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An autoregressive (AR) model based stochastic unknownt irgalization
and filtering technique

Dan VYu, Suman Chakravorty

Abstract— This paper studies the state estimation problem For stochastic systems, the problem of state estimation
of linear discret_e-time_ systems with stocha_stic unknown iputs._ is known as unknown input filtering (UIF), and many UIF
The unknown input is a wide-sense stationary process while 5,505ches are based on the Kalman filter [9]-[11]. When the
no other prior informaton needs to be known. We propose an . . . . .
autoregressive (AR) model based unknown input realization ijnamlcs of the unknown 'nPUtS IS avallabl_e, for example, 'f_
technique which allows us to recover the input statistics fom it can be assumed to be a wide-sense stationary process with
the output data by solving an appropriate least squares prob  known mean and covariance, one common approach called
lem, then fit an AR model to the recovered input statistics and Augmented State Kalman Filter (ASKF) is used, where the
construct an innovati(.)ns.model of the unknown inputs using states are augmented with the unknown inputs [12]. To
the eigensystem realization algorithm (ERA). An augmented . . .
state system is constructed and the standard Kalman filter is reduce the computational compl_exny of ASKF, optimal two-
applied for state estimation. A reduced order model (ROM) Stage and three-stage Kalman filters have been developed to
filter is also introduced to reduce the computational cost othe  decouple the augmented filter into two parallel reduceakord
Kalman filter. Two numerical examples are given to illustrate  filters by applying a U-V transformation [13]-[15]. When no
the procedure. prior information about the unknown input is available, an
unbiased minimum-variance (UMV) filtering technique has
been developed [16], [17]. The problem is transformed into

In this paper, we consider the state estimation problefinding a gain matrix such that the trace of the estimation
for systems with unknown stochastic inputs. The main corerror matrix is minimized. Certain algebraic constraintssin
tribution of our work is that when no prior information be satisfied for the unbiased estimator to exist. In both the
of the unknown inputs is known, we recover the statisticapproaches above, the process noise is assumed to be white
of the unknown inputs from the measurements, and thawise with known covariance.
construct an innovations model of the unknown inputs from In practice, there are many applications where the un-
the recovered statistics such that the standard Kalman filtenown inputs can be modeled as a stochastic process. For
can be applied for state estimation. The innovations modekample, the state estimation of perturbed laminar flows is
is constructed by fitting an autoregressive (AR) model tgonsidered in [18]. It shows that the external disturbances
the recovered input correlation data from which a stat@as well as the sensor noise and initial conditions) can be
space model is constructed using the balanced realizatiomodeled as unknown stochastic inputs which perturb the
technique. The method is tested on stochastically perurbénearized Navier-Stoke equations. Thus, the state etima
heat and laminar flow problems. problem of such system is transformed into the unknown

The problem of state estimation of systems with unknowmput filtering problem with stochastic unknown inputs. &Is
inputs has received considerable attention over the pasiir work can be applied to identify the statistics of colored
few decades. The unknown input observer (UIO) has begmocess noise. There is some research that considers the
well established for deterministic systems [1]-[3]. Vaiso Kalman filtering with unknown noise covariances [19], [20].
methods of building full-order or reduced-order observersShe process noise is assumed to be white noise with un-
have been developed, such as [4]-[6]. Recently, slidingenod&nown covariance, while in our approach, the process noise
observers have been proposed for systems with unknowan be colored in time as well. There are also applications
inputs [7]. The design parameters and matrices need & our technique in signal processing, such as the wideband
be well chosen to satisfy certain conditions in order fopower spectrum estimation [21], where the problem is to
the observers to perform well. For systems without theecover the unknown power spectrum of a wide-sense sta-
“observer matching” condition being satisfied, a high-gaitionary signal from the obtained sub-Nyquist rate samples.
approach is proposed [8]. The high-gain observers are usedn this paper, we address the state estimation problem
as approximate differentiators to obtain the estimatedief t of systems with stochastic unknown inputs. The unknown
auxiliary outputs. In the presence of measurement noige, tmputs are assumed to be wide sense stationary, while no
high-gain observer amplifies the noise, and extra care neesther information about the unknown inputs is known. We
to be taken when designing the gain matrix. propose a new unknown input filtering approach based on

system realization techniques. Instead of constructireg th
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the measurements by solving an appropriate least squatke Frobenius norm of matri®, and||z |2 = (|z1|?+|x2|?+
problem, 2) find a spectral factorization of unknown input - - + |z,,|?)'/? denotes the Euclidean norm of vectar
process by fitting an autoregressive (AR) model, 3) construc The following assumptions are made about systeém (1):
an innovations model of the unknown inputs via the eigen- . . .

P N « Al. Ais a stable matrix, and4, C) is detectable.

system realization algorithm (ERA) [22] to the recovered - -
input correlation data, and 4) apply the Augmented State * A2rérna|\(n(k§£) =p.rankC) = ¢, p < g and rank CAB)

Kalman Filter for state estimation. Different from exigin

methods, we construct a stochastic unknown input model * A3. uj; andv; are uncorrelated. .

from sensor data, which can be colored in time. To reduce * A4. We further assume that the unknown inpet can
the computational cost of the ASKF, we apply the Balanced be treated as a WSS process:
Proper Orthogonal Decomposition (BPOD) technique [23] to &k = Acho1 + Bevi—1, ur, = Coli + ik, (2)
construct a reduced order model (ROM) for filtering.

The main advantage of the AR model based algorithm
we propose is that the performance of the algorithm is Remark 1:A2 is a weaker assumption than the so-called
better than the ASKF, OTSKF and UMV algorithms whern‘observer matching” condition used in unknown input ob-
the unknown inputs can be treated as WSS processes Wisrver design. The observer matching condition requirgs ra
rational PSDs. The AR model based algorithm we propos€’B) = rank (B) = p, which in practice, may be too
constructs one particular realization of the true unknowrestrictive. A2 implies that if there arg inputs, then there
input model, and the performance of the AR model baseshould be at least controllable and observable modes. A4
algorithm is the same as OTSKF when the assumed unknovyfplies thatu; is a WSS process with a rational power
input model used in OTSKF is accurate, and is better thagpectrum.

UMV algorithm in the sense that the error covariances are | this paper, we consider the state estimation problem

smaller. With the increase of the sensor noise, we have segfien the systenil2), i.e(A., B.,C.) are unknown. Given
that the performance of AR model based algorithm gets mughe output datay,, we want to construct an innovations
better than the UMV algorithm. model for the unknown stochastic inpuj, such that the
The paper is organized as follows. In Sectioh II, thgyutput statistics of the innovations model and systeém (@) ar
problem is formulated, and general assumptions are magis same. Given such a realization of the unknown input,
about the system and the unknown inputs. In Se¢fion lll, thge apply the standard Kalman filter for state estimation,

AR based unknown input realization approach is proposeflygmented with the unknown input states.
The unknown input statistics are recovered from the mea-

surements, then a linear model is constructed using an AR

model and the ERA is used to generate a balanced minimal 1ll. AR BASED UNKNOWN INPUT REALIZATION

realization of the unknown inputs. After an innovations TECHNIQUE

model of the unknown inputs is constructed, the ASKF is

applied for state estimation in Sectign]IV. Also, a ROM In this section, we propose an AR based unknown input re-

constructed using the BPOD is introduced to reduce thalization technique which can construct an innovationsehod

computational cost of Kalman filter. Sectibh V presents twaf the unknown inputs such that the ASKF can be applied for

numerical examples that utilize the proposed technique. state estimation. First, a least squares problem is foteala

based on the relationship between the inputs and outputs
Il. PROBLEM FORMULATION to recover the statistics of the unknown inputs. Then an AR
Consider a complex valued linear time-invariant discretgmdel IS constru_cte(_j using the_recovered input Stat'%’
. ) a balanced realization model is then constructed using the
time system: ERA

wherevy, ui are uncorrelated white noise processes.

xp = Azg—1 + Bug—1,

vk = Cx + v, @) A Extraction of Input Autocorrelations via a Least Squares

wherez, € C", yp € C9, v, € CY, u;, € CP are the state Problem

vector, the measurement vector, the measurement white nois . . o .
with known covariance, and the unknown stochastic inputs Consider systeni[1) with zero initial conditions, the outpu

respectively. The process, is used to model the presence¥k Can be written as:

of the external disturbances, process noise, and unmddelle 0
terms. HereA € C"*", B € C™*P, C' € C7*™ are known. Yk = Zhi“k—i + Vg ®3)
Denote h; = CA*'B,i = 1,2,--- as the Markov =1

parameters of systernl(1). We ugéto denote the complex  For a linear time-invariant (LTI) system, under assumption
conjugate transpose of, and 27 to denote the transpose A1 that A is stable, the outpufy;} is a wide-sense station-

of x. Denoteh; as the matrixh; with complex conjugated ary process wheru;} is wide-sense stationary. From the
entries, andh; = (h,)". [|A|| = (327, lai;|*)'/? denotes  definition of the autocorrelation function of a WSS process,



the output autocorrelation can be written as: written as:
M M

Ryy(m) = Elysyicim] veq Ry, (m Z Z h; @ hived Ruy(m +i — 7). (10)
:ZZhuk Wfopm 5 + Run(m)
=1 j=1 where M varies with different systems and can be chosen as
0 large as desired.
Z > hiRuu(m +i — j)h + Ryy(m), (4) 2) Choose design parametel&, N;: Under assumption
i=175=1 Al and A4, |[Ryu(m)|| — 0, and ||Ry,(m)|| — 0 as
wherem = 0,+1,+2,--- is the time-lag between; and m — oo. As a standard method when computing a power
Yr+m. Here, assumption A3 is used. spectrum from an autocorrelation function, we choose desig
Notice thatR,, (—m) # R, (m) when{y,} is a sequence ParametersV; and N, such that the input autocorrelations
of Comp|ex valued vectors. We dend%y(m) — Ryy(m)_ are calculated Whem| < N, and the output autocorrela-
Ry (m), where Ry, (m) = Q for m =0, and vavl(m) — tions are calculated whejm| < N,. The numbersV, and
0, otherwise. Therefore, the relationship between input andj: depend on the dynamic system and unknown inputs, and
output autocorrelation function is given by: can be chosen as large as required. We have the following
o oo proposition.
> _ Sk Proposition 1: The relationN; < N, holds, which im-
Ry,,(m) = hiRyu(m 41— j)h;. 5 . - . i = Yo TS,
vy(m) ;; ( Ih; ®) plies that all significant input autocorrelations can beovec

) ) ) ered from the output autocorrelations.
For multiple input multiple output (MIMO) systems,;, Proof: The support OfRyy is limited to (—N,, N,),

Ry, (m), Ruu(m). are matrices. To solve for the unknown in-y, s - \ve haveR,, (N, + 1) = 0. From [3),
put autocorrelations,,,,(m), first we need to use a theorem

from linear matrix equations [24], [25].

Theorem 1:Consider the matrix equation ved Ry, (No +1)) = Z} hi ® hived Ruw(No + 1)

AXB =0, ©) +> hiot @ hivedRuu(N,)) + -+ . (12)
where A, B, C, X are all matrices. IfA € C™*" = =2
(a1, a2, -+ ,ay), Wwherea; are the columns ofi, then define If N; > N,, which meansR,..(N, + 1) # 0, then it follows
Zl that R, (N, + 1) is also not negligible, which contradicts
vedA) € C™*1 as: ve¢A) — '2 ' tht?r:ssumpnon, aqd hence,_as g consequevice, N,. .I
: us, the following equation is used for computation of
an the unknown input autocorrelations.
The matrix equatiori{6) can be transformed into one vector M M
equation: ved Ry, (m)) =D > hy @ hivec(Ruyu(m +i — j)),
(BT ® A)VeqX) = Veqc)v (7) ==t [m+i—j|<N;
Im| < N, (12)

where BT ® A is the Kronecker product oB” and A. If
A'is anm x n matrix and B is ap x ¢ matrix, then the  3) Solve the least squares problerie collect2N, +

Kronecker productd ® B is themp x nq block matrix: 1 output autocorrelations, and from the above assumptions,
anB  apB - awB there are2N; + 1 unknown input autocorrelations:
A®B = e : 8 VeqRyy(_NO)) ved Ry, (—N;))
amlB amgB s amnB VeqRyy(_NO + 1)) VeqRuu(_Ni + 1))
By applying Theorerﬁ]l[[S) can be written as: : :
VeC(Ryy(O)) =Cyu ved Ry (0)) , (13)
ved R hj @ hi Ve Ry (m +i — j 9 -
€Ra?x1 € Ra?xp? cRp2x1 . .
where h; denotes the matrix; with complex conjugated veqR,,(N,)) ved Ry (Ni))
entries, andh} = (h;)7. i
Now, we estimate the unknown input autocorrelations by veo(Ryy ) u
the following procedure. where C,,, is the coefficient matrix and can be calculated

1) Choose design parametdd: Under assumption Al, from (12).
i.e., the system is stable, the Markov parameters of the Under assumption A1, A2 and A4, we have the following
system[(lL) have the following property#;|| — 0 asi — oco.  proposition.

We choose a design parametef, such that[(B) can be Proposition 2: Equation [[IB) has a unigue least squares



solution Ry, (m), m = £1,42,--- ,£N; . Algorithm 1 Conjugate gradient algorithm
Proof: We partition the matridxCy,, into three parts as 1) For a least squares problemz = L, whereC, =

Ci C?, & is unknown.
Cyu = | Cwm | . whereC,, contains theq*(N, — N;) + 2) Start with a randomly initial solutio.
Cb 3) TOZLS—OSZE(),pOZTo.
1,---,¢*(N, + N; + 1) rows of Cy, and can be expressed 4) for k =0, repeat
as: _ _ritk
Mo M-1 5) C_Xk - ngspk’
2 hj®h 2 hj®hip - Th+1 = Tk + QkDk,
Jj=1 Jj=1 _ _ C
Z\/I—IE. . %}7‘@”‘ .Tk-ﬁ-l—.rk O‘_k_spky .
oo | BTN Do ) if rx41 is sufficient small then exit loop.
B _ Tr41TkA41
. k= rEre ]
% Ry @ hy Dk+1 = Tk+1 + BrDk,
i=1 k=k+1,
In the following, we prove thaf,, € C (2Ni+1)xp*(2N;+1) end repeat.

has full column ranky?(2N; + 1) by induction. 6) The optimal estimation is;1.

Let N; =0, then
M —
Cm(o) = Z hj ® hj = (O‘/co ® O‘/co)(l + Aco & Aco
j=1

o+ AT @ AL D(ULB@ULB), (15) and a conjugate gradient method to solve this problem is

where A, are the controllable and observable eigenvalugdimmarized in Algorithri]1.

of A, and (V.,,U,,) are the corresponding right and left

eigenvectors. Under the assumption A2, if rafikdB) = p, Denote R, (m) as the “true” input autocorrelation;, and
and sinceCAB = CV,,A.,U’, B, which implies that rank A(m) = Ruu(m) — Ruu(m) as the error of the input
(Crn(0)) = p2. autocorrelations we _extracﬁ(m) results from two design
If rank C,,, (N; — 1) has rankp®(2N; — 1), then consider parameters: the choice M and N;. We analyze the errors
Con (N ): seperately, in the following.
Cm(0) Ci2 C13 Proposition 3: Denote R, (m) as the input autocorre-
Cn(Ni)=| Can  Cn(N;—1) Cz |, (16) |ations we extract by using/ Markov parameters of the
Cs1 Cs2 Cm(0) dynamic system. We assume thit;|| < 6,i > M, where

where Cio, Ci3, Co1, Cas, Cs1, C3o are some matrices, and 0 is small enough. The error of input autocorrelations is:

it can be proved that’,,(NV;) has p? + p2(2N; — 1) +  [[Anm(m)|| < kard, wherek), is some constant.

p? = p?>(2N; + 1) independent columns, and hence, rank

(Con(N;)) = p?*(2N; + 1). The Perturbation theory [27] is used to prove the above
Thus, by induction(,, has full column rank, and hence, résult, and the proof is shown in Appendx I.

Cyy has full column rank. Since > p, it is an overdeter-

mined system, so there exists a unique solution to the leastRemark 3:Error analysis in the Fourier domain.

squares problem. ]
Remark 2: The size ofC,,, is ¢>(2N, +1) x p*(2N; +1) The power spetral density is defined as:

and it would be large whepandgq increase, and hence, large oo _
scale least squares problem needs to be solved for systems Suu(w) = Z Ry (k)e 7%, (20)
with large number of inputs/outputs. For example, a modified k=—o0
conjugate gradients method [26] could be used as follows. <. ke

The least squares problem need to be solved is: Syy(w) = kZ Ryy(k)e 7™, (21)

veqRyy) = CyuveqRuy), (17)  Thus, by substituting{5), the relationship between theuut
and multiply C;;, on both sides: power spectral density and input power spectral density is:
C;uveqRyy) = C;ucyuveqRuu)- (18) Syy(w) = Z (Z Z hiRyu(k+1i— t)hr)eijkw

* » 7 k=—o00 i=1 t=1
If we denoteLs = Cy, vedRy,), T = veq Ry, ), andCs = - M M

C*,Cyu, thenCy, = C*, and the problem is equivalent to . *\ ,—jkew
yu~Yyur S s = hz wu k —t)h J A
solve the least squares problem far k;m(; ; Buulk +i = t)hi)e + A5 (@)

Cy7 = Ly, (19) = Sy (w) + ASy (w), (22)



where is continuous, and can be modelled as the output of a casual

o A . linear time invariant system driven by white noise [28]. Buc
ASy(w) = Z (Ryy (k) — R%(k))e‘ﬂk“ = system can be constructed by using an autoregressive moving
k=—o0 average (ARMA) model, and in practice, a MA model can
o0 . e often be approximated by a high-order AR model, and thus,
> hargrRuu(k)hiy e with enough coefficients, any stationary process can be well
k=—o0 approximated by using either AR or MA models (Chapter 9,
- v —i(k—M)w [29]), and in this paper, we use an AR model to fit the data.
* k—Z: harsr R (ke 702 4 In an AR model, the time series can be expressed as a linear
- , function of its past values, i.e.,
= har41Suu (W) + Bt Suu (W)™ R + - L (23) N
Thus,||ASy (w)| < k18, wherek; is some constant. Hence, u(k) = Z a;u(k —1) + e(k), (25)
the truncation error by using/ Markov parameters can be i=1

seen to b.e- a small perturbation in the frequency domain. where ¢(k) is white noise with distributionN (0, ,), M;
Proposition 4: Denote R}, () as the input autocorrela- is the order of the AR model and.i = 1,2,---, M, are
tions we extract under assumptipR.,., (m)|| < 6, m| > Ni,  the coefficient matrices. For a vector autoregressive model
and|| R, (m)|| < 4,[m| > N, whered is small enough. The yith complex values, the Yule-Walker equation [30] which
errors resulting from this assumption [\ y (m)|| < knd, s used to solve for the coefficients needs to be modified.

whereky is some constant. The modified Yule-Walker equation can be written as:
The proof is shown in Appendixlll. .
Remark 4:Error analysis in frequency domain: aj
>y x (Rua=1) Rua(=2) -+ Ruu(-Mp) = [ |
Syy (W) = ( hi Ryu(k +1i—1t)hy)e 7™ L
. k=—oc i=1 t=1 m an;
o o oo - R..(0) Ry (1) oo Ryw(1— M)
+ 30 O hi Ruulk+i—t) h)e 9™ R (1) Ruw(0) -+ Ryu(2 - M) .
k=—oc0 1=1 t=1 |k+i—t\>N¢ : . : .
= SN (W) + ASy(w), 24)  \FuulMhi=1) Ruu(Mi=2) - Ruu(0)
where Equation[(26) is used to solve for the coefficient matrices
o s e a;,t = 1,2,---, M;. The covariance of the residual white
IASK (W)]| < Z (ZZ Bl % & x |hE])e3% ) < kas, noisee(k) can be solved using the following equation:
k=—cc i=1 t=1 M; M;
wherek, is some constant. Ree(m) = Ruu(m) — Z ZaiRuu(m +i=J)aj, (27)
Under the assumptions A1-A4, the following proposition =15=1
considers the total errors of input autocorrelations we rewhere(), = R..(0). The balanced minimal realization for
cover. the AR model[(Zb) can be expressed as:

Proposition 5: Denote Ruu(m) as the input autocorre-
lation function we estimate from the output autocorrela-
tions, and letA(m) = Ry.(m) — Ry.(m) be the error ur = Cpii + €, (28)
between the estimated input autocorrelation and the “ruihere
input autocorrelation. We assume the;|| < 6,é > M, [22] with a,,i = 1,--- , M; as the Markov parameters of the

[Buu(m)|| < 6,|m| > Ni, and ||Ryy(m)|| < §,|m| > No system. A brief description of the ERA is given in Appendix
whered is small enough. ThefiA(m)| < k6, wherek is v

some constant.

Propositior B an@]4 are used for the proof, and the proof
is shown in AppendikTll. The results above show thad/f, e = (Ap + BnCrn)nk—1 + Bneg—1,
N;, N, are chosen large enough, the errors in estimating the ug, = Coe + €, (29)
input autocorrelations can be made arbitrarily small.

M = AnMk—1 + Brug—1,

(A, B, C,) are solved by using the ERA technique

Equation [2B) is equivalent to:

wheree, is white noise with covariancg,. We make the
B. Construction of the AR Based Innovations Model following remark.

After we extract the input autocorrelations from the output Remark 5:We need to find a stablé,, + B,,C,, in (29). In
autocorrelations, we want to construct a system which wilpractice, we calculate the Markov parameters of syskemn (29)
generate the same statistics as the ones we recoveredusinga;,i = 1,---, M; first, and then use the ERA for the
Sectior III-A. If assumption A4 is satisfied, i.€4} is WSS  state space realization. If the Markov parameters of system
with a rational power spectrum, the power spectrunupf (@29) area;,i = 1,---,M;, thena; = C, B, = a1,d2 =



Algorithm 2 AR model based unknown input realizationpytation by using the properities of autocorrelation fiors:

technique
1) Choose a finite numbe¥,, compute output autocor- Rusui(=m) = Ru;u; (m),
relation functionR,, (m) by using measurements, Ruyju;(=m) = Ry, (m),i # j (32)
|m| < N,.

Thus, we only need to collect, + 1 output autocorrelations
and havep?(N, + 1) equations withg?(N; + 1) unknowns
in (13).

Remark 7:A generalization to the joint state and un-
known input estimation.

When the unknown inputs affect both the states and

2) Choose a finite numbek/, construct the coefficient
matrix C,,, from (12).

3) Choose a finite numbel;, solve the least squares
problem [IB8) for unknown input autocorrelation func-
tion Ry, (m), |m| < N,.

4) Construct an AR model for the unknown inpu(tc) =

Zi]\iil a;u(k — 1) 4+ e(k), find the coefficient matrices outputs, 1.e.
a;, i = 1,2,---M; by solving the modified Yule- Tr+1 = Az + Bug,
Walker equation[{26). yi = Czy, + Dug + v, (33)

5) Find the covarianc€, of ¢(k) by solving [2T). . _ . _
6) Construct the state space representafioh (28) for tMéerew, is the stochastic unknown inputy is the mea-

AR model using ERA. surement noise. The solutigp can be written as:

7) Find a unique lower triangular matri¥ such that M
'QT(BE] PP*, and construct an innovations model as yp = Zhiuk,i + Dug, + v, (34)
in (31). i=1

and the relationship between output autocorrelations and
input autocorrelations is:

Cn(A, + B,C,)B, = as + aja1,---. As we explained M M
before, for a WSS process with rational power spectrum, Ry, (m) = ZzhiRuu(m +i— It + Ryo(m) +
from [28] , we can always find a stable realizatios,, + . =1 =1 ’
BnCnaBnaOn) N N
By using the Cholesky Decomposition, we can find ihiRuu(m +i)D* + ZDRuu(m — j)h% 4+ DRyu(m)D*, (35)
unique lower triangular matrix’ such that: =1 i—1 '
Q, = PP*. (30) which can also be formulated as a least squares problém (13),

. _ _ S and an unknown input system may be realized following the
If wy IS white noise with d|Str|but|OdV(O, 1), thenPU)k same procedure as in Algonﬂ'ﬂ'} 2.

would be white noise with distributioiv (0, €2,.). Thus, the
innovation model we construct that has the same statistics alV. AUGMENTED STATE KALMAN FILTER AND MODEL

the unknown input systeni](2) is: REDUCTION
e = (An + BnCp)i—1 + BnPwj_1, _ Af:er we conlsttrtl:ct ?n idnn%viti(l)ns mfﬁflel fort:]he unknovx;nd
gk = Cori + Py, (31) inputs, we apply the standard Kalman filter on the augmente

system with states augmented by the unknown input states.
wherewy, is a randomly white noise with standard normalA ROM based filter is also constructed using the BPOD for
distribution. reducing the computational cost of the resulting filter.
Under assumption A4, we have the following proposition. i
A. Augmented State Kalman Filter
Proposition 6: Denote &,,,,(m) as the input autocorrela-  The full order system can be represented by augmenting
tions recovered from the measurements, tiign (m) can the states of the original system as:

be re_cons}ructed exactly by using the innpvations mode . A BC, - BP
(31), i.e., Ryw(m) = Ryy(m), where R, (m) is the input ) = (O A +B.C ) ( ) (B P) Wk,
autocorrelations of the realization of systdm](31). et n T Pntn/ Tk "
From Propositioi 15 and] 6, under the same assumptions, Y = (C 0) (Ik> + vy, (36)
the following corollary immediately follows. "Mk
Corollary 1: Denote u;, as the actual unknown input wherew; is white noise with standard normal distribution.
process, andR,,(m) as the actual input autocorrelationv, is white noise with known covariance. Thus, we may
function. Then| Ry, (m) — Ryw(m)| < kq0, wherek, is now use the standard kalman filter for state estimation of
some constant, whefi is small enough. Systenh (31) is anthe augmented systerm {36).

innovations model for the unknown inpu.. Remark 8:The augmented state systdm](36) is stable and
The procedure of constructing the innovations model idetectable. The eigenvalues of the augmented sysiem (36)
summarized in Algorithnal2. are the eigenvalues of and the eigenvalues of,, + B,,C,,.

Remark 6:For real valued system, we can save the comFrom assumption A1lA is stable, from Remark]54, +



B,C, is stable, and hence, the augmented sysferh (36) iy comparing the autocorrelation functions of the inputs,
stable. From assumption A1, systel (1) is detectable, amditputs and the states. Also, we show the state estimation
from the asymptotic stability of matrid,, + B,C,, (29) using the Kalman filter. We define the relative error as:

is also detectable, therefore, all the unobservable matdes i | Rirue — Res||

(38) are asymptotically stable, which implies th&E1(36) is Rretative = ——rp——— (39)

detectable. Thus, we may now use the standard Kalman filter e

for state estimation of the augmented systEm (36). Ry actual output/input/state autocorrelation function of
the system

B. Unknown Input Estimation Using Model Reduction R, : estimated output/input/state autocorrelation function

For large scale systems, we can use model reduction techdn the following, we will show simulation results for the
nique such as Balanced Proper Orthogonal Decompositi§fPchastically perturbed 1D heat equation and the laminar
(BPOD) to construct a reduced order model (ROM) first, anflow problem.
then extract the input autocorrelations from the reduceeror
model. We apply the Kalman filter to the ROM to reduce thé\. Heat Equation

computational cost. A brief description of BPOD is givenin  The equation for heat transfer by conduction along a slab

Appendix[IM. For a large scale system with a large numbgg given by the partial differential equation:
of inputs and outputs, we can also use the randomized proper

orthogonal decomposition (RPOD) technique [31] for model or - aaQ_T +f
reduction. ot dz? ’
The ROM system is extracted from the full order system T|aeo = 0, Z—T|1:L =0, (40)
X

using the BPOD and is denoted by:
where « is the thermal diffusivity,L. = 1m, and f is the
unknown forcing. There are two point sources located at
yr = Cray, + vg. (37) 0.5m andz = 0.6m.

Let by = C.AI"'B, i — 1.2.--- M be the Markov The system is discretized using finite difference approach,

" ol T pd there are 50 grids which are equally spaced. To satisfy
the observer matching condition in the UMV algorithm, we
take two measurements at = 0.5m, * = 0.6m. The
measurement noise is white noise with covaria®dds .
In the simulation, the unknown inputs are generated using

Ryy(m) = Z > hiRyu(m +i — j)h3. 38 &) with

= Arxp—1 + Brug—1,

parameters of the ROM. Then the relationship between inp
autocorrelations and output autocorrelations can be emritt
as:

Following the same procedure as in Algorithin 2, we can A, = <0'3 0'5) ,Be = Ce = Iy, (41)
now recover the input autocorrelations, and construct an 0.4 0.2
innovations model which can generate the same statistics@sd v, = 0, ~ N(0,10l2x2). The design parameters
the unknown inputs. The advantage of using model reductiaw = 4000, N; = 200, N, = 2000 are chosen as follows/
is that for a large scale system, computing= C, A:"'B,  is chosen so that the Markov parametghs|| ~ 0,i > M.
is much faster than computirig = CA*~! B because of the N; and N, are chosen by trial and error. First, we randomly
reduction in the size ofA. Also, the order of the ROM is choose a suitabl&V; and N, whereN,; < N,. Then we fol-
much smaller than the order of the full order system, anibw the AR based unknown input realization procedure, and
thus the computational cost of using the Kalman filter igonstruct the augmented state system (36). Given the white
much reduced. Hence, even with the augmented states, #sise processes;,, v perturbing the system, we check the
standard Kalman filter remains computationally tractable. output statistics of the augmented state sysfem (36). If the
Remark 9:To reduce the computational cost of the augerrors are small enough, we stop, otherwise, we increase the
mented states in Kalman filter, we can also use the existinglues of N; and N, and repeat the same procedure until
optimal two-stage or three-stage kalman filtering techaiquhe errors are negligible. Notice that increasihg N;, N,
[13], [15], which decouple the augmented filter into twowould increase the accuracy of the input statistics we can
parallel reduced order filters. These techniques are @deier recover, but also increases the computational cost.
when the order of the innovations model is high, while the First, in Figure[l, we show the comparison of the input
BPOD based ROM filter is preferable when the order of theorrelations we recover with the actual input correlations
dynamic system is high. Since there are two inputs, thus, the cross-correlation-fun
tion between input 1 and input 2 are also included. It can
be seen that the statistics of the unknown inputs can be
We test the method on a one-dimensional heat equatioecovered almost perfectly, and given the system perturbed
and the perturbed laminar flow equation. We construct thegy the unknown inputs innovations model we constructed,
unknown input system by using both the full order system abe statistics of the outputs and the states are almost the
well as the ROM constructed by BPOD. We check the resulsame as well.

V. COMPUTATIONAL RESULTS
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o . o matrices of the input system are perturbed from the true
' = values, the model used for OTSKF is:
0.1 0.05
0.4569 0.2768
T ° %“‘&%+W‘< >%+m,mm

/
5 0 5 10 15 0.2214 0.4016

=

[ R =R |
[ Ruull

Time lag Time lag
Olgsumated unknown inputs 2&1 O;sumated unknown inputs 2&2 Where v ~ N(O, 10[2><2). Here, Ao iS Chosen as fO"OWS.
FULL — FULL . .
o Rom | o RoM The eigenvalues ofl, in (41) are0.7, —0.2. We perturb the

eigenvalues ofi. with randomly generated numbers between

01 = Ot [—0.3,0.3] and [—0.8,0.8] with uniform distribution respec-
0.05 = o0s f tively, and keep the eigenvectors same as the eigenvectors
o o of A.. The perturbed eigenvalues abe5783,0.1802. We
5 10 1!

[| R~ R
[ Ruull

ey ® Chmelag ° calculate the output statistics df {41) afmdl(42), and we can
see that the unknown input statistics used in OTSKF are
Fig. 2. Comparison of input autocorrelation relative error perturbed by5% about the true value. The estimation of the
initial statez, and covariancé?, in three algorithms are the
same.

Next, we compare the performance of the unknown inputs Denote the average root mean square error(ARMSE) as:
constructed using the ROM with the full order system. n — 5
The full order system has 50 states, and the ROM has 20 Apa/sE — & 3 \/Zk—l(xi(k) — zi(k)) . (43)
states. The relative error of the input correlation is shown ni n
in Figure[2. We can see that the statistics reconstructed b N . b N
using the ROM is not as accurate as using the full ord%’gﬁerexz(k) Is the state estimate; at timety, andz; (k) is

. . true state;; at timet;,, wherei denotes thé"” component
system, however, the relative error is on the same scale, an,
of the state vector.

hence, the computational cost is reduced without losingrmuc Suppose at the state componentthe measurement noise

accuracy. . . . . - v 1S a white noise with zero mean and covariafite We
The state estimation using ROM is shown in Figure 3. We, .. . . . .
efine a noise to signal ratio (NSR):

randomly choose two states and show the comparison of the
actual state with the estimated states. The state estimatio [oH]

error and3c bounds are shown. It can be seen that the NSR = Bz’ (44)
Kalman filter using the ROM performs well, and hence, for v

a large scale system, the computational complexity of ASKIVe vary the measurement noise covariafigeand for each

can be reduced by using the BPOD. Q;, a Monte Carlo simulation of 10 runs is performed to
) ) _ compare the magnitude of the ARMSE using AR model
B. Comparison with OTSKF and UMV Algorithms based algorithm with the OTSKF and UMV algorithms in

Next, we compare the performances of the AR modelablell. The comparison is shown in Figlide 4. It can be seen
based algorithm with OTSKF and UMV algorithms. Thethat the AR model based method performs the best. Note that
OTSKF and UMV algorithms we use can be found in [32]when the assumed unknown input model used in OTSKF is

The assumed unknown input model used in the OTSKF igot accurate, the performance of AR model based algorithm
not the same as the true model, in particular, the systei®m much better while with increase in the sensor noise, the
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OperaterT transforms the forcing’ = (f1, f2, f3)* on
the evolution equation for the velocity vectar, v, w)” into
an equivalent forcing on thév,n)” system [18],
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NSR (%)

Fig. 4. Comparison of the performances

T = (mD k2 iﬂD) (51)
performance of the AR model based algorithm gets better w0 —io
than the UMV algorithm. It should also be noted that whenvhere
the sensors and the unknown inputs are non-collocated, the k2 = o2 + B2 (52)
“observer matching” condition is not satisfied, and hence, ) 2’
the UMV algorithm can not be used, while the OTSKF and A=D"—k% (53)

the AR model based algorithm are not affected. and D, D? represent the first and second order differen-

tiation operators in the wall-normal direction. The fogin
f(y,t) accounts for the nonlinear terms and the external
disturbances via an unknown stochastic model.

Consider the three-dimensional flow between two infinite The boundary conditions omands correspond to no-slip
plates (aty = +1) driven by a gradient in the streamwisesolid walls
« direction. The mean velocity profile is given By(y) =
1 —y2. At each wavenumber pairy, 3),,., the wall-normal
velocity v(z,y, z,t) and wall-normal vorticityn(z, y, z, t) System [(4B) can be discretized using Chebyshev
are: polynomials, and in the simulation, we assume there are
two unknown inputs and two measurements.

C. Orr-Sommerfeld Equation

v(£1) = Dv(+1) = n(£1) = 0. (54)

N i(az+pz) . . .
(@, Y, 2,1) = fon (y, 1)), (46) In the simulation, the design parametel$ = 1000,
Denote N; = N, = 100 are chosen by trial and error as explained
) before. The unknown inpuf is assumed to be a colored
G (Y, 1) = (E’m”(y’t)) , (47) noise generated by a third order linear complex system. The
fhmn (Y1) realization of the unknown inputs is a second order system.
where () denotes the Fourier transformed variable, and''€ Measurement noise is white noise with covariance

(.)mn denotes the wavenumber pait, ), Loy,

The evolution of the flow in Fourier domain can be written First, we show thg comparison .Of the input autogorrelg—
as: tions we recover with the actual input autocorrelations in

complex plane. Since there are two inputs, thus, the cross-
correlation function between input 1 and input 2 are also
included in the input autocorrelations.

Before we apply the ASKF for the state estimation, we
compare the statistics of the states and outputs of thersyste
perturbed by the unknown inputs we construct and the actual

d. . .

dt (48)
()

where

(49)
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Fig. 7. Comparison of state autocorrelations

system. Figll6 shows the comparison between the estimatacturacy.
output autocorrelations and the actual autocorrelatidhs. The comparison of the state estimation using the ASKF is
comparison of the state autocorrelations is shown in(Fig$§hown in Fig[ZIll. We randomly choose two states and show
for some randomly chosen states. the comparison of the acutal state with the estimated states
It can be seen that the statistics of the unknown inputs cdrhe state estimation error ai3é¢ bounds are shown. Since
be recovered almost perfectly, and given the system pedurbthe error is complex valued, only the absolute value of the
by the unknown inputs innovations model we constructedrror is shown.
the statistics of the outputs and the states are almost theThe state estimation using ROM is shown in Hig] 12. It
same as well. can be seen that the kalman filter using the ROM perform
Next, we compare the performance of the unknown inputsell, and hence, for a large scale system, the computational
constructed using the ROM with the full order system. Theomplexity of ASKF can be reduced by using the BPOD.
full order system has 30 states, and the ROM has 15 states.
The relative error of the input autocorrelation is shown in
Fig. 8, and the comparison of the relative error of output In this paper, we have proposed a balanced unknown
autocorrelations is shown in Hig.9. input realization method for the state estimation of system
The comparison of the relative error of state autocorrelavith unknown stochastic inputs. The unknown inputs are
tions is shown in Figl_10. assumed to be a wide sense stationary process with a rational
We can see that the statistics reconstructed by using thewer spectrum, and no other prior information about the
ROM is not as accurate as using the full order systenunknown inputs needs to be known. We recover the unknown
however, the relative error is on the same scale, and henagputs statistics from the output data using a least-sguare
the computational cost is reduced without losing too mucprocedure, and then construct a balanced minimal reaizati

VI. CONCLUSION
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of the unknown inputs using an AR model and the ERA + Z Z 6 X || Ryu(m +1i— j)[| x 6 +

technique. The recovered innovations model is used foe stat i=M+1j=M+1

estimation, and the standard Kalman filter is applied on M

the augmented system. The next step in this process would + »_ > llhilll[Ruu(m +i— )| x 6 < ksd, (57)
require us to consider more complex realistic problems i=1j=M+1

in fluid flow application, and cases where the unknowiyherek; is some constant.

numbers of inputs/ outputs are large, and also cases where o ] v
the locations of the inputs are unknown. DenoteC,, as the “true” coefficient matrix and*yu as

the coefficient matrix using/ Markov papameters, we need
to solve the least squares problem:

APPENDIX| veqRy,) = C)lvedR)). (58)
PROOF OFPROPOSITION3 , . ) .
whereRM is the input autocorrelation we recover from using

U

. . . M Markov parameters, and vige,, ) is defined in [(IB).
Proof: The output autocorrelation function using the VP vee,,) | I in[(1B)

first M Markov parameters is: Since ||[veq Ry, (m)) — vedRM (m))|l2 = ||Ryy(m) —
A M M Ry (m)|l = [[Ai(m)|| < k30 , we have veR,,(m)) =
RY(m) =" " hiRuu(m +i — j)h}. (55) VleC(ﬁ%(m)) + Ay(m), where||Aq(m)]2 < ks, or equiv-

i1 j=1 alently

Comparing with [(b), the output autocorrelation errors veq Ry,) = vec(f%%) + Ao, (59)



Consider[(IB), ved?,,) and veQR%) can be written as: wherek; is some constant. Following the same precedure as

. in Propositior B, we can prove:
veqR,,) = Cyuved Ruy). P P

veo(R% (m)) = CyMuveqRuu)a (60) |A(m) = Ruu(m) — Ruu(m)H < kd. (69)

Substitute into[(59), we have: u

CyuVedRyy) — CHveqRuy) = As. (61) APPENDIX IV

Since(CyMu)—l exists, we have: BRIEF DESCRIPTION OFERA AND BPOD

The Eigensystem Realization Algorithm is summarized as

vec (Ryu) — vedRL) = (CJl) ' Ag, 62  iows.
which means: Run inpulse response simulations of the linear sysiém (1),
and collect the snapshots of the outpugsin the followin
Ve Run) — ved RM )15 < ks, 63 otton P Pk g
where k), is some constant. Thus, we halfé\,;(m)|| < Y, = CB.Yy = CAB, - .Y, = CA* 1B, (70)

kard, wherek,, is some constant. [ |
whereC A* B are known as Markov parameters. Construct a
APPENDIXII Hankel matrixH (k)
PROOF OFPROPOSITIONZ

Yk Yir1r - Yieygoa
Proof: can be seperated into two parts: Yit1 Yiyo - Yits
@ 0o oo P P H(k-1)= . . _ (71)
ved Ry, (m)) = Z Z hy ® hived Ruu(m +i — j)) Yk+. -1 Yk.+ o Yitat+p—2
. N N———— « « «
=1 j=1

It <N: Solve the singular value decomposition (SVD) problem of

+3°5 "y @ hived Ryu(m +i — j)). (64) HO) 1€
=1 j=1 [mti—j|>N; H(O) = RYS*. (72)

Thus, it can be written as: DenoteX,, as the firsta non-zero singular value af, and
R,, S, as the matrices formed by the firstcolumns ofR

> _ PN
veq Ry, (m)) = vedR,, (m)) + Aa(m), (65 and s respectively. Then the realization for the ERA is:
where A=S-V2R H(1)S, 2712,
oo oo B . . 5 e 1/2 ax
A4 (m)||2 = || Zzhj ® hived Ruy(m + i — 5))|2 B = first p columns of%./<S»
i=1 j=1 m C = first ¢ rows of R, x1/2 (73)

oo

s - The Balanced POD procedure using the impulse response
< Z Z 1 @ hill2 6 < kad, (66) o the primal and adjoint system and is summarized below.
=17

=1 Consider the linear systenl](1), and denafe =
wherek, is some constanf.A|» denotes the induced 2-norm by, by, - -+ ,b,], C = [c1,¢2,--+ ,¢4)*. We collect the im-
of matrix A. Following the same procedure as in Propositiopulse response of the primal system by using j =
[3, it can be proved thatA y (m)|| < kxd, whereky issome  1,2,-.. p, as initial conditions for the simulation of the
constant. B system,
APPENDIX I Tk = Azp-1, (74)
PROOF OFPROPOSITIONS] If we take o snapshots across the trajectories at time
Proof: Denote output autocorrelation if{12) asfi:?2,- - la, resulting aniV x po- matrix

Ry, (m), comparing[(IR) with[{9), the output autocorrelation y — [ (¢,), -+, zy(ta), - - p(th), - ap(ta)],  (75)
error resulting from assumption A5 and A6 is:
R . wherex;(t;) is the state snapshat, with b; as the initial
vedRy,) — ved Rty ) = Az + condition.
M M Similarly, we use the transposed rows of the output matrix
> hj @ hivedRuu(m +i—j)) < Ay + Ay (67) ¢t, as the initial conditions for the simulations of the adfoin
i=1j=1 lmHjiji systemA*,

Thus A — A*Zkfl, (76)

Ived Ry, ) — ved RS, )2 < [ Az]l2 + [ A4l < k56, (68) and take 3 snapshots across trajectories, leading to the



adjoint snapshot ensemblg,

Y = [Zl(tl),"'

’Zl(t,@)"" 7Zp(t1)7"' azp(t,@)]’ (77)

where z;(tx) is the state snapshet, with ¢ as the initial
condition.
The Hankel matrixH is constructed as:

H=Y"X. (78)
Then we solve the SVD problem of the matiik:
H=Y"X=UXV". (79)

Assume thatZ; consists of the first non-zero singular

values ofX, and (Uy,V;) are the corresponding left and
right singular vectors fronfU, V'), then the POD projection
[20

matrices can be defined as:

T, = XW3[ 7,

T, = YU, 2, (80)

[14]

[15]

[16]

[17]

(18]

[19]

[21]

and the reduced order model constructed using BPOR!
method is:

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

El

[20]

[11]

[12]

[13]

A, = T} AT,
B, =1T;B
C, = CT,
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