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Abstract

Recent theoretical investigations on quantum coherent feedback networks have
found that with the same pump power, the Einstein-Podolski-Rosen (EPR)-like en-
tanglement generated via a dual nondegenerate optical parametric amplifier (NOPA)
system placed in a certain coherent feedback loop is stronger than the EPR-like en-
tangled pairs produced by a single NOPA. In this paper, we present a linear quantum
system consisting of two NOPAs and a static linear passive network of optical de-
vices. The network has six inputs and six outputs, among which four outputs and
four inputs are connected in a coherent feedback loop with the two NOPAs. This
passive network is represented by a 6× 6 complex unitary matrix. A modified steep-
est descent method is used to find a passive complex unitary matrix at which the
entanglement of this dual-NOPA network is locally maximized. Here we choose the
matrix corresponding to a dual-NOPA coherent feedback network from our previous
work as a starting point for the modified steepest descent algorithm. By decomposing
the unitary matrix obtained by the algorithm as the product of so-called two-level
unitary matrices, we find an optimized configuration in which the complex matrix is
realized by a static optical network made of beam splitters.

1 Introduction

In recent years, research related to the Einstein-Podolski-Rosen (EPR) entanglement in
continuous-variable quantum information processing has become increasingly vital since it
can be shared by two distant communicating parties and is used as the crucial resource for
important applications such as quantum teleportation and superdense coding [1]. Com-
pared to discrete variable entangled states, continuous variable entanglement such as EPR
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entanglement [1] is generated efficiently by a pair of squeezed light beams and utilized
with expeditiousness in measurement of quantum states which is a critical step in quan-
tum communication protocols [2, 3].

A device that is used to produce EPR-like entangled states is a nondegenerate opti-
cal parametric amplifier (NOPA), which contains a cavity with a χ(2) nonlinear crystal
inside. Via a strong undepleted coherent beam pumped to the crystal, two ingoing sig-
nals in vacuum state interact with two modes of the cavity separately, and generate two
output beams which are squeezed in quadrature-phase amplitudes and considered as EPR
entanglement [4]. EPR entanglement between the two outgoing fields is measured by the
two-mode squeezing spectra of the fields. A strong EPR entanglement is denoted by a high
degree of two-mode squeezing. As a quantum system in reality is sensitive to its external
environment, it undergoes unwanted interaction with an external electromagnetic field as
a “heat bath” [5]. Therefore the strength of EPR entanglement generated by such an open
system can be degraded due to transmission losses and decoherence, which leads to limited
communication distance. Thus methods to enhance EPR entanglement are of interest to
improve the quality of quantum communication.

Figure 1: The dual-NOPA coherent feedback network.

Figure 2: System structure.

Coherent feedback is a feedback loop which directly connects quantum optical compo-
nents without employing any measurement apparatus in the loop [6]. Our previous work
[7] presents a dual-NOPA coherent feedback scheme comprised by two NOPAs as shown in
Fig. 1. Each NOPA Gi (i = 1, 2) in the figure is simply denoted by a block with four inputs
and two outputs. Gi contains two modes ai and bi. Ingoing signal ξin,a,i and amplification

2



loss ξloss,a,i interact with mode ai; similarly ξin,b,i and amplification loss ξloss,b,i interact with
mode bi. The output ξout,a,1 of G1 is connected to the input ξin,a,2 to G2, and the outgoing
signal ξout,b,2 from G2 is the input to G1. EPR entanglement is generated between outputs
ξout,a,2 and ξout,b,1. A more detailed description of the NOPA will be given in Section 2.3.
EPR entanglement generated from a dual-NOPA coherent feedback network where two
NOPAs are placed at two endpoints (Alice and Bob) separately is compared to that of a
single NOPA located in the middle (at Charlie’s), at a location between Alice’s and Bob’s,
in [7]. When amplification losses are neglected, under the same values of configuration pa-
rameters such as transmission losses, decay rates and pump power, the coherent feedback
network improves EPR entanglement between two outgoing fields in terms of increasing
the level of two-mode squeezing that can be achieved over the single NOPA, see [7]. Also,
with the same setting of decay rates and when losses are neglected, the coherent feedback
network requires less pump power to generate the same degree of two-mode squeezing com-
pared to the single NOPA. Thus the coherent feedback scheme has improvement in EPR
entanglement generation.

Based on the above facts, we consider a system consisting of two NOPAs connected in
a coherent feedback loop with a static passive linear network which is denoted by a 6× 6
complex unitary matrix S̃, as shown in Fig. 2. The passive linear network can be assembled
by several static linear optical devices, such as beamsplitters and phase shifters, of which
the transformation functions are 2 × 2 unitary matrices [14]. The EPR entanglement
between the continuous-mode fields ξout,1 and ξout,2 is of interest. The coherent feedback
network in Fig. 1 corresponds to a special case where S̃ takes on a particular value that
will be given in Eq. (17) in Section 3. EPR entanglement is quantified by the amount of
two-mode squeezing between the two fields at the frequency ω = 0 rad/s. The two-mode
squeezing will be given by a certain nonnegative-valued function V (0; S̃) of the matrix
S̃ (to be defined in Section II-B), and strong EPR entanglement corresponds to a small
value of this function. Thus, the aim of the paper is to optimize the two-mode squeezing
by finding a local minimum (denoted by S̃lm) of the real-valued function V (0; S̃) subject
to the constraint that S̃ is unitary, which can be solved by a modified steepest descent
algorithm on a Stiefel manifold as proposed in [15], with S̃cfb as an initial point. Via the
decomposition of S̃lm into the product of 15 two-level unitary matrices [18], we can then
find the configurations of optical devices that realizes the passive linear network S̃lm.

The structure of the rest of this paper is as follows. A brief review about linear quantum
systems, EPR entanglement between two continuous-mode fields and dynamics of a NOPA
is given in Section 2. Section 3 describes the system of interest and Section 4 explains
the optimization process. In Section 5, by a decomposition of the unitary matrix S̃lm, a
detailed physical configuration of the whole network is presented. Finally Section 6 gives
a short conclusion of this paper.
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2 Preliminaries

The notations used in this paper are as follows: ı =
√
−1 and Re denotes the real part of

a complex number. The conjugate of a matrix is denoted by ·#, ·T denotes the transpose
of a matrix of numbers or operators and ·∗ denotes (i) the complex conjugate of a number,
(ii) the conjugate transpose of a matrix, as well as (iii) the adjoint of an operator. Om×n
is an m by n zero matrix and In is an n by n identity matrix. Trace operator is written
as Tr[·] and tensor product is ⊗. Also, eig(·) denotes eigenvalues of a matrix and max(·)
denotes the maximum value.

2.1 Linear quantum systems

An open linear quantum system without a scattering process contains n-bosonic modes
aj(t) (j = 1, . . . , n) satisfying [ai(t), aj(t)

∗] = δij. The system interacts its environment via
a time-varying interaction Hamitonian

Hint(t) = ı
m∑
j=1

(Ljξj(t)
∗ − L∗jξj(t)), (1)

where Lj is the j-th system coupling operator and ξj(t) (j = 1, . . . ,m) is the field operator
describing the j-th environment field [5]. When the environment is under the condition of
the Markov limit, the field operators satisfy [ξj(t), ξj(s)

∗] = δ(t−s), where δ(t) denotes the
Dirac delta function. When Lj is linear and H is quadratic in aj and a∗j , the Heisenberg
evolutions of mode aj and output filed operator ξout,j are defined by aj(t) = U(t)∗ajU(t)

and ξout,j(t) = U(t)∗ξin,j(t)U(t) with unitary U(t) = exp−→ (−i
∫ t

0
Hint(s)ds) and satisfy [8],

[9]

ż(t) = Az(t) +Bξ(t), (2)

ξout,j(t) = Cz(t) +Dξ(t). (3)

where

z = (aq1, a
p
1, . . . , a

q
n, a

p
n)T ,

ξ = (ξq1, ξ
p
1 , . . . , ξ

q
m, ξ

p
m)T ,

ξout = (ξqout,1, ξ
p
out,1, . . . , ξ

q
out,l, ξ

p
out,l)

T , (4)

with quadratures [8, 9]

aqj = aj + a∗j , apj = (aj − a∗j )/i,
ξqj = ξj + ξ∗j , ξpj = (ξj − ξ∗j )/i. (5)

2.2 EPR entanglement between two continuous-mode fields

It is important to note that the output fields ξout,1 and ξout,2 are two continuous-mode
Gaussian fields rather than two single mode Gaussian fields. That is, each of ξout,1 and
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ξout,2 contain a continuum of modes rather than just a single mode. Therefore, the en-
tanglement of the fields cannot be measured using entanglement measures for bipartite
Gaussian systems, such as the well-known logarithmic negativity measure [10]. Instead,
when the incoming fields are in the vacuum state, the EPR entanglement of ξout,1 and ξout,2
is assessed in the frequency domain using two functions V+(ıω) and V−(ıω) [2, 4, 11] that
will be detailed below .

F (ıω), the Fourier transform of f(t) is defined as F (ıω) = 1√
2π

∫∞
−∞ f (t) e−ıωtdt. Sim-

ilarly, we get the Fourier transforms of ξout,1(t), ξout,2(t), z(t) and ξ(t), as Ξ̃out,1 (ıω),

Ξ̃out,2 (ıω), Z(ıω) and Ξ(ıω), respectively. Using (2), (3) and the definition of the Fourier
transform, we get

Ξ̃qout,1(ıω) + Ξ̃qout,2(ıω) =
∫∞
−∞ ξ

q
out,1(t)e−ıωtdt+

∫∞
−∞ ξ

q
out,2(t)e−ıωtdt = C1Z (ıω) +D1Ξ (ıω) ,

Ξ̃pout,1(ıω)− Ξ̃pout,2(ıω) =
∫∞
−∞ ξ

p
out,1(t)e−ıωtdt−

∫∞
−∞ ξ

p
out,2(t)e−ıωtdt = C2Z (ıω) +D2Ξ (ıω) ,(6)

where C1 = [1 0 1 0]C, C2 = [0 1 0 −1]C, D1 = [1 0 1 0]D and D2 = [0 1 0 −1]D.

The two-mode squeezing spectra V+(ıω) and V−(ıω) are defined as

〈(Ξ̃qout,1(ıω) + Ξ̃qout,2(ıω))∗(Ξ̃qout,1(ıω′) + Ξ̃qout,2(ıω′))〉 = V+(ıω)δ(ω − ω′),

〈(Ξ̃pout,1(ıω)− Ξ̃pout,2(ıω))∗(Ξ̃pout,1(ıω′)− Ξ̃pout,2(ıω′))〉 = V−(ıω)δ(ω − ω′), (7)

where 〈·〉 denotes quantum expectation. V+(ıω) and V−(ıω) are real valued and can be
easily calculated as described in [12, 13],

V+(ıω) =Tr [H1(ıω)∗H1(ıω)] , (8)

V−(ıω) =Tr [H2(ıω)∗H2(ıω)] , (9)

where H1 and H2 are transfer functions

Hj(ıω) = Cj (ıωI −A)−1B +Dj , (j = 1, 2). (10)

Denote V (ıω) = V+(ıω) +V−(ıω). A sufficient condition for the fields ξout,1 and ξout,2 to be
EPR-entangled at the frequency ω rad/s is [11],

V (ıω) < 4. (11)

Ideally, we would like V (ıω) = V±(ıω) = 0 for all ω, which denotes infinite-bandwidth two-
mode squeezing, representing an ideal Einstein-Podolski-Rosen state. However, in reality
the ideal EPR correlation can not be achieved, so in practice the goal is to make V (ıω) as
small as possible over a wide frequency range [11].

Define ξψ1

out,1 = eıψ1ξout,1, ξψ2

out,2 = eıψ2ξout,2 with ψ1, ψ2 ∈ (−π, π] and denote the corre-

sponding two-mode squeezing spectra as V ψ1,ψ2
± (ıω, ψ1, ψ2), we have the following definition

of EPR entanglement.

Definition 1 Fields ξout,1 and ξout,2 are EPR entangled at the frequency ω rad/s if ∃ ψ1, ψ2 ∈
(−π, π] such that

V ψ1,ψ2
+ (ıω, ψ1, ψ2) + V ψ1,ψ2

− (ıω, ψ1, ψ2) < 4. (12)
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Unless otherwise specified, throughout the paper, EPR entanglement refers to the case with
ψ1 = ψ2 = 0. EPR entanglement is said to vanish at ω if there are no values of ψ1 and ψ2

satisfying the above criterion.

Following [7, 12], we have a good approximation V+(iω) ≈ V+(0) and V−(iω) ≈ V−(0)
at low frequencies. Thus in the rest of paper, we focus on V±(0) at frequency ω = 0 as a
measure to quantify EPR entanglement.

2.3 The nondegenerate optical parametric amplifier (NOPA) and
the dual-NOPA coherent-feedback network

A NOPA (Gi) is a linear quantum system with four ingoing fields in the vacuum state and
two outgoing fields, as shown in Fig. 3. By shining the pump beam onto the χ(2) nonlinear

Figure 3: Input/output block representation of a NOPA.

crystal, the two oscillator modes ai and bi inside the cavity become coupled via the two-
mode squeezing Hamiltonian H = ı

2
ε (a∗i b

∗
i − aibi), where ε is a real coupling coefficient

related to the amplitude of the pump beam [4]. The modes satisfy the commutation
relations [ai, a

∗
i ] = 1, [bi, b

∗
i ] = 1, [ai, bi] = 0, and [ai, b

∗
i ] = 0 [5]. Mode ai is coupled to

ingoing noise ξin,a,i and amplification loss ξloss,a,i via the coupling operators L1 =
√
γa

and L3 =
√
κa, respectively, for some constant damping rates γ and κ; similarly mode bi

interacts with input signal ξin,b,i and additional noise ξloss,b,i by operators L2 =
√
γb and

L4 =
√
κb. The dynamics of the NOPA (Gi) is

ȧi (t) =−
(
γ + κ

2

)
ai (t) +

ε

2
b∗i (t)−√γξin,a,i (t)−

√
κξloss,a,i (t) ,

ḃi (t) =−
(
γ + κ

2

)
bi (t) +

ε

2
a∗i (t)−√γξin,b,i (t)−

√
κξloss,b,i (t) , (13)

with outputs

ξout,a,i (t) =
√
γai (t) + ξin,a,i (t) ,

ξout,b,i (t) =
√
γbi (t) + ξin,b,i (t) . (14)

More details of the standard NOPA set up can be found in [4].
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3 The system model

We consider the system shown in Fig. 2. The whole network consists of two NOPAs and a
static passive linear sub-system denoted by S̃. The sub-system has six input signals ξin,1,
ξin,2, ξout,a,1, ξout,b,1, ξout,a,2 and ξout,b,2, among which ξout,a,1, ξout,b,1 are outputs of NOPA1,
and ξout,a,2, ξout,b,2 are outputs of NOPA2. Among the six outgoing beams of the passive
sub-system are the two ingoing signals into NOPA1 ξin,a,1 and ξin,b,1, the two input beams
of NOPA2 ξin,a,2 and ξin,b,2, and the EPR entanglement of interest is between ξout,1 and
ξout,2. The ingoing fields of the passive linear network are all in the vacuum state [14]. The

transfer function of the static sub-system is a 6× 6 matrix S̃, thus we have

ξout,1
ξout,2
ξin,a,1
ξin,b,1
ξin,a,2
ξin,b,2

 = S̃



ξin,1
ξin,2
ξout,a,1
ξout,b,1
ξout,a,2
ξout,b,2

 (15)

where S̃ is a complex unitary matrix [14],

S̃∗S̃ = S̃S̃∗ = I6. (16)

For the static passive linear matrix for the dual-NOPA coherent feedback network [7]
shown in Fig. 1, the matrix S̃ is

S̃cfb =



0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 0 0

 . (17)

Both NOPAs (G1 and G2) in the network are identical with the same coupling constants
ε, γ and κ as discussed in Section 2.3. G1 has two modes a1 and b1, and G2 contains modes
a2 and b2. The oscillation modes follow the commutation relations [ai, a

∗
j ] = δij, [ai, bj] = 0,

[ai, b
∗
j ] = 0, [ai, aj] = 0 and [bi, bj] = 0 (i, j = 1, 2).

Define the following quadratures

z =[aq1, a
p
1, b

q
1, b

p
1, a

q
2, a

p
2, b

q
2, b

p
2]T ,

ξloss =[ξqloss,a,1, ξ
p
loss,a,1, ξ

q
loss,b,1, ξ

p
loss,b,1, ξ

q
loss,a,2, ξ

p
loss,a,2, ξ

q
loss,b,2, ξ

p
loss,b,2]T ,

ξ(i) =[ξqin,1, ξ
p
in,1, ξ

q
in,2, ξ

p
in,2]T ,

ξ(o) =[ξqout,1, ξ
p
out,1, ξ

q
out,2, ξ

p
out,2]T ,

ξ =[ξ(i)T , ξTloss]
T . (18)

Define the real unitary matrix S as the quadrature form of matrix S̃. Based on the defining
equations for the quadratures (5), the relation between S and S̃ is

S =
1

2
KS̃K∗ +

1

2
K#S̃#KT , (19)
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where

K = I6 ⊗
[

1
−ı

]
. (20)

According to the dynamics of the two NOPAs given by (13) and (14), and similar to
the discussion in Section 2.1, we have

ż (t) =Az (t) +Bξ (t) ,

ξ(o) (t) =Cz (t) +Dξ (t) . (21)

A, B, C and D are real matrices

A = R− γ(X − I8)

B =
[
−√γXS21 −

√
κI8

]
C =

√
γS12X

D = (S11 + S12XS21)
[
I4 O4×8

]
(22)

where

R =



−γ+κ
2 0 ε

2 0 0 0 0 0

0 −γ+κ
2 0 − ε

2 0 0 0 0
ε
2 0 −γ+κ

2 0 0 0 0 0

0 − ε
2 0 −γ+κ

2 0 0 0 0

0 0 0 0 −γ+κ
2 0 ε

2 0

0 0 0 0 0 −γ+κ
2 0 − ε

2

0 0 0 0 ε
2 0 −γ+κ

2 0

0 0 0 0 0 − ε
2 0 −γ+κ

2


,

X = (I8 − S22)−1 ,

S11 =
[
I4 O4×8

]
S

[
I4

O8×4

]
,

S21 =
[
O8×4 I8

]
S

[
I4

O8×4

]
,

S12 =
[
I4 O4×8

]
S

[
O4×8

I8

]
,

S22 =
[
O8×4 I8

]
S

[
O4×8

I8

]
. (23)

More details of how to obtain (21) are given in Appendix 1. Based on (8), (9) and (10),
we have

H = D − CA−1B

H1 =
[

1 0 1 0
]
H,

H2 =
[

0 1 0 −1
]
H, (24)
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and the two-mode squeezing spectra are

V (0) = V+(0) + V−(0) = Tr [H∗1H1 +H∗2H2] = Tr [H∗M1,2H] , (25)

where

M1,2 =


1 0 1 0
0 1 0 −1
1 0 1 0
0 −1 0 1

 . (26)

Since V (0) is parametrized by the matrix S̃ or S, we define V (0; S̃) as the value of V (0)
for a fixed value of S̃, and V (0;S) as the value of V (0) for a fixed value of S.

4 Optimization of S̃

Using the same parameters (total pump power and damping rates) as that of the coherent-
feedback dual NOPA system described in [7], for each NOPA we set the constant relating
to the amplitude of the pump beam ε = 0.4γr and the damping rate γ = γr, where
γr = 7.2 × 107 Hz is the reference value for the transmissivity rate of the mirrors. We
consider the system in the ideal case, where there are no losses (κ = 0). Following Section
3, we compute the two-mode squeezing of the dual-NOPA coherent feedback network to
be 10 log10 V (0; S̃cfb) = −26.235 dB.

In this section, we aim to find a complex unitary matrix S̃lm at which the cost function
V (0; S̃) is locally minimized. We will numerically solve this optimization problem using
the method of modified steepest descent on a Stiefel manifold, which reformulates the
problem with a unitary constraint as an unconstrained problem on a Stiefel manifold. The

Stiefel manifold in our problem is the set St(6, 6) =
{
S̃ ∈ C6×6 : S̃∗S̃ = I

}
. The modified

steepest descent on a Stiefel manifold method employs the first-order derivative of the cost
function, more details about this algorithm can be found in [15] .

For any square matrix Y such that I − Y is invertible, we have (I − Y )−1 = (I −
Y )−1(I + Y − Y ) = I + (I − Y )−1Y . Based on the above fact and equations (40), (22) and
(24), we expand H(S + ∆S) as H(S) + H(∆S) + O(∆S2), where O(∆S2) denotes terms
that depend on terms that are products containing at least two ∆S.

By using (25), we have

V (0;S + ∆S) = Tr [H(S + ∆S)∗M1,2H(S + ∆S)]

= V (0;S) + Tr[H(∆S)∗M1,2H(S) +H(S)∗M1,2H(∆S)] +O(‖∆S‖2),(27)

where O(‖∆S‖2) denotes that the function O(‖∆S‖2) satisfies O(‖∆S‖2)
‖∆S‖2 ≤ c for some

positive constant c for all ‖∆S‖ > 0 sufficiently small. Since H(∆S) and H(S) are real
matrices at ω = 0, M1,2 is a real symmetric matrix, and a matrix and its transpose have
the same trace, we get

V (0;S + ∆S) = V (0;S) + 2 Tr[MH(∆S)] +O(‖∆S‖2), (28)
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where M = H(S)∗M1,2. Based on (19) and the property that trace is invariant under cyclic
permutations, we have

V (0; S̃ + ∆S̃) = V (0; S̃) + Re Tr[∆S̃∗DS̃ ] +O(‖∆S̃‖2), (29)

where

DS̃ = 2K∗N∗K, (30)

N =

([
I4

O8×4

] [
I4 O4×8

]
M +

[
O4×8

I8

]
XS21

[
I4 O4×8

]
M

−√γ
[
O4×8

I8

]
XA−1BM

)([
I4 O4×8

]
+ S12X

[
O8×4 I8

]
+
√
γCA−1X

[
O8×4 I8

])
. (31)

When ∆S̃ approaches the zero matrix O6,6, DS̃ is the directional derivative of V (0; S̃) at
S̃ in the direction ∆S̃ [15].

By applying the modified steepest descent on Stiefel manifold method, we use the
following steps to find a matrix S̃lm at which the dual-NOPA system is stable and V (0; S̃)
is locally minimized. The system is stable if and only if the matrix A in equation (21)
is Hurwitz, that is, real parts of all the eigenvalues of A are negative. Denote the vector
of all the mode operators of our system by z̃(t) = [a1(t), b1(t), a2(t), b2(t)]T and define the
intra-cavity photon number operator as n(t) = z̃(t)∗z̃(t). If the system is stable, we have
limt→∞〈z̃(t)〉 = 0 [9]. Moreover, based on the quantum Ito rules [16], Section 2.5 in [17]
verifies that limt→∞〈n(t)〉 is bounded. Therefore, a stable system physically means that
the mean total number of intra-cavity photons in the system would not keep increasing as
time t approaches infinity. Note that, based on (22) and (24), to get V (0; S̃), (I8 − S22)
and A must be invertible. The algorithm is initiated at the point S̃cfb given by (17), the
static passive linear matrix denoting the dual-NOPA coherent feedback network shown in
Fig. 1.

Step 1. Start from S̃ = S̃cfb, choose step size ρ = 1.

Step 2. Calculate DS̃ , the directional derivative of V (0; S̃), by using equation (30),
and compute the descent direction Z = S̃D∗

S̃
S̃ −DS̃.

Step 3. Calculate 〈Z,Z〉 = Tr[Z∗(I − 1
2
S̃S̃∗)Z]. If

√
〈Z,Z〉 is smaller than 10−3, stop

and set S̃lm = S̃.

Step 4. Calculate S̃1 = π(S̃+2ρZ) (Note: if the singular value decomposition (SVD) of
a matrix X is X = UΣV ∗, then π(X) = UIV ∗). Calculate A and (I8−S22) corresponding
to S̃1 based on (22) and (24). If max(Re(eig(A))) > 0 or det(A) = 0 or det(I8 − S22) = 0
go to step 5. Otherwise, if V (S̃)− V (S̃1) ≥ ρ〈Z,Z〉, set 2ρ→ ρ, and go back to Step 4.

Step 5. Calculate S̃2 = π(S̃ + ρZ). Compute A and (I8 − S22) corresponding to S̃2.
While max(Re(eig(A))) > 0 or det(A) = 0 or det(I8 − S22) = 0, set 1

2
ρ → ρ, go back to

step 5. If V (S̃)− V (S̃2) < 1
2
ρ〈Z,Z〉 , set 1

2
ρ→ ρ, and go back to Step 5.

Step 6. Set S̃ = S̃2 and repeat Step 2.
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Thus, we get S̃lm and the corresponding gradient G = DS̃ shown as (44) and (45) in
Appendix 2, the operator norm of G is ‖ G ‖= 6.497×10−4, the norm of a tangent direction
Z is

√
〈Z,Z〉 = 9.112 × 10−4 and EPR entanglement is locally maximized for a locally

minimum value of V (0; S̃). The locally minimized two-mode squeezing is 10 log10 V (S̃lm) =
10 log10(4.1824×10−8) = −73.786 dB, which is about 47.551 dB less than the value reported
in [7] for the dual NOPA coherent feedback system in Fig. 1 for the same values of
the parameters of the NOPAs. Also, it is checked by equations (8), (9) and (24) that,
V+(S̃lm) ≈ V−(S̃lm).

5 Decomposition of unitary matrices

As introduced in Section 1, the 6×6 matrix S̃lm denotes a network constructed from static
passive linear optical devices. To find the specific physical configuration of the network,
we first employ the approach in [18] to decompose S̃lm as the product of 15 two-level 6× 6
unitary matrices, that is, S̃lm = Π15

k=1S̃k. Here, a two-level n × n unitary matrix refers
to a special type of unitary matrix that has a unitary 2 × 2 principal submatrix and the
remaining matrix elements are the same as those of the n × n identity matrix. Each of
these two-level unitary matrices has determinant with modulus 1. The reason we use this
method here is that any two-level unitary matrix is isomorphic to the set of 2× 2 unitary
matrices, which represent the transformation performed in the Heisenberg picture by static
linear optical devices, such as beam splitters and phase shifters.

The decomposition of S̃lm does not give a unique group of two-level unitary matri-
ces. Types of two-level unitary matrices in a group are determined by a vector P =
(p1, p2, · · · , p6), where entries correspond to a permutation of (1, 2, · · · , 6). A two-level
matrix is named P-unitary matrix of type k if row and column indexes of its principal
submatrix are pk and pk+1. By setting P = (6, 5, 4, 3, 2, 1) and using the Matlab program
pub.m developed by [18], we find a group of two-level unitary matrices S̃k (k ∈ [1, 13])
shown as (46) in Appendix 2.

A unitary matrix representing a beamsplitter has the form [19][
α β
−β α

]
, (32)

where transmission rate α and reflection rate β are real numbers satisfying |α|2 + |β|2 =
1. Thus, S̃k (k ∈ {3, 5, 6, 8, 12, 13}) represents transformation by a beamsplitter, with
parameters

α3 = −α13 = 0.9999632197,

α8 = −α5 = 0.0084711563,

α12 = −α6 = 0.0123787627,

βk =
√

1− α2
k, k ∈ {3, 5, 6, 8, 12, 13}. (33)

The configuration of the whole network is shown in Fig. 4. The network requires high
accuracy of the value of the parameter αk. To achieve 10 log10 V (S̃lm) = −73.786 dB, we
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need to keep at least six decimal places for αk. However, with a lower accuracy of less than
six digits but more than one digit, we still get better two-mode squeezing than that of
the dual-NOPA coherent feedback network. For example, by rounding off to two decimal
places, that is, α3 = −α13 = 1, α8 = α12 = −α5 = −α6 = 0.01, with βk =

√
1− α2

k

(k ∈ {3, 5, 6, 8, 12, 13}) as before, the two mode squeezing of the optimized network is
−36.546 dB. When accuracy is less than two decimal digits, the network becomes exactly
the dual-NOPA coherent feedback network.

Figure 4: Physical configuration of the optimized dual-NOPA network. The system con-
tains NOPA1, NOPA2 and a static passive linear network which consists of six beam
splitters S̃k, k ∈ {3, 5, 6, 8, 12, 13} (denoted by the red lines) with the parameters αk as
shown in equation (33). For each NOPA, κ = 0, ε = 0.4γr, γ = γr, where γr = 7.2 × 107.
The black lines are mirrors that are fully reflecting. Inputs fields ξin,1 and ξin,2 are in the
vacuum state and EPR entanglement is generated between the two outputs ξout,1 and ξout,2
as discussed in Section 4.

6 Conclusion

This paper has studied the optimization of EPR entanglement in terms of maximising the
two-mode squeezing generated by a quantum network that contains two NOPAs connected
by a static passive linear network. The transformation implemented by the passive network
is a 6× 6 complex unitary matrix. By employing the modified steepest descent on Stiefel
manifold method, we have found the passive network S̃lm at which the two-mode squeez-
ing function V (0; S̃) used to evaluate the EPR entanglement is approximately minimized
locally. It is shown that V+(0; S̃lm) ≈ V−(0; S̃lm) and V (0; S̃lm) = 4.1824 × 10−8, which
approximates the ideal case of infinite squeezing where V+(0; S̃) = V−(0; S̃) = 0. Also,
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with the same values of the parameters ε and γ and without considering losses (κ = 0 ),
the optimized network improves the EPR entanglement by a significant reduction of 47.551
dB in the two-mode squeezing compared to the one of the dual-NOPA coherent feedback
network of Fig. 1 studied in [7]. Finally, by decomposing S̃lm into a product of two-level
unitary matrices, we have found the physical set up of the optimized network as shown in
Fig. 4. The network requires that beamsplitters have highly accurate realization of the
transmission rates αk, k ∈ {3, 5, 6, 8, 12, 13} with an accuracy of at least six decimal places
to achieve the two-mode squeezing 10 log10 V (0; S̃lm) = −73.786 dB. If accuracy is less than
six and more than one decimal digits, the two-mode squeezing is lower than −73.786 dB
but better than that of the dual-NOPA coherent feedback network in Fig. 1. If accuracy
of αk is zero or one decimal digit, the network coincides with the dual-NOPA coherent
feedback network in Fig. 1.

APPENDIX 1

For convenience, define the following quadratures

z =[aq1, a
p
1, b

q
1, b

p
1, a

q
2, a

p
2, b

q
2, b

p
2]T ,

ξin =[ξqin,a,1, ξ
p
in,a,1, ξ

q
in,b,1, ξ

p
in,b,1, ξ

q
in,a,2, ξ

p
in,a,2, ξ

q
in,b,2, ξ

p
in,b,2]T ,

ξout =[ξqout,a,1, ξ
p
out,a,1, ξ

q
out,b,1, ξ

p
out,b,1, ξ

q
out,a,2, ξ

p
out,a,2, ξ

q
out,b,2, ξ

p
out,b,2]T ,

ξloss =[ξqloss,a,1, ξ
p
loss,a,1, ξ

q
loss,b,1, ξ

p
loss,b,1, ξ

q
loss,a,2, ξ

p
loss,a,2, ξ

q
loss,b,2, ξ

p
loss,b,2]T ,

ξ(i) =[ξqin,1, ξ
p
in,1, ξ

q
in,2, ξ

p
in,2]T , ξ(o) = [ξqout,1, ξ

p
out,1, ξ

q
out,2, ξ

p
out,2]T ,

ξ1 =[ξ(o), ξin]T , ξ2 = [ξ(i), ξout]
T ,

ξ′ =[ξin, ξloss]
T , ξ = [ξ(i), ξloss]

T . (34)

According to (13) and (14), we have

ż (t) = Rz (t) +
[
−√γI8 −

√
κI8

]
ξ′ (t) , (35)

ξout (t) =
√
γz (t) + ξin (t) , (36)

where R is as shown in (23).

Define

ξ1 (t) = Sξ2 (t) , (37)

in which the real unitary matrix S is the quadrature form of S̃, satisfying the following
relations

STS = SST = I12,

SJnS
T = Jn, (38)

where

Jn = I6 ⊗
[

0 1
−1 0

]
. (39)
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Let

S =

[
S11 S12

S21 S22

]
, (40)

with

S11 =
[
I4 O4×8

]
S

[
I4

O8×4

]
,

S21 =
[
O8×4 I8

]
S

[
I4

O8×4

]
,

S12 =
[
I4 O4×8

]
S

[
O4×8

I8

]
,

S22 =
[
O8×4 I8

]
S

[
O4×8

I8

]
. (41)

We have

ξ(o) = S11ξ
(i) + S12ξout, (42)

ξin = S21ξ
(i) + S22ξout. (43)

Based on (35), (36), (42) and (43), we obtain (21).

APPENDIX 2

S̃lm and its corresponding gradient G = DS̃ are as shown in (44) and (45), respectively.

The group of two-level unitary matrices S̃k (k ∈ [1, 13]) as the decomposition of S̃lm in

S̃lm =


−0.012305658659326 0.000000000000071 0.008576364236157 −0.000000000000142 0.999887502042829 0.000000000000110
−0.000000000000071 −0.012305658659326 −0.000000000000109 0.999887502042830 0.000000000000142 0.008576364236157
0.999887502042829 0.000000000000001 −0.008471156255372 0.000000000000069 0.012378318554964 −0.000000000000048
0.000000000000051 0.008576364236158 0.000000000000085 −0.008471156255372 −0.000000000000112 0.999927340104363
0.008576364236157 −0.000000000000050 0.999927340104363 0.000000000000111 −0.008471156255372 −0.000000000000085
−0.000000000000001 0.999887502042829 0.000000000000047 0.012378318554963 −0.000000000000069 −0.008471156255373

(44)
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G = 10−3


0.409017637139186 −0.000013389581000 −0.292752071754183 −0.131726307590905 0.007542180013146 0.092604228142405
0.000013384124031 0.409017646234133 −0.092604224236176 0.007631674074983 0.131726307489625 −0.292814986508976
0.007586926959628 −0.000000246987169 −0.005430300582194 −0.002443410193280 0.000139901426214 0.001717728155075
−0.000009579672002 −0.292783532386752 0.066288073024820 −0.005462914965842 −0.094292493155211 0.209603196744500
−0.292783525876746 0.000009583578405 0.209558161024828 0.094292493228142 −0.005398853213792 −0.066288075820747
0.000000246886333 0.007586927128612 −0.001717728084123 0.000141561463910 0.002443410191339 −0.005431467597355

(45)

Section 5 is

S̃1 = S̃15 = I6,

S̃2 = S̃7 = S̃11 = S̃14 =



1 0 0 0 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , S̃3 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 α3 β3 0 0
0 0 −β3 α3 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

S̃4 = S̃9 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 1

 , S̃5 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 α5 β5

0 0 0 0 −β5 α5

 ,

S̃6 =



α6 β6 0 0 0 0
−β6 α6 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , S̃8 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 α8 β8 0 0
0 0 −β8 α8 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

S̃10 =



−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , S̃12 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 α12 β12 0 0
0 0 −β12 α12 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

S̃13 =



α13 β13 0 0 0 0
−β13 α13 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (46)
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