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An autoregressive (AR) model based stochastic unknown input realization
and filtering technique

Dan Yu, Suman Chakravorty

Abstract— This paper studies the state estimation problem
of linear discrete-time systems with stochastic unknown inputs.
The unknown input is a wide-sense stationary process while
no other prior informaton needs to be known. We propose an
autoregressive (AR) model based unknown input realization
technique which allows us to recover the input statistics from
the output data by solving an appropriate least squares prob-
lem, then fit an AR model to the recovered input statistics and
construct an innovations model of the unknown inputs using
the eigensystem realization algorithm (ERA). An augmented
state system is constructed and the standard Kalman filter is
applied for state estimation. A reduced order model (ROM)
filter is also introduced to reduce the computational cost ofthe
Kalman filter. Two numerical examples are given to illustrate
the procedure.

I. I NTRODUCTION

In this paper, we consider the state estimation problem
for systems with unknown stochastic inputs. The main con-
tribution of our work is that when no prior information
of the unknown inputs is known, we recover the statistics
of the unknown inputs from the measurements, and then
construct an innovations model of the unknown inputs from
the recovered statistics such that the standard Kalman filter
can be applied for state estimation. The innovations model
is constructed by fitting an autoregressive (AR) model to
the recovered input correlation data from which a state
space model is constructed using the balanced realization
technique. The method is tested on stochastically perturbed
heat and laminar flow problems.

The problem of state estimation of systems with unknown
inputs has received considerable attention over the past
few decades. The unknown input observer (UIO) has been
well established for deterministic systems [1]–[3]. Various
methods of building full-order or reduced-order observers
have been developed, such as [4]–[6]. Recently, sliding mode
observers have been proposed for systems with unknown
inputs [7]. The design parameters and matrices need to
be well chosen to satisfy certain conditions in order for
the observers to perform well. For systems without the
“observer matching” condition being satisfied, a high-gain
approach is proposed [8]. The high-gain observers are used
as approximate differentiators to obtain the estimates of the
auxiliary outputs. In the presence of measurement noise, the
high-gain observer amplifies the noise, and extra care needs
to be taken when designing the gain matrix.
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For stochastic systems, the problem of state estimation
is known as unknown input filtering (UIF), and many UIF
approaches are based on the Kalman filter [9]–[11]. When the
dynamics of the unknown inputs is available, for example, if
it can be assumed to be a wide-sense stationary process with
known mean and covariance, one common approach called
Augmented State Kalman Filter (ASKF) is used, where the
states are augmented with the unknown inputs [12]. To
reduce the computational complexity of ASKF, optimal two-
stage and three-stage Kalman filters have been developed to
decouple the augmented filter into two parallel reduced-order
filters by applying a U-V transformation [13]–[15]. When no
prior information about the unknown input is available, an
unbiased minimum-variance (UMV) filtering technique has
been developed [16], [17]. The problem is transformed into
finding a gain matrix such that the trace of the estimation
error matrix is minimized. Certain algebraic constraints must
be satisfied for the unbiased estimator to exist. In both the
approaches above, the process noise is assumed to be white
noise with known covariance.

In practice, there are many applications where the un-
known inputs can be modeled as a stochastic process. For
example, the state estimation of perturbed laminar flows is
considered in [18]. It shows that the external disturbances
(as well as the sensor noise and initial conditions) can be
modeled as unknown stochastic inputs which perturb the
linearized Navier-Stoke equations. Thus, the state estimation
problem of such system is transformed into the unknown
input filtering problem with stochastic unknown inputs. Also,
our work can be applied to identify the statistics of colored
process noise. There is some research that considers the
Kalman filtering with unknown noise covariances [19], [20].
The process noise is assumed to be white noise with un-
known covariance, while in our approach, the process noise
can be colored in time as well. There are also applications
of our technique in signal processing, such as the wideband
power spectrum estimation [21], where the problem is to
recover the unknown power spectrum of a wide-sense sta-
tionary signal from the obtained sub-Nyquist rate samples.

In this paper, we address the state estimation problem
of systems with stochastic unknown inputs. The unknown
inputs are assumed to be wide sense stationary, while no
other information about the unknown inputs is known. We
propose a new unknown input filtering approach based on
system realization techniques. Instead of constructing the
gain matrix which needs to satisfy certain constraints, we
apply the standard Kalman filtering using the following pro-
cedure: 1) recover the statistics of the unknown inputs from
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the measurements by solving an appropriate least squares
problem, 2) find a spectral factorization of unknown input
process by fitting an autoregressive (AR) model, 3) construct
an innovations model of the unknown inputs via the eigen-
system realization algorithm (ERA) [22] to the recovered
input correlation data, and 4) apply the Augmented State
Kalman Filter for state estimation. Different from existing
methods, we construct a stochastic unknown input model
from sensor data, which can be colored in time. To reduce
the computational cost of the ASKF, we apply the Balanced
Proper Orthogonal Decomposition (BPOD) technique [23] to
construct a reduced order model (ROM) for filtering.

The main advantage of the AR model based algorithm
we propose is that the performance of the algorithm is
better than the ASKF, OTSKF and UMV algorithms when
the unknown inputs can be treated as WSS processes with
rational PSDs. The AR model based algorithm we propose
constructs one particular realization of the true unknown
input model, and the performance of the AR model based
algorithm is the same as OTSKF when the assumed unknown
input model used in OTSKF is accurate, and is better than
UMV algorithm in the sense that the error covariances are
smaller. With the increase of the sensor noise, we have seen
that the performance of AR model based algorithm gets much
better than the UMV algorithm.

The paper is organized as follows. In Section II, the
problem is formulated, and general assumptions are made
about the system and the unknown inputs. In Section III, the
AR based unknown input realization approach is proposed.
The unknown input statistics are recovered from the mea-
surements, then a linear model is constructed using an AR
model and the ERA is used to generate a balanced minimal
realization of the unknown inputs. After an innovations
model of the unknown inputs is constructed, the ASKF is
applied for state estimation in Section IV. Also, a ROM
constructed using the BPOD is introduced to reduce the
computational cost of Kalman filter. Section V presents two
numerical examples that utilize the proposed technique.

II. PROBLEM FORMULATION

Consider a complex valued linear time-invariant discrete
time system:

xk = Axk−1 +Buk−1,

yk = Cxk + vk, (1)

wherexk ∈ Cn, yk ∈ Cq, vk ∈ Cq, uk ∈ Cp are the state
vector, the measurement vector, the measurement white noise
with known covariance, and the unknown stochastic inputs
respectively. The processuk is used to model the presence
of the external disturbances, process noise, and unmodelled
terms. Here,A ∈ C

n×n, B ∈ C
n×p, C ∈ C

q×n are known.
Denote hi = CAi−1B, i = 1, 2, · · · as the Markov

parameters of system (1). We usex∗ to denote the complex
conjugate transpose ofx, and xT to denote the transpose
of x. Denoteh̄i as the matrixhi with complex conjugated
entries, andh∗

i = (h̄i)
T . ‖A‖ = (

∑n
i,j=1 |ai,j |

2)1/2 denotes

the Frobenius norm of matrixA, and‖x‖2 = (|x1|
2+|x2|

2+
· · ·+ |xn|

2)1/2 denotes the Euclidean norm of vectorx.
The following assumptions are made about system (1):

• A1. A is a stable matrix, and(A,C) is detectable.
• A2. rank(B) = p, rank(C) = q, p ≤ q and rank(CAB)

= rank (B) = p.
• A3. uk andvk are uncorrelated.
• A4. We further assume that the unknown inputuk can

be treated as a WSS process:

ξk = Aeξk−1 +Beνk−1, uk = Ceξk + µk, (2)

whereνk, µk are uncorrelated white noise processes.

Remark 1:A2 is a weaker assumption than the so-called
“observer matching” condition used in unknown input ob-
server design. The observer matching condition requires rank
(CB) = rank (B) = p, which in practice, may be too
restrictive. A2 implies that if there arep inputs, then there
should be at leastp controllable and observable modes. A4
implies thatuk is a WSS process with a rational power
spectrum.

In this paper, we consider the state estimation problem
when the system (2), i.e.,(Ae, Be, Ce) are unknown. Given
the output datayk, we want to construct an innovations
model for the unknown stochastic inputuk, such that the
output statistics of the innovations model and system (2) are
the same. Given such a realization of the unknown input,
we apply the standard Kalman filter for state estimation,
augmented with the unknown input states.

III. AR BASED UNKNOWN INPUT REALIZATION

TECHNIQUE

In this section, we propose an AR based unknown input re-
alization technique which can construct an innovations model
of the unknown inputs such that the ASKF can be applied for
state estimation. First, a least squares problem is formulated
based on the relationship between the inputs and outputs
to recover the statistics of the unknown inputs. Then an AR
model is constructed using the recovered input statistics,and
a balanced realization model is then constructed using the
ERA.

A. Extraction of Input Autocorrelations via a Least Squares
Problem

Consider system (1) with zero initial conditions, the output
yk can be written as:

yk =

∞∑

i=1

hiuk−i + vk. (3)

For a linear time-invariant (LTI) system, under assumption
A1 thatA is stable, the output{yk} is a wide-sense station-
ary process when{uk} is wide-sense stationary. From the
definition of the autocorrelation function of a WSS process,



the output autocorrelation can be written as:

Ryy(m) = E[yky
∗
k+m]

=

∞∑

i=1

∞∑

j=1

hiuk−iu
∗
k+m−jh

∗
j +Rvv(m)

=

∞∑

i=1

∞∑

j=1

hiRuu(m+ i− j)h∗
j +Rvv(m), (4)

wherem = 0,±1,±2, · · · is the time-lag betweenyk and
yk+m. Here, assumption A3 is used.

Notice thatRyy(−m) 6= Ryy(m) when{yk} is a sequence
of complex valued vectors. We denotêRyy(m) = Ryy(m)−
Rvv(m), whereRvv(m) = Ω for m = 0, andRvv(m) =
0, otherwise. Therefore, the relationship between input and
output autocorrelation function is given by:

R̂yy(m) =

∞∑

i=1

∞∑

j=1

hiRuu(m+ i− j)h∗
j . (5)

For multiple input multiple output (MIMO) systems,hi,
R̂yy(m), Ruu(m) are matrices. To solve for the unknown in-
put autocorrelationsRuu(m), first we need to use a theorem
from linear matrix equations [24], [25].

Theorem 1:Consider the matrix equation

AXB = C, (6)

where A, B, C, X are all matrices. IfA ∈ Cm×n =
(a1, a2, · · · , an), whereai are the columns ofA, then define

vec(A) ∈ Cmn×1 as: vec(A) =








a1
a2
...
an








.

The matrix equation (6) can be transformed into one vector
equation:

(BT ⊗A)vec(X) = vec(C), (7)

whereBT ⊗ A is the Kronecker product ofBT andA. If
A is an m × n matrix andB is a p × q matrix, then the
Kronecker productA⊗B is themp× nq block matrix:

A⊗B =






a11B a12B · · · a1nB
...

... · · ·
...

am1B am2B · · · amnB




 . (8)

By applying Theorem 1, (5) can be written as:

vec(R̂yy(m))
︸ ︷︷ ︸

∈Rq2×1

=
∞∑

i=1

∞∑

j=1

h̄j ⊗ hi
︸ ︷︷ ︸

∈Rq2×p2

vec(Ruu(m+ i− j))
︸ ︷︷ ︸

∈Rp2×1

, (9)

where h̄i denotes the matrixhi with complex conjugated
entries, andh∗

i = (h̄i)
T .

Now, we estimate the unknown input autocorrelations by
the following procedure.

1) Choose design parameterM : Under assumption A1,
i.e., the system is stable, the Markov parameters of the
system (1) have the following property:‖hi‖ → 0 asi → ∞.

We choose a design parameterM , such that (9) can be

written as:

vec(R̂yy(m)) =

M∑

i=1

M∑

j=1

h̄j ⊗ hivec(Ruu(m+ i− j)). (10)

whereM varies with different systems and can be chosen as
large as desired.

2) Choose design parametersNo, Ni: Under assumption
A1 and A4, ‖Ruu(m)‖ → 0, and ‖R̂yy(m)‖ → 0 as
m → ∞. As a standard method when computing a power
spectrum from an autocorrelation function, we choose design
parametersNi andNo, such that the input autocorrelations
are calculated when|m| ≤ Ni, and the output autocorrela-
tions are calculated when|m| ≤ No. The numbersNo and
Ni depend on the dynamic system and unknown inputs, and
can be chosen as large as required. We have the following
proposition.

Proposition 1: The relationNi ≤ No holds, which im-
plies that all significant input autocorrelations can be recov-
ered from the output autocorrelations.

Proof: The support ofR̂yy is limited to (−No, No),
thus, we have:̂Ryy(No + 1) = 0. From (9),

vec(R̂yy(No + 1)) =
∞∑

i=1

h̄i ⊗ hivec(Ruu(No + 1))

+

∞∑

i=2

h̄i−1 ⊗ hivec(Ruu(No)) + · · · . (11)

If Ni > No, which meansRuu(No+1) 6= 0, then it follows
that Ryy(No + 1) is also not negligible, which contradicts
the assumption, and hence, as a consequence,Ni ≤ No.

Thus, the following equation is used for computation of
the unknown input autocorrelations.

vec(R̂yy(m)) =

M∑

i=1

M∑

j=1

h̄j ⊗ hivec(Ruu(m+ i− j))
︸ ︷︷ ︸

|m+i−j|≤Ni

,

|m| ≤ No (12)

3) Solve the least squares problem:We collect 2No +
1 output autocorrelations, and from the above assumptions,
there are2Ni + 1 unknown input autocorrelations:















vec(R̂yy(−No))

vec(R̂yy(−No + 1))
...

vec(R̂yy(0))

vecR̂yy(1))
...

vec(R̂yy(No))
















︸ ︷︷ ︸

vec(R̂yy)

= Cyu















vec(Ruu(−Ni))
vec(Ruu(−Ni + 1))

...
vec(Ruu(0))
vec(Ruu(1))

...
vec(Ruu(Ni))















︸ ︷︷ ︸

vec(Ruu)

, (13)

whereCyu is the coefficient matrix and can be calculated
from (12).

Under assumption A1, A2 and A4, we have the following
proposition.

Proposition 2: Equation (13) has a unique least squares



solution R̂uu(m),m = ±1,±2, · · · ,±Ni .
Proof: We partition the matrixCyu into three parts as

Cyu =





Ct

Cm

Cb



 , whereCm contains theq2(No − Ni) +

1, · · · , q2(No +Ni + 1) rows ofCyu and can be expressed
as:

Cm =









































M
∑

j=1

h̄j ⊗ hj

M−1
∑

j=1

h̄j ⊗ hj+1 · · · · · ·

M−1
∑

j=1

h̄j+1 ⊗ hj

M
∑

j=1

h̄j ⊗ hj · · · · · ·

· · · · · ·

.
.
. · · ·

· · · · · · · · ·

M
∑

j=1

h̄j ⊗ hj









































. (14)

In the following, we prove thatCm ∈ Cq2(2Ni+1)×p2(2Ni+1)

has full column rankp2(2Ni + 1) by induction.
Let Ni = 0, then

Cm(0) =

M∑

j=1

h̄j ⊗ hj = (CVco ⊗ CVco)(I + Λco ⊗ Λco

+ · · ·+ ΛM−1
co ⊗ ΛM−1

co )(U ′
coB ⊗ U ′

coB), (15)

whereΛco are the controllable and observable eigenvalues
of A, and (Vco, Uco) are the corresponding right and left
eigenvectors. Under the assumption A2, if rank(CAB) = p,
and sinceCAB = CVcoΛcoU

′
coB, which implies that rank

(Cm(0)) = p2.
If rank Cm(Ni − 1) has rankp2(2Ni − 1), then consider

Cm(Ni):

Cm(Ni) =





Cm(0) C12 C13

C21 Cm(Ni − 1) C23

C31 C32 Cm(0)



 , (16)

whereC12, C13, C21, C23, C31, C32 are some matrices, and
it can be proved thatCm(Ni) has p2 + p2(2Ni − 1) +
p2 = p2(2Ni + 1) independent columns, and hence, rank
(Cm(Ni)) = p2(2Ni + 1).

Thus, by induction,Cm has full column rank, and hence,
Cyu has full column rank. Sinceq ≥ p, it is an overdeter-
mined system, so there exists a unique solution to the least
squares problem.

Remark 2:The size ofCyu is q2(2No+1)×p2(2Ni+1)
and it would be large whenp andq increase, and hence, large
scale least squares problem needs to be solved for systems
with large number of inputs/outputs. For example, a modified
conjugate gradients method [26] could be used as follows.

The least squares problem need to be solved is:

vec(R̂yy) = Cyuvec(Ruu), (17)

and multiplyC∗
yu on both sides:

C∗
yuvec(R̂yy) = C∗

yuCyuvec(Ruu). (18)

If we denoteLs = C∗
yuvec(R̂yy), x̄ = vec(Ruu), andCs =

C∗
yuCyu, thenCs = C∗

s , and the problem is equivalent to
solve the least squares problem forx̄:

Csx̄ = Ls, (19)

Algorithm 1 Conjugate gradient algorithm
1) For a least squares problemCsx̄ = Ls, whereCs =

C∗
s , x̄ is unknown.

2) Start with a randomly initial solution̄x0.
3) r0 = Ls − Csx̄0, p0 = r0.
4) for k = 0, repeat
5) αk =

r∗krk
p∗
k
Cspk

,
x̄k+1 = x̄k + αkpk,
rk+1 = rk − αkCspk,
if rk+1 is sufficient small then exit loop.
βk =

r∗k+1rk+1

r∗
k
rk

,
pk+1 = rk+1 + βkpk,
k = k + 1,
end repeat.

6) The optimal estimation isxk+1.

and a conjugate gradient method to solve this problem is
summarized in Algorithm 1.

DenoteRuu(m) as the “true” input autocorrelations, and
∆(m) = Ruu(m) − R̂uu(m) as the error of the input
autocorrelations we extract,∆(m) results from two design
parameters: the choice ofM andNi. We analyze the errors
seperately, in the following.

Proposition 3: Denote RM
uu(m) as the input autocorre-

lations we extract by usingM Markov parameters of the
dynamic system. We assume that‖hi‖ ≤ δ, i > M , where
δ is small enough. The error of input autocorrelations is:
‖∆M (m)‖ ≤ kMδ, wherekM is some constant.

The Perturbation theory [27] is used to prove the above
result, and the proof is shown in Appendix I.

Remark 3:Error analysis in the Fourier domain.

The power spetral density is defined as:

Suu(ω) =

∞∑

k=−∞

Ruu(k)e
−jkω , (20)

Syy(ω) =

∞∑

k=−∞

R̂yy(k)e
−jkω , (21)

Thus, by substituting (5), the relationship between the output
power spectral density and input power spectral density is:

Syy(ω) =
∞∑

k=−∞

(
∞∑

i=1

∞∑

t=1

hiRuu(k + i− t)h∗
t )e

−jkω

=

∞∑

k=−∞

(

M∑

i=1

M∑

t=1

hiRuu(k + i− t)h∗
t )e

−jkω +∆SM (ω)

= SM
yy(ω) + ∆SM (ω), (22)



where

∆SM (ω) =
∞∑

k=−∞

(R̂yy(k)− R̂M
yy(k))e

−jkω =

∞∑

k=−∞

hM+1Ruu(k)h
∗
M+1e

−jkω

+
∞∑

k=−∞

hM+1Ruu(k)h
∗
1e

−j(k−M)ω + · · ·

= hM+1Suu(ω)h
∗
M+1 + hM+1Suu(ω)e

jMωh∗
1 + · · · . (23)

Thus,‖∆SM (ω)‖ ≤ k1δ, wherek1 is some constant. Hence,
the truncation error by usingM Markov parameters can be
seen to be a small perturbation in the frequency domain.

Proposition 4: DenoteRN
uu(m) as the input autocorrela-

tions we extract under assumption‖Ruu(m)‖ ≤ δ, |m| > Ni,
and‖R̂yy(m)‖ ≤ δ, |m| > No whereδ is small enough. The
errors resulting from this assumption is‖∆N (m)‖ ≤ kNδ,
wherekN is some constant.

The proof is shown in Appendix II.
Remark 4:Error analysis in frequency domain:

Syy(ω) =

∞∑

k=−∞

(

∞∑

i=1

∞∑

t=1

hi Ruu(k + i− t)
︸ ︷︷ ︸

|k+i−t|≤Ni

h∗
t )e

−jkω

+

∞∑

k=−∞

(

∞∑

i=1

∞∑

t=1

hi Ruu(k + i− t)
︸ ︷︷ ︸

|k+i−t|>Ni

h∗
t )e

−jkω

= SN
yy(ω) + ∆SN (ω), (24)

where

‖∆SN (ω)‖ ≤

∞∑

k=−∞

(

∞∑

i=1

∞∑

t=1

‖hi‖ × δ × ‖h∗
t ‖)e

−jkω‖ ≤ k2δ,

wherek2 is some constant.
Under the assumptions A1-A4, the following proposition

considers the total errors of input autocorrelations we re-
cover.

Proposition 5: Denote R̂uu(m) as the input autocorre-
lation function we estimate from the output autocorrela-
tions, and let∆(m) = Ruu(m) − R̂uu(m) be the error
between the estimated input autocorrelation and the “true”
input autocorrelation. We assume that‖hi‖ ≤ δ, i > M ,
‖Ruu(m)‖ ≤ δ, |m| > Ni, and ‖R̂yy(m)‖ ≤ δ, |m| > No

whereδ is small enough. Then‖∆(m)‖ ≤ kδ, wherek is
some constant.

Proposition 3 and 4 are used for the proof, and the proof
is shown in Appendix III. The results above show that ifM ,
Ni, No are chosen large enough, the errors in estimating the
input autocorrelations can be made arbitrarily small.

B. Construction of the AR Based Innovations Model

After we extract the input autocorrelations from the output
autocorrelations, we want to construct a system which will
generate the same statistics as the ones we recovered in
Section III-A. If assumption A4 is satisfied, i.e.,{uk} is WSS
with a rational power spectrum, the power spectrum ofuk

is continuous, and can be modelled as the output of a casual
linear time invariant system driven by white noise [28]. Such
system can be constructed by using an autoregressive moving
average (ARMA) model, and in practice, a MA model can
often be approximated by a high-order AR model, and thus,
with enough coefficients, any stationary process can be well
approximated by using either AR or MA models (Chapter 9,
[29]), and in this paper, we use an AR model to fit the data.
In an AR model, the time series can be expressed as a linear
function of its past values, i.e.,

u(k) =

Mi∑

i=1

aiu(k − i) + ǫ(k), (25)

where ǫ(k) is white noise with distributionN(0,Ωr), Mi

is the order of the AR model, andai, i = 1, 2, · · · ,Mi are
the coefficient matrices. For a vector autoregressive model
with complex values, the Yule-Walker equation [30] which
is used to solve for the coefficients needs to be modified.
The modified Yule-Walker equation can be written as:

(
Ruu(−1) Ruu(−2) · · · Ruu(−Mi)

)
=







a∗1
a∗2
· · ·
a∗Mi







∗

×








Ruu(0) Ruu(−1) · · · Ruu(1 −Mi)
Ruu(1) Ruu(0) · · · Ruu(2 −Mi)

...
...

...
...

Ruu(Mi − 1) Ruu(Mi − 2) · · · Ruu(0)








. (26)

Equation (26) is used to solve for the coefficient matrices
ai, i = 1, 2, · · · ,Mi. The covariance of the residual white
noiseǫ(k) can be solved using the following equation:

Rǫǫ(m) = Ruu(m)−

Mi∑

i=1

Mi∑

j=1

aiRuu(m+ i− j)a∗j , (27)

whereΩr = Rǫǫ(0). The balanced minimal realization for
the AR model (25) can be expressed as:

ηk = Anηk−1 +Bnuk−1,

uk = Cnηk + ǫk, (28)

where(An, Bn, Cn) are solved by using the ERA technique
[22] with ai, i = 1, · · · ,Mi as the Markov parameters of the
system. A brief description of the ERA is given in Appendix
IV.

Equation (28) is equivalent to:

ηk = (An +BnCn)ηk−1 +Bnǫk−1,

uk = Cnηk + ǫk, (29)

whereǫk is white noise with covarianceΩr. We make the
following remark.

Remark 5:We need to find a stableAn+BnCn in (29). In
practice, we calculate the Markov parameters of system (29)
usingai, i = 1, · · · ,Mi first, and then use the ERA for the
state space realization. If the Markov parameters of system
(29) are âi, i = 1, · · · ,Mi, then â1 = CnBn = a1, â2 =



Algorithm 2 AR model based unknown input realization
technique

1) Choose a finite numberNo, compute output autocor-
relation functionRyy(m) by using measurementsyk,
|m| ≤ No.

2) Choose a finite numberM , construct the coefficient
matrix Cyu from (12).

3) Choose a finite numberNi, solve the least squares
problem (13) for unknown input autocorrelation func-
tion Ruu(m), |m| ≤ Ni.

4) Construct an AR model for the unknown inputu(k) =
∑Mi

i=1 aiu(k − i) + ǫ(k), find the coefficient matrices
ai, i = 1, 2, · · ·Mi by solving the modified Yule-
Walker equation (26).

5) Find the covarianceΩr of ǫ(k) by solving (27).
6) Construct the state space representation (28) for the

AR model using ERA.
7) Find a unique lower triangular matrixP such that

Ωr = PP ∗, and construct an innovations model as
in (31).

Cn(An + BnCn)Bn = a2 + a1a1, · · · . As we explained
before, for a WSS process with rational power spectrum,
from [28] , we can always find a stable realization(An +
BnCn, Bn, Cn).

By using the Cholesky Decomposition, we can find a
unique lower triangular matrixP such that:

Ωr = PP ∗. (30)

If wk is white noise with distributionN(0, 1), thenPwk

would be white noise with distributionN(0,Ωr). Thus, the
innovation model we construct that has the same statistics as
the unknown input system (2) is:

ηk = (An +BnCn)ηk−1 +BnPwk−1,

uk = Cnηk + Pwk, (31)

wherewk is a randomly white noise with standard normal
distribution.

Under assumption A4, we have the following proposition.

Proposition 6: DenoteR̂uu(m) as the input autocorrela-
tions recovered from the measurements, thenR̂uu(m) can
be reconstructed exactly by using the innovations model
(31), i.e., R̃uu(m) = R̂uu(m), whereR̃uu(m) is the input
autocorrelations of the realization of system (31).

From Proposition 5 and 6, under the same assumptions,
the following corollary immediately follows.

Corollary 1: Denote uk as the actual unknown input
process, andRuu(m) as the actual input autocorrelation
function. Then‖R̃uu(m) − Ruu(m)‖ ≤ kaδ, whereka is
some constant, whenδ is small enough. System (31) is an
innovations model for the unknown inputuk.

The procedure of constructing the innovations model is
summarized in Algorithm 2.

Remark 6:For real valued system, we can save the com-

putation by using the properities of autocorrelation functions:

Ruiui
(−m) = Ruiui

(m),

Ruiuj
(−m) = Rujui

(m), i 6= j (32)

Thus, we only need to collectNo+1 output autocorrelations
and havep2(No + 1) equations withq2(Ni + 1) unknowns
in (13).

Remark 7:A generalization to the joint state and un-
known input estimation.

When the unknown inputs affect both the states and
outputs, i.e.

xk+1 = Axk +Buk,

yk = Cxk +Duk + vk, (33)

whereuk is the stochastic unknown input,vk is the mea-
surement noise. The solutionyk can be written as:

yk =

M∑

i=1

hiuk−i +Duk + vk, (34)

and the relationship between output autocorrelations and
input autocorrelations is:

Ryy(m) =

M∑

i=1

M∑

j=1

hiRuu(m+ i− j)h∗
j +Rvv(m) +

N∑

i=1

hiRuu(m+ i)D∗ +

N∑

i=1

DRuu(m− j)h∗
j +DRuu(m)D∗, (35)

which can also be formulated as a least squares problem (13),
and an unknown input system may be realized following the
same procedure as in Algorithm 2.

IV. A UGMENTED STATE KALMAN FILTER AND MODEL

REDUCTION

After we construct an innovations model for the unknown
inputs, we apply the standard Kalman filter on the augmented
system with states augmented by the unknown input states.
A ROM based filter is also constructed using the BPOD for
reducing the computational cost of the resulting filter.

A. Augmented State Kalman Filter

The full order system can be represented by augmenting
the states of the original system as:
(
xk+1

ηk+1

)

=

(
A BCn

0 An +BnCn

)(
xk

ηk

)

+

(
BP
BnP

)

wk,

yk =
(
C 0

)
(
xk

ηk

)

+ vk, (36)

wherewk is white noise with standard normal distribution.
vk is white noise with known covariance. Thus, we may
now use the standard kalman filter for state estimation of
the augmented system (36).

Remark 8:The augmented state system (36) is stable and
detectable. The eigenvalues of the augmented system (36)
are the eigenvalues ofA and the eigenvalues ofAn+BnCn.
From assumption A1,A is stable, from Remark 5,An +



BnCn is stable, and hence, the augmented system (36) is
stable. From assumption A1, system (1) is detectable, and
from the asymptotic stability of matrixAn + BnCn, (29)
is also detectable, therefore, all the unobservable modes in
(36) are asymptotically stable, which implies that (36) is
detectable. Thus, we may now use the standard Kalman filter
for state estimation of the augmented system (36).

B. Unknown Input Estimation Using Model Reduction

For large scale systems, we can use model reduction tech-
nique such as Balanced Proper Orthogonal Decomposition
(BPOD) to construct a reduced order model (ROM) first, and
then extract the input autocorrelations from the reduced order
model. We apply the Kalman filter to the ROM to reduce the
computational cost. A brief description of BPOD is given in
Appendix IV. For a large scale system with a large number
of inputs and outputs, we can also use the randomized proper
orthogonal decomposition (RPOD) technique [31] for model
reduction.

The ROM system is extracted from the full order system
using the BPOD and is denoted by:

xk = Arxk−1 +Bruk−1,

yk = Crxk + vk. (37)

Let ĥi = CrA
i−1
r Br, i = 1, 2, · · · ,M be the Markov

parameters of the ROM. Then the relationship between input
autocorrelations and output autocorrelations can be written
as:

R̂yy(m) =

M∑

i=1

M∑

j=1

ĥiRuu(m+ i− j)ĥ∗
j . (38)

Following the same procedure as in Algorithm 2, we can
now recover the input autocorrelations, and construct an
innovations model which can generate the same statistics as
the unknown inputs. The advantage of using model reduction
is that for a large scale system, computingĥi = CrA

i−1
r Br

is much faster than computinghi = CAi−1B because of the
reduction in the size ofA. Also, the order of the ROM is
much smaller than the order of the full order system, and
thus the computational cost of using the Kalman filter is
much reduced. Hence, even with the augmented states, the
standard Kalman filter remains computationally tractable.

Remark 9:To reduce the computational cost of the aug-
mented states in Kalman filter, we can also use the existing
optimal two-stage or three-stage kalman filtering technique
[13], [15], which decouple the augmented filter into two
parallel reduced order filters. These techniques are preferable
when the order of the innovations model is high, while the
BPOD based ROM filter is preferable when the order of the
dynamic system is high.

V. COMPUTATIONAL RESULTS

We test the method on a one-dimensional heat equation
and the perturbed laminar flow equation. We construct the
unknown input system by using both the full order system as
well as the ROM constructed by BPOD. We check the results

by comparing the autocorrelation functions of the inputs,
outputs and the states. Also, we show the state estimation
using the Kalman filter. We define the relative error as:

Rrelative =
‖Rtrue −Res‖

‖Rtrue‖
, (39)

Rtrue : actual output/input/state autocorrelation function of
the system
Res : estimated output/input/state autocorrelation function

In the following, we will show simulation results for the
stochastically perturbed 1D heat equation and the laminar
flow problem.

A. Heat Equation

The equation for heat transfer by conduction along a slab
is given by the partial differential equation:

∂T

∂t
= α

∂2T

∂x2
+ f,

T |x=0 = 0,
∂T

∂x
|x=L = 0, (40)

whereα is the thermal diffusivity,L = 1m, and f is the
unknown forcing. There are two point sources located atx =
0.5m andx = 0.6m.

The system is discretized using finite difference approach,
and there are 50 grids which are equally spaced. To satisfy
the observer matching condition in the UMV algorithm, we
take two measurements atx = 0.5m, x = 0.6m. The
measurement noise is white noise with covariance0.1I2×2.
In the simulation, the unknown inputs are generated using
(2) with

Ae =

(
0.3 0.5
0.4 0.2

)

, Be = Ce = I2×2, (41)

and νk = 0, µk ∼ N(0, 10I2×2). The design parameters
M = 4000, Ni = 200, No = 2000 are chosen as follows.M
is chosen so that the Markov parameters‖hi‖ ≈ 0, i > M .
Ni andNo are chosen by trial and error. First, we randomly
choose a suitableNi andNo, whereNi ≤ No. Then we fol-
low the AR based unknown input realization procedure, and
construct the augmented state system (36). Given the white
noise processeswk, vk perturbing the system, we check the
output statistics of the augmented state system (36). If the
errors are small enough, we stop, otherwise, we increase the
values ofNi andNo, and repeat the same procedure until
the errors are negligible. Notice that increasingM , Ni, No

would increase the accuracy of the input statistics we can
recover, but also increases the computational cost.

First, in Figure 1, we show the comparison of the input
correlations we recover with the actual input correlations.
Since there are two inputs, thus, the cross-correlation func-
tion between input 1 and input 2 are also included. It can
be seen that the statistics of the unknown inputs can be
recovered almost perfectly, and given the system perturbed
by the unknown inputs innovations model we constructed,
the statistics of the outputs and the states are almost the
same as well.



0 5 10 15
0

1

2

3

Time lag

A
ut

oc
or

re
la

tio
n

unknown input autocorrelation 1&1

 

 
Actual
Estimated

0 5 10 15
0

0.5

1

1.5

Time lag

A
ut

oc
or

re
la

tio
n

unknown input autocorrelation 1&2

 

 
Actual
Estimated

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Time lag

A
ut

oc
or

re
la

tio
n

unknown input autocorrelation 2&1

 

 
Actual
Estimated

0 5 10 15
0

0.5

1

1.5

2

Time lag

A
ut

oc
or

re
la

tio
n

unknown input autocorrelation 2&2

 

 
Actual
Estimated

 Full Order System

Fig. 1. Comparison of input autocorrelations
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Fig. 2. Comparison of input autocorrelation relative error

Next, we compare the performance of the unknown inputs
constructed using the ROM with the full order system.
The full order system has 50 states, and the ROM has 20
states. The relative error of the input correlation is shown
in Figure 2. We can see that the statistics reconstructed by
using the ROM is not as accurate as using the full order
system, however, the relative error is on the same scale, and
hence, the computational cost is reduced without losing much
accuracy.

The state estimation using ROM is shown in Figure 3. We
randomly choose two states and show the comparison of the
actual state with the estimated states. The state estimation
error and3σ bounds are shown. It can be seen that the
Kalman filter using the ROM performs well, and hence, for
a large scale system, the computational complexity of ASKF
can be reduced by using the BPOD.

B. Comparison with OTSKF and UMV Algorithms

Next, we compare the performances of the AR model
based algorithm with OTSKF and UMV algorithms. The
OTSKF and UMV algorithms we use can be found in [32].

The assumed unknown input model used in the OTSKF is
not the same as the true model, in particular, the system
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Fig. 3. Comparison of state estimation

matrices of the input system are perturbed from the true
values, the model used for OTSKF is:

ηk+1 = Aoηk + vk =

(
0.4569 0.2768
0.2214 0.4016

)

ηk + vk, (42)

wherevk ∼ N(0, 10I2×2). Here,Ao is chosen as follows.
The eigenvalues ofAe in (41) are0.7,−0.2. We perturb the
eigenvalues ofAe with randomly generated numbers between
[−0.3, 0.3] and [−0.8, 0.8] with uniform distribution respec-
tively, and keep the eigenvectors same as the eigenvectors
of Ae. The perturbed eigenvalues are0.6783, 0.1802. We
calculate the output statistics of (41) and (42), and we can
see that the unknown input statistics used in OTSKF are
perturbed by5% about the true value. The estimation of the
initial statex̄0 and covariancēP0 in three algorithms are the
same.

Denote the average root mean square error(ARMSE) as:

ARMSE =
1

n

n∑

i=1

√∑n
k=1(x̂i(k)− xi(k))2

n
, (43)

wherex̂i(k) is the state estimatêxi at timetk, andxi(k) is
the true statexi at timetk, wherei denotes theith component
of the state vector.

Suppose at the state componentxi, the measurement noise
vk is a white noise with zero mean and covarianceΩi. We
define a noise to signal ratio (NSR):

NSR =

√

|Ωi|

(E[xix∗
i ])

. (44)

We vary the measurement noise covarianceΩi, and for each
Ωi, a Monte Carlo simulation of 10 runs is performed to
compare the magnitude of the ARMSE using AR model
based algorithm with the OTSKF and UMV algorithms in
Table I. The comparison is shown in Figure 4. It can be seen
that the AR model based method performs the best. Note that
when the assumed unknown input model used in OTSKF is
not accurate, the performance of AR model based algorithm
is much better while with increase in the sensor noise, the



TABLE I

PERFORMANCES OF THEAR MODEL BASED ALGORITHM, OTSKFAND

UMV

NSR AR model based OTSKF UMV
0.2215% 0.0036 0.0111 0.0033
6.8704% 0.0832 0.2418 0.0874
13.5171% 0.1309 0.3955 0.1528
20.3456% 0.3810 0.6516 0.4332
26.9467% 0.4190 0.7141 0.5112
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Fig. 4. Comparison of the performances

performance of the AR model based algorithm gets better
than the UMV algorithm. It should also be noted that when
the sensors and the unknown inputs are non-collocated, the
“observer matching” condition is not satisfied, and hence,
the UMV algorithm can not be used, while the OTSKF and
the AR model based algorithm are not affected.

C. Orr-Sommerfeld Equation

Consider the three-dimensional flow between two infinite
plates (aty = ±1) driven by a gradient in the streamwise
x direction. The mean velocity profile is given byU(y) =
1− y2. At each wavenumber pair(α, β)mn, the wall-normal
velocity v(x, y, z, t) and wall-normal vorticityη(x, y, z, t)
are:

v(x, y, z, t) = v̂mn(y, t)e
i(αx+βz), (45)

η(x, y, z, t) = η̂mn(y, t)e
i(αx+βz). (46)

Denote

q̂mn(y, t) =

(
v̂mn(y, t)
η̂mn(y, t)

)

, (47)

where (̂.) denotes the Fourier transformed variable, and
(.)mn denotes the wavenumber pair(α, β)mn.

The evolution of the flow in Fourier domain can be written
as:

d

dt
Mq̂mn + Lq̂mn = Tf(y, t), (48)

where

M =

(
−∆ 0
0 I

)

, (49)
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Fig. 5. Comparison of input autocorrelations

L =

(
−iαU∆+ iαU

′′

+∆2/Re 0

iβU
′

iαU −∆/Re

)

. (50)

OperaterT transforms the forcingf = (f1, f2, f3)
T on

the evolution equation for the velocity vector(u, v, w)T into
an equivalent forcing on the(v, η)T system [18],

T =

(
iαD k2 iβD
iβ 0 −iα

)

, (51)

where

k2 = α2 + β2, (52)

∆ = D2 − k2, (53)

and D, D2 represent the first and second order differen-
tiation operators in the wall-normal direction. The forcing
f(y, t) accounts for the nonlinear terms and the external
disturbances via an unknown stochastic model.

The boundary conditions onv andη correspond to no-slip
solid walls

v(±1) = Dv(±1) = η(±1) = 0. (54)

System (48) can be discretized using Chebyshev
polynomials, and in the simulation, we assume there are
two unknown inputs and two measurements.

In the simulation, the design parametersM = 1000,
Ni = No = 100 are chosen by trial and error as explained
before. The unknown inputf is assumed to be a colored
noise generated by a third order linear complex system. The
realization of the unknown inputs is a second order system.
The measurement noise is white noise with covariance
0.1I2×2.

First, we show the comparison of the input autocorrela-
tions we recover with the actual input autocorrelations in
complex plane. Since there are two inputs, thus, the cross-
correlation function between input 1 and input 2 are also
included in the input autocorrelations.

Before we apply the ASKF for the state estimation, we
compare the statistics of the states and outputs of the system
perturbed by the unknown inputs we construct and the actual
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Fig. 6. Comparison of output autocorrelations
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Fig. 7. Comparison of state autocorrelations

system. Fig. 6 shows the comparison between the estimated
output autocorrelations and the actual autocorrelations.The
comparison of the state autocorrelations is shown in Fig.7
for some randomly chosen states.

It can be seen that the statistics of the unknown inputs can
be recovered almost perfectly, and given the system perturbed
by the unknown inputs innovations model we constructed,
the statistics of the outputs and the states are almost the
same as well.

Next, we compare the performance of the unknown inputs
constructed using the ROM with the full order system. The
full order system has 30 states, and the ROM has 15 states.
The relative error of the input autocorrelation is shown in
Fig. 8, and the comparison of the relative error of output
autocorrelations is shown in Fig.9.

The comparison of the relative error of state autocorrela-
tions is shown in Fig. 10.

We can see that the statistics reconstructed by using the
ROM is not as accurate as using the full order system,
however, the relative error is on the same scale, and hence,
the computational cost is reduced without losing too much
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Fig. 8. Comparison of input autocorrelation relative error
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Fig. 9. Comparison of output autocorrelation relative error

accuracy.
The comparison of the state estimation using the ASKF is

shown in Fig. 11. We randomly choose two states and show
the comparison of the acutal state with the estimated states.
The state estimation error and3σ bounds are shown. Since
the error is complex valued, only the absolute value of the
error is shown.

The state estimation using ROM is shown in Fig. 12. It
can be seen that the kalman filter using the ROM perform
well, and hence, for a large scale system, the computational
complexity of ASKF can be reduced by using the BPOD.

VI. CONCLUSION

In this paper, we have proposed a balanced unknown
input realization method for the state estimation of system
with unknown stochastic inputs. The unknown inputs are
assumed to be a wide sense stationary process with a rational
power spectrum, and no other prior information about the
unknown inputs needs to be known. We recover the unknown
inputs statistics from the output data using a least-squares
procedure, and then construct a balanced minimal realization
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Fig. 11. State estimation using full order system

of the unknown inputs using an AR model and the ERA
technique. The recovered innovations model is used for state
estimation, and the standard Kalman filter is applied on
the augmented system. The next step in this process would
require us to consider more complex realistic problems
in fluid flow application, and cases where the unknown
numbers of inputs/ outputs are large, and also cases where
the locations of the inputs are unknown.

APPENDIX I
PROOF OFPROPOSITION3

Proof: The output autocorrelation function using the
first M Markov parameters is:

R̂M
yy(m) =

M∑

i=1

M∑

j=1

hiRuu(m+ i− j)h∗
j . (55)

Comparing with (5), the output autocorrelation errors
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Fig. 12. State estimation using ROM

resulting from usingM Markov parameters is:

∆1(m) =

∞∑

i=M+1

M∑

j=1

hiRuu(m+ i− j)h∗
j +

∞∑

i=M+1

∞∑

j=M+1

hiRuu(m+ i− j)h∗
j +

M∑

i=1

∞∑

j=M+1

hiRuu(m+ i− j)h∗
j . (56)

From assumption A5, by choosingM large enough, we
have‖hi‖ ≤ δ, i > M , whereδ is small enough, thus,

‖∆1(m)‖ ≤

∞∑

i=M+1

M∑

j=1

δ × ‖Ruu(m+ i− j)‖‖h∗
j‖

+

∞∑

i=M+1

∞∑

j=M+1

δ × ‖Ruu(m+ i− j)‖ × δ +

+

M∑

i=1

∞∑

j=M+1

‖hi‖‖Ruu(m+ i− j)‖ × δ ≤ k3δ, (57)

wherek3 is some constant.

DenoteCyu as the “true” coefficient matrix andCM
yu as

the coefficient matrix usingM Markov papameters, we need
to solve the least squares problem:

vec(R̂yy) = CM
yuvec(RM

uu). (58)

whereRM
uu is the input autocorrelation we recover from using

M Markov parameters, and vec(R̂yy) is defined in (13).

Since ‖vec(R̂yy(m)) − vec(R̂M
yy(m))‖2 = ‖R̂yy(m) −

R̂M
yy(m)‖ = ‖∆1(m)‖ ≤ k3δ , we have vec(R̂yy(m)) =

vec(R̂M
yy(m)) + ∆2(m), where‖∆2(m)‖2 ≤ k3δ, or equiv-

alently

vec(R̂yy) = vec(R̂M
yy) + ∆2, (59)



Consider (13), vec(R̂yy) and vec(R̂M
yy) can be written as:

vec(R̂yy) = Cyuvec(Ruu),

vec(R̂M
yy(m)) = CM

yuvec(Ruu), (60)

Substitute into (59), we have:

Cyuvec(Ruu)− CM
yuvec(Ruu) = ∆2. (61)

Since(CM
yu)

−1 exists, we have:

vec (Ruu)− vec(RM
uu) = (CM

yu)
−1∆2, (62)

which means:

‖vec(Ruu)− vec(RM
uu)‖2 ≤ kMδ, (63)

wherekM is some constant. Thus, we have‖∆M (m)‖ ≤
kMδ, wherekM is some constant.

APPENDIX II
PROOF OFPROPOSITION4

Proof: (9) can be seperated into two parts:

vec(R̂yy(m)) =

∞∑

i=1

∞∑

j=1

h̄j ⊗ hivec(Ruu(m+ i− j)
︸ ︷︷ ︸

|m+i−j|≤Ni

)

+

∞∑

i=1

∞∑

j=1

h̄j ⊗ hivec(Ruu(m+ i− j)
︸ ︷︷ ︸

|m+i−j|>Ni

). (64)

Thus, it can be written as:

vec(R̂yy(m)) = vec(R̂N
yy(m)) + ∆4(m), (65)

where

‖∆4(m)‖2 = ‖

∞∑

i=1

∞∑

j=1

h̄j ⊗ hivec(Ruu(m+ i− j)
︸ ︷︷ ︸

|m+i−j|>Ni

)‖2

≤

∞∑

i=1

∞∑

j=1

‖h̄j ⊗ hi‖2 × δ ≤ k4δ, (66)

wherek4 is some constant.‖A‖2 denotes the induced 2-norm
of matrixA. Following the same procedure as in Proposition
3, it can be proved that‖∆N (m)‖ ≤ kNδ, wherekN is some
constant.

APPENDIX III
PROOF OFPROPOSITION5

Proof: Denote output autocorrelation in (12) as
R̂c

yy(m), comparing (12) with (9), the output autocorrelation
error resulting from assumption A5 and A6 is:

vec(R̂yy)− vec(R̂c
yy) = ∆2 +

M∑

i=1

M∑

j=1

h̄j ⊗ hivec(Ruu(m+ i− j)
︸ ︷︷ ︸

|m+i−j|>Ni

) ≤ ∆2 +∆4. (67)

Thus

‖vec(R̂yy)− vec(R̂c
yy)‖2 ≤ ‖∆2‖2 + ‖∆4‖2 ≤ k5δ, (68)

wherek5 is some constant. Following the same precedure as
in Proposition 3, we can prove:

‖∆(m) = Ruu(m)− R̂uu(m)‖ ≤ kδ. (69)

APPENDIX IV
BRIEF DESCRIPTION OFERA AND BPOD

The Eigensystem Realization Algorithm is summarized as
follows.

Run inpulse response simulations of the linear system (1),
and collect the snapshots of the outputsyk in the following
patten:

Y1 = CB, Y2 = CAB, · · · , Yk = CAk−1B, (70)

whereCAkB are known as Markov parameters. Construct a
Hankel matrixH(k)

H(k − 1) =








Yk Yk+1 · · · Yk+β−1

Yk+1 Yk+2 · · · Yk+β

...
... · · ·

...
Yk+α−1 Yk+α · · · Yk+α+β−2








. (71)

Solve the singular value decomposition (SVD) problem of
H(0), i.e.,

H(0) = RΣS∗. (72)

DenoteΣn as the firstn non-zero singular value ofΣ, and
Rn, Sn as the matrices formed by the firstn columns ofR
andS respectively. Then the realization for the ERA is:

Â = Σ−1/2
n R∗

nH(1)SnΣ
−1/2
n ,

B̂ = first p columns ofΣ1/2
n S∗

n

Ĉ = first q rows ofRnΣ
1/2
n (73)

The Balanced POD procedure using the impulse response
of the primal and adjoint system and is summarized below.

Consider the linear system (1), and denoteB =
[b1, b2, · · · , bp], C = [c1, c2, · · · , cq]

∗. We collect the im-
pulse response of the primal system by usingbj, j =
1, 2, · · · , p, as initial conditions for the simulation of the
system,

xk = Axk−1, (74)

If we take α snapshots across the trajectories at time
t1, t2, · · · , tα, resulting anN × pα matrix

X = [x1(t1), · · · , x1(tα), · · · , xp(t1), · · · , xp(tα)], (75)

wherexj(tk) is the state snapshotxk with bj as the initial
condition.

Similarly, we use the transposed rows of the output matrix
c∗i , as the initial conditions for the simulations of the adjoint
systemA∗,

zk = A∗zk−1, (76)

and takeβ snapshots across trajectories, leading to the



adjoint snapshot ensembleY ,

Y = [z1(t1), · · · , z1(tβ), · · · , zp(t1), · · · , zp(tβ)], (77)

wherezi(tk) is the state snapshotzk with c∗i as the initial
condition.

The Hankel matrixH is constructed as:

H = Y ∗X. (78)

Then we solve the SVD problem of the matrixH :

H = Y ∗X = UΣV ∗. (79)

Assume thatΣ1 consists of the firstr non-zero singular
values ofΣ, and (U1, V1) are the corresponding left and
right singular vectors from(U, V ), then the POD projection
matrices can be defined as:

Tr = XV1Σ
− 1

2

1 ,

Tl = Y U1Σ
− 1

2

1 , (80)

and the reduced order model constructed using BPOD
method is:







Ar = T ∗
l ATr

Br = T ∗
l B

Cr = CTr

(81)
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