positive definite matrix P̃m satisfying the
condition Γ>mP̃mΓm − P̃m = −I , is analytically computed
by P̃m =

∑∞
k=0

(
Γ>m

k
)
I
(
Γkm
)

=
∑∞
k=0 Γ>m

k
Γkm. Then, for

a given matrix Γm , W̃m ⊗ W̃m, we have

Γ>m
k
Γkm < ρ(Γ>m

k
Γkm)I = ρ(Γkm

>
Γkm)I = σ2

max(Γkm)I

= ||Γkm||2I = ||(W̃m ⊗ W̃m)k||2I = ||W̃ k
m||4I, (28)

where ρ(·) and σmax(·) denote the spectral radius and
the spectral norm, respectively. For equality conditions in

(28), we used the known property that
√
ρ(Γkm

>
Γkm) =

σmax(Γkm) = ||Γkm|| and ||(W̃m⊗W̃m)k|| = ||W̃ k
m⊗W̃ k

m|| =
||W̃ k

m||2, ∀k ∈ N0. By summing up from k = 0 to ∞,
and then taking the largest eigenvalue in (28), we have
λmax(P̃m) = λmax

(∑∞
k=0 Γ>

k
Γk
)
<
∑∞
k=0 ||W̃ k

m||4.
For the rightmost inequality in (27), the assumptions in

(25)-(26) result in

∞∑
k=0

||W̃ k
m||4 =

k0−1∑
k=0

||W̃ k
m||4︸ ︷︷ ︸

≤k0c0

+

∞∑
k=k0

||W̃ k
m||4

≤ k0c0 +

2k0−1∑
k=k0

||W̃ k
m||4 +

3k0−1∑
k=2k0

||W̃ k
m||4 + · · ·

= k0c0 +

k0−1∑
k=0

||W̃ (k0+k)
m ||4 +

3k0−1∑
k=2k0

||W̃ k
m||4 + · · ·

≤ k0c0 + ||W̃ k0
m ||4︸ ︷︷ ︸
≤c1

k0−1∑
k=0

||W̃ k
m||4︸ ︷︷ ︸

≤k0c0

+

k0−1∑
k=0

||W̃ (2k0+k)
m ||4 + · · ·

≤ k0c0 + k0c0c1 + ||W̃ 2k0
m ||4︸ ︷︷ ︸
≤c21

k0−1∑
k=0

||W̃ k
m||4︸ ︷︷ ︸

≤k0c0

+ · · ·

≤ k0c0 + k0c0c1 + k0c0c
2
1 + · · ·

= k0c0

( ∞∑
n=0

cn1

)
= k0c0

(
1

1− c1

)
.

Hence, we have
∞∑
k=0

||W̃ k
m||4 ≤ k0c0

(
1

1− c1

)
.

Theorem 6.1: Consider a stable, i.i.d. jump linear system
with subsystem dynamics W̃j given in (13). Then, the prob-
ability of ||e(k)||2 > ε, where ε is some positive constant, is
given by

Pr
(
||e(k)||2 > ε

)
≤ min(1, β), k ∈ N0, (29)

where β ,

√
nK

ε

(
1 − 1− c1

k0c0

)k/2
||y(0)||, K > 0 is

a constant, c0, c1, k0 are positive constants such that the
conditions (25)-(26) are satisfied.



Proof: At first, we consider the following equality
condition given by

||e(k)||2 = e(k)>e(k) = tr(e(k)>e(k)) = tr
(
I
(
e(k)e(k)>

) )
= vec(I)>vec(e(k)e(k)>) = vec(I)>y(k), (30)

where we used the cyclic permutation property for the trace
operator in the first line and the equality in the second line
holds by the property tr(X>Y ) = vec(X)>vec(Y ) for any
square matrix X,Y ∈ Rn×n.

We take the expectation in both sides of (30), which leads
to

E
[
||e(k)||2

]
= vec(I)>E

[
y(k)

]
= vec(I)>ȳ(k). (31)

Since the term E
[
||e(k)||2

]
is a scalar value, taking the

Euclidean norm returns the same value. Hence, applying the
Euclidean norm in (31) results in

E
[
||e(k)||2

]
= ||vec(I)>ȳ(k)||
≤ ||vec(I)>|| · ||ȳ(k)|| =

√
n · ||ȳ(k)||. (32)

Now, plugging (24) and (27) into (32) leads to

E
[
||e(k)||2

]
<
√
nK

(
1− 1− c1

k0c0

)k/2
||y(0)||.

Finally, by applying the Markov inequality the above equa-
tion ends up with

Pr
(
||e(k)||2 > ε

)
≤

E
[
||e(k)||2

]
ε

< β,

where β ,

√
nK

ε

(
1− 1− c1

k0c0

)k/2
||y(0)||.

Since the probability cannot exceed one, we have

Pr
(
||e(k)||2 > ε

)
≤ min(1, β)

Theorem 6.1 represents the error probability for a given
bound ε. Since e(k) is a time-varying variable, the probability
Pr
(
||e(k)||2 > ε

)
also changes with respect to time. Starting

from a given initial condition y(0), this probability will

converge to zero if

(
1− 1− c1

k0c0

)
< 1.

VII. SIMULATIONS

In order to test the proposed methods, simulation was
carried out for the one-dimensional heat equation. We
implemented the asynchronous parallel algorithm with
CUDA C++ programming on nVIDIA TeslaTM C2050 GPU,
which has 448 CUDA cores. The simulations were performed
with the following parameters:
• Simulation Parameters:

∆x = 0.1,∆t = 0.01, α = 0.5, r = α
∆t

∆x2
= 0.5

I.C. : ui = cos2

(
3πi

2(N − 1)

)
, i = 1, 2, . . . , N

B.C. : u1(k) = 1, uN (k) = 0, ∀k

• Buffer length: q = 3

Fig. 2. The spatio-temporal change of the temperature. Initially, the
temperature was given by the cosine square function. The total grid points
are 100, and the simulation was terminated when k = 10000.
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Fig. 3. The results for the stability and convergence rate. (a) The solid
lines represent the ensembles of total 300 simulations. The synchronous
case is given by dashed line. The steady-state is depicted by starred line.
(b) The solid and dotted lines represent 300 ensembles for ||e(k)|| and the
normed empirical mean ||ē(k)||, respectively. The dashed line shows the
upper bound of ||ē(k)|| from the proposed Lyapunov function, respectively.

• Number of PEs: N = 100.
• Number of grid points in PE: n = 1

For a given initial temperature, the spatio-temporal evolu-
tion of the state is presented in Fig. 2. As time k increases,
the curved shape of the temperature, given as a cosine square
function initially, flattens out. This simulation represents the
synchronous case.

In Fig. 3 (a), the ensemble of the trajectories is shown
for the asynchronous algorithm. The solid lines show the
trajectories of total 300 simulations. Due to the randomness
in the asynchronous algorithm, the trajectories differ from
each other. For a reference, the synchronous scheme is also
shown by a dashed line. Although it seems that the syn-
chronous scheme converges faster with respect to the given
iteration step, the physical simulation time may take more
because the idle time is necessary at each iteration in the
synchronous case. As the proposed method guarantees the
stability through the common eigenvectors, both synchronous
and asynchronous trajectories converged to the same steady-
state value Xss, depicted by starred line.

Next, we present the result for the convergence rate of
the asynchronous algorithm. We assume that the switching
probability Π has the form of an i.i.d. jump process. Fig. 3
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Fig. 4. Error probability with respect to time (a), (b) and with respect to ε
(c), (d). The solid line and dashed line represent empirical error probability
and empirical Markov inequality, respectively. The cross symbol denotes
the upper bound for the error probability by the proposed method.

(b) shows the convergence rate of ||ē(k)||, which describes
how fast the expected value of the state converges to Xss.
The solid lines are 300 sample trajectories of ||e(k)||, starting
from the given initial condition: e(0) = X(0) − Xss. The
dotted line depicts the time history of the normed empirical
mean ||ē(k)||, whereas the dashed line shows an upper
bound by the proposed Lyapunov method (22). Note that
||e(k)|| is a random variable, and hence the normed empirical
mean ||ē(k)|| was obtained by averaging the data over 300
simulations. In the proposed method, however, it is not
necessary to execute the simulation multiple times.

Fig. 4 represents the result for the error probability with
respect to time and ε. For different values of ε, Fig. 4 (a) and
(b) describe the time history of the error probabilities. The
solid line denotes the empirical probability obtained from
data – i.e., the number of samples satisfying ||e(k)||2 > ε
divided by the total number of samples. The dashed line

depicts the Markov inequality, computed from
E[||e(k)||2]

ε ,
where E

[
||e(k)||2

]
is obtained by the statistics. Finally,

the cross symbols mean the upper bound by the proposed
method. As shown in Fig. 4 (a) and (b), the probabilities for
all cases converge to zero since the error is asymptotically
convergent.

On the other hands, Fig. 4 (c), (d) show the error proba-
bility with respect to ε at fixed time instance. In this result,
the time is fixed at k = 9000 out of total 10000 iteration
times, and the probability is computed while increasing ε
values. In Fig. 4 (c) and (d), εT is given by the index along
x-axis, where the value of T is given in Fig. 4 (c) and (d),
respectively. In both cases, the error probabilities decrease
as ε increases.

Although the proposed methods provide a conservative
bound, it does not require executing the code multiple times

to predict the convergence rate or the error probability. In
addition to that, the proposed methods are carried out in a
computationally efficient manner without storing all subsys-
tem matrices. In this example, we have m = 32(100−2) ≈
3200, and keeping 3200 numbers of matrices is intractable
in the real implementation. The proposed method, however,
guarantees the convergence rate and the error probability,
without any scalability issues. Therefore, the presented meth-
ods provide a computationally efficient tool to analyze the
asynchronous numerical schemes.

VIII. CONCLUSIONS

This paper studied the stability, convergence rate, and error
probability of the asynchronous parallel numerical algorithm.
The asynchronous algorithm achieves better performance
in terms of the total simulation time, particularly when
massively parallel computing is required because it doesn’t
wait for synchronization across PEs. In order to analyze the
asynchronous numerical algorithm, we adopted the switched
linear system framework. Although modeling of massively
parallel numerical algorithms as switched dynamical systems
results in a very large number of modes, we developed new
methods that circumvent this scalability issue. While the
results presented here are based on 1D heat equation, the
analysis approach is generic and be applicable to other PDEs
as well.
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