
Integrating active sensing into reactive synthesis with temporal logic
constraints under partial observations

Jie Fu1 and Ufuk Topcu1

Abstract— We introduce the notion of online reactive plan-
ning with sensing actions for systems with temporal logic
constraints in partially observable and dynamic environments.
With incomplete information on the dynamic environment,
reactive controller synthesis amounts to solving a two-player
game with partial observations, which has impractically com-
putational complexity. To alleviate the high computational
burden, online replanning via sensing actions avoids solving
the strategy in the reactive system under partial observations.
Instead, we only solve for a strategy that ensures a given
temporal logic specification can be satisfied had the system
have complete observations of its environment. Such a strategy
is then transformed into one which makes control decisions
based on the observed sequence of states (of the interacting
system and its environment). When the system encounters a
belief—a set including all possible hypotheses the system has
for the current state—for which the observation-based strategy
is undefined, a sequence of sensing actions are triggered, chosen
by an active sensing strategy, to reduce the uncertainty in
the system’s belief. We show that by alternating between the
observation-based strategy and the active sensing strategy,
under a mild technical assumption of the set of sensors in the
system, the given temporal logic specification can be satisfied
with probability 1.

Keywords: Reactive synthesis; Active sensing; Partial
observation; Temporal logic.

I. INTRODUCTION

Control synthesis under partial observations has been
an important topic since complete and precise information
(about the system and environment states) during the ex-
ecution of a controller is often not available in practice.
However, synthesis methods for systems under partial obser-
vations are of high complexity and have limitations in their
applications. With incomplete information, the problem of
synthesizing a controller in a partially observable Markov
decision process (POMDP) has been shown to be PSPACE-
complete, even for finite planning horizons [9]. When the
control specification is given in temporal logic and the envi-
ronment is dynamic and possibly adversarial, the interaction
between a system and its environment can be captured in a
two-player partially observable game with infinite stages, for
which the qualititive-analysis problem under finite-memory
strategies is EXPTIME-complete [3].

For temporal logic constraints, synthesis algorithms for
stochastic systems modeled as POMDPs have been studied

This work is supported by AFOSR grant number FA9550-12-1-0302,
ONR grant number N000141310778 and NSF CNS award number
1446479.

1Jie Fu and Ufuk Topcu are with the Department of Electrical and
Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104,
USA jief, utopcu@seas.upenn.edu.

in [11], [12]. To deal with a partially observable, dynamic
environment, synthesis algorithms for two-player game with
partial observations have been developed under two quali-
tative correctness criteria [2], [4]: sure-winning and almost-
sure winning controllers. A sure-winning controller ensures
the satisfaction of a specification whereas an almost-sure
winning controller is a randomized strategy and ensures
satisfaction with probability 1. These solutions rely on a
subset construction and has complexity exponential in the
size of the state space [3], [5].

An interesting question that has not been investigated
much is the following: Since the high computational com-
plexity is caused by incomplete information, is it possible to
reduce the computational effort and still ensure correctness
of the control design by acquiring new information at run
time? In this paper, we give a method that provides a partial,
affirmative answer to this question. Particularly, we study a
system with actions to obtain information, referred to as
sensing actions, and show how to utilize these actions in a
way that a given linear temporal logic (LTL) specification
is satisfied almost surely with reduced computational effort.

The new approach in this paper is inspired by [10], where
the authors propose a method of online planning with partial
observations and sensing actions as a way to overcome
such complexity since the system only needs to compute a
strategy for a finite number of steps, and replans with new
information obtained through sensing actions. For temporal
logic specifications, online planning method in [10] has no
correctness guarantee. We propose a similar framework of
active sensing and reactive synthesis under temporal logic
constraints. The basic approach is the following: During
control execution, the system maintains a belief, which is
a set of states it thinks the current state must be in based
on its partial observation for the game history. The belief is
updated under two cases: In one of these cases, the system
or the environment makes a move, the belief is updated to
the set of states possibly arrived at as a result of move.
Alternatively, the system can activate a sensor, detecting the
value of some propositional formula and revises its belief
according to the additional information obtained through
sensing. In the second case, the system applies an active
sensing strategy. A sequence of sensor queries are made to
obtain the most useful information for reducing the system’s
uncertainty in the current state. The benefit of performing
the combined active sensing and reactive planning is that we
can indeed avoid solving a two-player zero-sum game with
partial observations. Rather, we transform the sure-winning

ar
X

iv
:1

41
0.

00
83

v1
 [

cs
.S

Y
]

 1
 O

ct
 2

01
4

strategy for the system in the same game with perfect
observations, into a randomized, belief-based strategy. By
construction, the randomized strategy may not be defined
for every belief the system can encounter at run time.
During control execution, the system alternates between the
randomized strategy and the active sensing strategy. We
prove that if the set of available sensors meets a sufficient
condition, the temporal logic specification can be satisfied
with probability 1, i.e., almost surely.

The rest of the paper is organized as follows. We begin
with some preliminaries and the formulation of the problem
in section II. Section III presents the main results on syn-
thesizing provably correct, online reactive controllers with
sensing actions for temporal logic constraints. In Section IV
we illustrate the method using a robot motion planning
example in a partially observed environment.

II. PROBLEM FORMULATION AND PRELIMINARIES

A probability distribution on a finite set S is a function
D : S → [0, 1] such that

∑
s∈S D(s) = 1. The set of

probability distributions on a finite set S is denoted D(S).
The support of D is the set Supp(D) = {s ∈ S | D(s) >
0}. Let Σ be a finite alphabet. Σ∗, Σω , and Σ+ are sets of
strings over Σ with finite length, infinite length, and length
greater than or equal 1, respectively. Given u and v in Σ∗,
uv is the concatenation of u with v. A string u ∈ Σ∗ is
a prefix of w ∈ Σ∗ (or w ∈ Σω) if there exists v ∈ Σ∗

(or v ∈ Σω) such that w = uv. For a string w, the set of
symbols occurring infinitely often in w is denoted Inf(w).
The last symbol in a finite string w is denoted Last(w).

A. Game, specification and strategies

Through abstraction for systems with continuous and
discrete dynamics, the interaction of a system and its dy-
namic environment can be captured by a labeled finite-state
transition system [7], [8]:

M = 〈S,Σ, δ, s0,AP, L〉

where 1) S = S1 ∪ S2 is the set of states. At each state
in S1, the system takes an action. At each state in S2, the
environment takes an action. 2) Σ = Σ1 ∪ Σ2 is the set of
actions. Σ1 is the set of actions for the system, and Σ2 is the
set of actions for the environment. 3) s0 is the initial state.
4) δ : S×Σ→ S is the transition function. 5) L : S → 2AP

is the labeling function that maps a state s ∈ S to a set of
atomic propositions L(s) ⊆ AP that evaluate true at s.

We use a fragment of LTL [1] to specify the desired
system properties such as safety, reachability, liveness and
stability. Given a temporal logic formula ϕ in this class, one
can always represent it by a deterministic Büchi automaton
(DBA) Aϕ = 〈H, 2AP , δϕ, h0, Fϕ〉 where H is the set of
states, 2AP is the set of alphabet, δϕ : H × 2AP → H is
the transition function. h0 is the initial state and Fϕ is the
set of final states. A word w = a0a1 . . . ∈ (2AP)ω induces
a state sequence h0h1 . . . ∈ Hω where hi+1 = δϕ(hi, ai),
for all i ≥ 0. A word w is accepted in Aϕ if and only if the

state sequence ρ ∈ Hω induced from w visits some states
in Fϕ infinitely often.

A product operation is applied to incorporate the temporal
logic specification into the labeled transition system, giving
rise to a two-player turn-based Büchi game between the
system (player 1) and its environment (player 2):

G = 〈Q,Σ, T, q0, F 〉 = M nAϕ

where the components are defined as follows.
• Q = Q1 ∪Q2 is the set of states, where Q1 = S1×H

and Q2 = S2 ×H .
• T : Q × Σ → Q is the transition function. Given

(s, h) ∈ Q, σ ∈ Σ, if δ(s, σ) = s′, then T (q, σ) = q′

where q′ = (s′, δϕ(h, L(s′))).
• q0 = (s0, δϕ(h0, L(s0))) is the initial state.
• F ⊆ Q × Fϕ is a subset of states that determines a

Büchi winning condition.
A play in G is either a finite sequence of interleaving

states and actions ρ = q0a0q1a1 . . . qn ∈ (Q ∪ Σ)∗Q or an
infinite sequence ρ = q0a0q1a1 . . . ∈ (Q∪Σ)ω such that q0
is the initial state and T (qi, ai) = qi+1 for all i ≥ 0. If ρ is
finite, the last element of ρ is a state, denoted Last(ρ). An
infinite play ρ is winning for player 1 in G if and only if
Inf(ρ) ∩ F 6= ∅.

In game G, each state in Q is associated with a truth
assignment to a set P of predicates. Note that P may not
equal AP . This association is captured by the interpretation
function π such that for any q ∈ Q, for any predicate p ∈ P ,
π(q)(p) ∈ {true, false}. We write π(q) = ∧p∈P`p where
`p = p if π(q)(p) = true and `p = ¬p if π(q)(p) = false, ∧,
¬ are the logical connectives for conjunction and negation,
respectively. In the set P , there is a predicate t indicating
whose turn it is to play: If t = 1, then the system takes
an action, otherwise the environment makes a move. It is
assumed that the value of t is globally observable, which
means, the system always knows whose turn it is to play.

We consider the case when the system has partial observa-
tion of values for the set P of predicates. Following [4], this
partial observation can be defined by an equivalence relation
over the set of states, denoted R ⊆ Q×Q. Two states q and
q′ are observation-equivalent, that is, (q, q′) ∈ R, if both q
and q′ provide the same state information observable by the
system, i.e., the value of p ∈ P is observable at q if and
only if it is observable at q′, and π(q)(p) = π(q′)(p). We
denote the observations of states for the system by O ⊆ 2Q,
which is defined by the observation-equivalence classes.
Clearly, O is a partition of the state space. We define an
observation function Obs : Q∪Σ→ O∪Σ1∪{−} such that
1) q ∈ Obs(q); 2) for every q1, q2 ∈ Obs(q), (q1, q2) ∈ R,
3) if σ ∈ Σ1 Obs(σ) = σ; and 4) if σ ∈ Σ2, Obs(σ) = − .
The last two properties express that the system observes
(knows) which action it performed but does not directly
observe the action of the environment. The information
received by the system on the environment’s action is from
the effect of that action, reflected in the observed arrived
state.

The observation sequence of a play ρ = q0a0q1 . . . is a
sequence Obs(ρ) = Obs(q0)Obs(a0)Obs(q1) It is worth
mentioning that two states q = (s, h) and q = (s′, h′)
can be observation-equivalent even if h 6= h′. Therefore,
two observation-equivalent ρ and ρ′ can differ in their state
projections onto the set Q of states in the specification
automaton Aϕ.

Let Pref(G) denote the set of finite prefixes of all plays
in G, each of which ends with a state in Q. For both players
1 and 2, a deterministic strategy for player i is a function
fi : Pref(G)→ Σi and a randomized strategy is a function
fi : Pref(G)→ D(Σi). We say that player i follows strategy
fi if for any finite prefix ρ ∈ Pref(G) at which fi is defined,
player i takes the action fi(ρ) if fi is deterministic, or an
action σ ∈ Supp(fi(ρ)) with probability fi(ρ)(σ) if fi is
randomized. Since the system has partial information of the
states, it can only execute an observation-based strategy f1,
in the sense that if for any two prefixes ρ and ρ′ ∈ Pref(G),
if Obs(ρ) = Obs(ρ′), then f1(ρ) = f1(ρ′). A strategy
is memoryless if and only if fi(ρ) = fi(Last(ρ)). For
Büchi game G with complete information, there exists a
deterministic, memoryless winning strategy for one of the
players.

B. Partial observation, belief and sensing actions

With partial observations, the system keeps track of the
play in the game by maintaining and updating a set B ⊆ Q
of states, referred to as the belief, which is the set of
states the system thinks the game can be in, given the
observation history. In which follows, we show how the
belief is obtained and updated. The set of beliefs in the game
is denoted B ⊆ 2Q. We define a function α : Pref(G)→ B
that maps a prefix of g into a belief as follows: given a
prefix ρ = q0a0 . . . qn, the belief of the system is α(ρ) =
{Last(ρ′) ∈ Q | ρ′ ∈ Pref(G) and Obs(ρ′) = Obs(ρ)}.

During the interaction with the environment, the system’s
belief is updated in two ways: (i) The system applies a
control action, obtains a new observation of the arrived
state, and updates its belief to one in which the current
state could be. (ii) The environment takes some action. The
system obtains an observation o ∈ O of the arrived state, and
subsequently updates its belief that includes its hypothesis
for the current state. Formally, this process is called belief
update, which can be captured by the function

Update : B × (Σ1 ∪ {−})×O → B, (1)

It is reminded that the symbol “−” is the observation for an
action of the environment. Given a belief B, the system takes
an action a ∈ Σ1 and gets an observation o ∈ O. Then it
updates its belief to B′ = o ∩Update(B, a, o) = {q′ | ∃q ∈
B such that T (q, a) = q′}. If it is the environment’s turn,
after the environment takes some action, the system gets
an observation o ∈ O and then updates its current belief
B to B′ = Update(B,−, o) = o ∩ {q′ | ∃q ∈ B, ∃σ ∈
Σ2 such that T (q, σ) = q′}.

We distinguish a set Γ of sensing actions for the system
and explain how the sensing actions affects the system’s
belief as follows.

Definition 1: Consider the set P of atomic propositions
and the set Γ of sensing actions. For each sensing action
a ∈ Γ, there exists at least one propositional formula φ
over P such that after applying the sensing action a, the
truth value of φ is known. Depending on the value of φ, the
system can partition a belief B into two subsets, expressed
by

Knows(φ, a,B) := (B′, B \B′),

where B′ is the set of states in which φ evaluates true and
B \B′ is the set of states in which φ evaluates false. Hence,
if φ is true, the belief is revised to be B′, otherwise to be
B \B′.
To capture both global and local sensing capabilities, for
a given state q, we denote Γq ⊆ Γ to be a set of sensing
actions enabled at q. The set of sensing actions enabled at
a belief B ⊆ Q is

⋂
q∈B Γq .

The following assumption is made for sensing actions.
Assumption 1: A sensing action will not change the value

of variables and/or predicates in P .
The assumption is not restrictive because if an action
introduces both physical and epistemic changes, we simply
consider it as an ordinary control action and include it into
Σ1. We call an action in Γ sensing to emphasize that it
provides information of the current state, and an action in
Σ physical to emphasize it changes the state of the game. We
assume that at each turn of the system, it can either choose
a physical action, or several sensing actions followed by a
physical action.

We solve the following problem in this paper.
Problem 1: Given a two-player turn-based Büchi game

G = 〈Q,Σ, T, q0, F 〉, and a set Γ of sensing actions, design
an observation-based strategy f : Q∗ → D(Σ1) ∪ Γ∗ with
which the specification is satisfied with probability 1, i.e.,
almost surely, whenever such a strategy exists.

III. MAIN RESULTS

For games with partial information, algorithms in [5] can
be used to synthesize observation-based controllers which
ensure given temporal logic specifications are satisfied
surely, or almost surely, i.e., with probability 1, whenever
such controllers exist. In this paper, we only consider the
cases in which observation-based controllers do not exist and
thus require additional information at run time for satisfying
given temporal logic specifications. We distinguish two
phases in the online planning: Progress phase and sensing
phase. As the names suggest, during the progress phase, the
system takes physical actions in order to satisfy the temporal
logic constraints, and during the sensing phase, the system
takes sensing actions to reduce the uncertainty in its belief
for the current game state. The transition from one phase
to another will be explained after we introduce the methods
for synthesizing strategies used in both phases.

A. A belief-based strategy for making progress

For a game with partial observation, we aim to synthesize
a belief-based, memoryless and randomized strategy fP :
B → D(Σ1) that can be applied for making progress towards
satisfying the given LTL fragment formula ϕ.

In the two-player Büchi game G, the deterministic sure-
winning strategy WS : Q → Σ1 can be computed (with
methods in [6]) but requires complete information to execute
at run time. The belief-based strategy fP is constructed from
the sure-winning strategy WS in the following way: Let
Win1 ⊆ Q be the set of states at which WS are defined.
Given B ∈ B, let

Progress(B) =
⋃
q∈B

WS(q), and

allow(B) =
⋂
q∈B

allow(q),

where allow(q) = {σ ∈ Σ1 | T (q, σ) ∈Win1}.

For each state q ∈ B, the sure-winning strategy will suggest
action WS(q) to be taken by the system, which is then
included into a set Progress(B). The set allow(B) is a set
of actions with the following property: No matter in which
state of B the game is, by taking an action in allow(B),
the next state will still be one for which the sure-winning
strategy is defined. Then, if Progress(B) ⊆ allow(B), we
let fP (B)(σ) = 1

|Progress(B)| for each σ ∈ Progress(B).
Otherwise, fP is undefined for B. Note that since the
computation fP can be essentially reduced to computing the
interaction of two sets, there is no need to compute fP for
all possible subset of Q. Rather, we can efficiently compute
fP for each belief B encountered at run time.

We have transformed the sure-winning strategy with com-
plete information in the Büchi game into a randomized,
belief-based strategy. During control execution, the system
maintains its current belief. At each turn of the system,
after applying an action σ ∈ Σ1 at the state B, the
system receives an observation o ∈ O, updates its belief
to B′ = Update(B, σ, o). When it is a move made by the
environment, the system obtains another observation o′ ∈ O,
updates its belief to B′′ = Update(B′,−, o′). The system
applies fP (B′′) as long as fP is defined for B′′. When fP
is undefined for the current belief B, then we switch to the
sensing phase for actively acquiring more information to
reduce the uncertainty in its current belief.

B. An active sensing strategy for reducing uncertainty

During the progress phase with the randomized, belief-
based strategy fP , if the system runs into a belief at which
fP is undefined, it needs to update its belief through sensing
until either it finds itself in a state for which fP is defined,
or it cannot further refine its belief: A belief B cannot be
refined if for any sensing action a enabled at B and for any
formula φ such that (B1, B2) = Knows(φ, a,B), it holds
that for either i = 1 or i = 2, Bi = B. We represent
the process of belief revision with sensing actions as a
tree structure, referred to as a belief revision tree, and then

propose a synthesis method for an active sensing strategy
using the belief revision tree.

Given a belief Bo ∈ B, the belief revision tree with the
root Bo is a tuple BRTree(Bo) = 〈N , E〉, where N is the
set of nodes in the tree, consisting a subset of beliefs, and
E ⊆ N × Γ × N is the set of edges. It is constructed as
follows.

1) The root of the tree is Bo.
2) At each node B ∈ N , for each enabled sensing

action a ∈ ΓB , if there exists a formula φ such that
(B1, B2) = Knows(φ, a,B) and both B1, B2 are not
empty, then we add two children B1, B2 of B, and
include edges (B, a,B1), (B, a,B2) into the edges E .

3) A node B is a leaf of the tree if and only if either
1) B cannot be further revised by any sensing action,
or 2) fP is defined for B.

The active sensing strategy fS : B → Γ is computed as
follows. First, in the tree BRTree(Bo), we compute a set of
target nodes Reach ⊂ N such that a node B′ is included in
Reach if and only if fP (B′) is defined. The objective is to
apply the least number of sensing actions in order to reach
a belief in Reach for which fP is defined. For this purpose,
we have the following recursion:

1) X0 = Reach, i = 0.
2) Xi+1 = Xi ∪ {B ∈ B | ∃a ∈ Γ, such that ∀B′ ∈
B, (B, a,B′) ∈ E , B′ ∈ Xi} and let fS(B) = a. In
other words, a belief B is included into Xi+1 if there
exists a sensing action a such that when a is applied
at B, no matter which belief the system might reach,
it must be in Xi.

3) Until i is increased to some number m ∈ N such
that Xm+1 = Xm, we output the sensing strategy fS
obtained so far.

We denote Xm = attr(Reach), following the notion of an
attractor of the set Reach. For any state in attr(Reach),
there exists a sensing strategy fS such that for whatever
outcome resulted by applying sensing actions, the system
can arrive at some belief in Reach in finitely many steps
by following fS . Furthermore, it can be proven that fS
minimizes the number of sensing actions required for the
sensing phase under the constraint that the system will not
run into a dead end, which is a belief that cannot be further
refined yet is undefined by fP . The number of sensing
actions during the sensing phase is upper bounded by the
index i for which Bo ∈ Xi and Bo /∈ Xi−1. The proof
follows from the property of attractor [6] and is omitted
here.

Remark: It is worth mentioning that for a given belief
B, the active sensing strategy is unique. Thus, we can store
and continuously update a set of active sensing strategies
synthesized at run time: When the system encounters a belief
B for which fP is undefined but it has seen before, it can use
the stored active sensing strategy for B without recomputing
a new one. For a large-scale system with a large number
of sensing actions, one can also pre-compute a library of
active sensing strategies and then augment the library with

new active sensing strategies computed at run time.

C. A composite, almost-sure winning strategy

At run time, the system alternates between strategy fP for
making progress and strategy fS for refining its belief. We
name the system’s strategy at run time a composite strategy,
denoted f : B → D(Σ1) ∪ Γ, defined by,

f(B) =

{
fP (B) if fP (B) is defined.
fS(B) if fS(B) is defined. (2)

Note that by construction, the domains of fP and fS is
always disjoint.

The following assumption provides a sufficient condition
for avoiding dead-ends at run time.

Assumption 2: For each state B encountered during the
progress phase, if fP (B) is undefined, then fS(B) is
defined.

Since we cannot predict which beliefs the system might
have during control execution with online planning, in the
extreme case, for each predicate p ∈ P , we need to have a
sensing action or a combination of sensing actions to detect
its truth value. However, this condition is not necessary and
may include some sensing actions that will never be used
at run time. As the system does not need to know the exact
state by extensive sensing, it is at the system’s disposal
whether to apply a sensing action and what shall be applied.

Next we prove the correctness of the composite strategy.
To this end, we recall some property in the solution for
Büchi games with complete information from [6]: The
winning region of the Büchi game G can be partitioned
as Win1 =

⋃m
i=0Wi for some m ∈ N, m ≥ 0. For any state

q ∈Win1, there exists a unique ordinal i such that q ∈Wi. If
q ∈ Q1∩Wi for some 0 < i ≤ m, then the winning strategy
on q outputs σ ∈ Σ1, with which the system reaches a state
q′ ∈ Wi−1 ∩Q2. If i = 0, then with the action WS(q), we
arrive at a state q′ ∈ Win1. If q ∈ Q2, then for any action
σ ∈ Σ2 enabled at q, T (q, σ) ∈Wi−1 if i 6= 0, or q′ ∈Win1
otherwise.

Lemma 1: Given a game G = 〈Q,Σ, T, q0, F 〉. Let B0 =
Obs(q0) be the initial belief. If Assumption 2 is satisfied and
q0 ∈Win1, the composite strategy f defined by (2) ensures
that some states in F of G is infinitely often visited with
probability 1.

Proof: Consider an arbitrary belief B ∈ B for which fP
is defined. By definition of fP , for each σ ∈ Progress(B),
the probability of choosing action σ is 1

u , where u =
|Progress(B)|. If the actual state is q and q ∈ Wi, for
some i 6= 0, then with probability 1

u , the system will reach
a state in Wi−1. Thus, the probability of the next state
being in Wi−1 is 1

u ≥
1
|Q| > 0. For other σ′ ∈ fP (s),

σ′ 6= WS(q), the next state after taking σ′ is in Wj for
some 0 ≤ j ≤ m. Let Pr(q,♦iW0) denote the probability
of reaching W0 from state q in i turns. When system applies
the strategy f , it is Pr(q,♦iW0) ≥ (1

|Q|)
i > 0 and the

probability of not reaching W0 in i turns is less than or
equal to 1 − (1

|Q|)
i ≤ 1 − (1

|Q|)
m+1 = r < 1 where

m + 1 is the total number of partitions in Win1. If after

i steps the state is not in W0, it must be in Wj for some
0 < j ≤ m, and again the probability of not reaching W0

in m steps is less than or equal to r. Therefore, under the
policy f , the probability eventually reaching W0 from any
state q ∈ Win1 is Pr(v,♦W0) = limk→∞ Pr(v,♦kW0) =
limk→∞(1 − Pr(v,¬♦kW0)) = limk→∞(1 − rk/m) =
1− limk→∞ rk/m = 1.

Once entering W0, the system will take an action to
remain in Win1, and the above reasoning applies again. In
this way, in the absence of dead ends (Assumption 2), the
system can revisit the set W0 of states with probability 1
by following the composite strategy f . Since W0 ⊆ F , the
probability of system always eventually visiting some states
in F is 1.

To conclude this section, Algorithm 1 describes the pro-
cedure of online planning with sensing actions.

Fig. 1: Algorithm: PlanningWithSensingActions

IV. EXAMPLES

We apply the algorithm to a robotic motion planning
example, which is a variant of the so-called “Wumpus game”
in a 7× 7 gridworld. Figure 2 consists of one mobile robot,
one monster called “Wumpus”. The robot is capable of mov-
ing in eight compass directions with actions ‘N’, ‘S’ , ‘E’,
‘W’, ‘NE’, ‘NW’, ‘SE’, ‘SW’ (horizontally, vertically and
diagonally), one step at a time. The robot and the Wumpus
does not move concurrently. The Wumpus can move in four
compass directions with actions ‘N’, ‘S’, ‘E’ and ‘W’ within
a restricted area Region and emits stench to its surrounding
cells. The objective of the robot is to infinitely revisit region
R1, R2, and R3 in this order, while avoiding running into

the Wumpus. Formally, the temporal logic formula is ϕ =
�♦(xr, yr) = R1 ∧ ♦ ((xr, yr) = R2 ∧ ♦(xr, yr) = R3) ∧
�¬(xr = xw ∧ yr = yw) where (xr, yr), (xw, yw) are the
positions of the robot and the Wumpus, respectively. Yet, the
robot only knows his own position. For this case of partial
observation, without the inclusion of sensing actions, it can
be shown that with the algorithms in [5], observation-based,
sure-winning strategies and almost-sure winning strategies
do not exist.

R1

R2

R3R

W

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Fig. 2: The gridworld with a robot (R) and the Wumpus (W).
The grey cells are regions R1, R2 and R3. The Wumpus
is restricted to the area inside the dash lines. The stenches
emitted by the Wumpus are represented by waves.

Here, we introduce a set of sensing actions to the game.
For the robot to know the position of the moving obstacles,
it needs to apply a sensing action — smell(x, y) to detect
if there exists stench at cell (x, y). Thus, when the robot
applies smell(x, y), if the result is True, then the Wumpus
must be some cells in the set S = {(x′, y′) | x′ ≤ x+1, y′ ≤
y+1, x′, y′ ∈ N}∩Region. Otherwise, it is not possible that
the Wumpus is in any cell in S.

We illustrate how the robot updates his belief using
sensing action smell(x, y) where (x, y) is a cell in
the gridworld. Suppose that the robot does not know
where the Wumpus is and hypothesizes it can be in
any cell in the Region. Once it applies the sensing
action (2, 2), since the cell has stench and the sensor
returns True. Then, immediately the robot will know
the Wumpus is in one of the cells in the set S =
{(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2), (3, 1), (3, 2), (3, 3)},
because only if the Wumpus is in a cell of S, there can be
stench in cell (2, 2).

From the numerical experimental result, after 1000 steps
(a step includes either a robot’s (sensing or physical) action
or a movement of the Wumpus), the robot visited the set
F in the formulated two-player game G 14 times and can
continue to visit F infinite often. In Figure 3 we show
the belief updates by applying alternatively the exploitation
strategy and active sensing strategy for the initial 100 steps.
It is observed that the maximum cardinality of the belief
set is 43 over the control execution, which means that the
robot thinks the Wumpus can be in any cell in its restricted
region. However, if there is no danger of running into the
Wumpus in a few next steps, there is no need to exercising
any sensing action. The implementations are in Python on a
desktop with Intel(R) Core(TM) i5 processor and 16 GB of

memory. The average time for the robot making a decision
is 8.55 × 10−4 seconds. The computation of the product
game took 40.14 seconds and the winning strategy under
complete information is computed within 14 seconds.

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

35

40

45

Number of steps (t)

Th
e

ca
rd

in
al

ity
 o

f b
el

ie
f

card(B)=43

card(B)=1

Fig. 3: The update in the number of possible Wumpus’
positions in the system’s belief.

V. CONCLUSIONS

Our work shows that when additional information can
be obtained through sensing actions, one can transform a
sure-winning strategy with complete information to a belief-
based, randomized strategy, which is then combined, at run
time, with an active sensing strategy to ensure a given
temporal logic specification is satisfied with probability
1. The synthesis method avoids a subset construction for
solving games with partial information. Meanwhile, the
active sensing strategy leads to a cost-efficient way of sensor
design: Although we require a sufficient set of sensing
actions to avoid dead-ends at run time, the system minimizes
the usage of sensing actions by asking the most revealing
queries, depending on what specification is to be satisfied,
and how much uncertainty the system has about the game
state at run time. In future work, we will consider more
examples for practical robotic motion planning under partial
observations. It is also important to consider the uncertainty
in the sensors. For example, a sensor query might return a
probabilistic distribution over a set of states, rather than a

binary answer to proposition logical formulae considered
herein. For this extension, we are currently investigating
modifications that need to be made to account for delays,
uncertainty in the information provided by the sensors.

REFERENCES

[1] Rajeev Alur and Salvatore La Torre. Deterministic generators and
games for LTL fragments. ACM Transactions on Computational
Logic, 5(1):1–25, January 2004.

[2] A Arnold, A Vincent, and I Walukiewicz. Games for synthesis of
controllers with partial observation. Theoretical Computer Science,
303(1):7–34, 2003.

[3] Krishnendu Chatterjee and Laurent Doyen. The complexity of partial-
observation parity games. In Logic for Programming, Artificial
Intelligence, and Reasoning, pages 1–14. Springer, 2010.

[4] Krishnendu Chatterjee and Laurent Doyen. Partial-Observation
Stochastic Games: How to Win When Belief Fails. Annual IEEE
Symposium on Logic in Computer Science, pages 175–184, June 2012.

[5] Krishnendu Chatterjee, Laurent Doyen, Thomas A Henzinger, and
Jean-François Raskin. Algorithms for omega-regular games with
imperfect information. Logical Methods in Computer Science, 3(4):1–
23, 2007.

[6] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Au-
tomata Logics, and Infinite Games: A Guide to Current Research.
Springer-Verlag New York, Inc., New York, NY, USA, 2002.

[7] M. Kloetzer and C. Belta. A fully automated framework for control of
linear systems from temporal logic specifications. Automatic Control,
IEEE Transactions on, 53(1):287–297, Feb 2008.

[8] Hadas Kress-Gazit, Tichakorn Wongpiromsarn, and Ufuk Topcu.
Correct, reactive robot control from abstraction and temporal logic
specifications. IEEE Robotics and Automation Magazine, 18:65–74,
2011.

[9] Michael Lederman Littman. Algorithms for sequential decision
making. PhD thesis, Brown University, 1996.

[10] Guy Shani and Ronen I Brafman. Replanning in domains with partial
information and sensing actions. In IJCAI, volume 2011, pages 2021–
2026, 2011.

[11] Rangoli Sharan. Formal methods for control synthesis in partially
observed environments : application to autonomous robotic manipu-
lation. Dissertation (Ph.D.), California Institute of Technology. PhD
thesis, California Institute of Technology, 2014.

[12] Tichakorn Wongpiromsarn and Emilio Frazzoli. Control of proba-
bilistic systems under dynamic, partially known environments with
temporal logic specifications. In Proceedings of the 51th IEEE
Conference on Decision and Control, CDC 2012, December 10-13,
2012, Maui, HI, USA, pages 7644–7651. IEEE, 2012.

	I Introduction
	II Problem formulation and preliminaries
	II-A Game, specification and strategies
	II-B Partial observation, belief and sensing actions

	III Main results
	III-A A belief-based strategy for making progress
	III-B An active sensing strategy for reducing uncertainty
	III-C A composite, almost-sure winning strategy

	IV Examples
	V Conclusions
	References

