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Optimal Sensor Scheduling and Remote Estimation over an Additive
Noise Channel

Xiaobin Gao, Emrah Akyol, and Tamer Başar

Abstract— We consider a sensor scheduling and remote
estimation problem with one sensor and one estimator. At each
time step, the sensor makes an observation on the state of a
source, and then decides whether to transmit its observation to
the estimator or not. The sensor is charged a cost for each trans-
mission. The remote estimator generates a real-time estimate
on the state of the source based on the messages received from
the sensor. The estimator is charged for estimation error. As
compared with previous works from the literature, we further
assume that there is an additive communication channel noise.
As a consequence, the sensor needs to encode the message before
transmitting it to the estimator. For some specific distributions
of the underlying random variables, we obtain the optimal
solution to the problem of minimizing the expected value of
the sum of communication cost and estimation cost over the
time horizon.

I. I NTRODUCTION

The sensor scheduling and remote state estimation prob-
lem arises in the applications of wireless sensor networks,
such as environmental monitoring and networked control sys-
tems. As an example of environmental monitoring, people in
the National Aeronautics and Space Administration (NASA)
Earth Science group want to monitor the evolution of the
soil moisture, which is used in weather forecast, ecosystem
process simulation, etc [1]. In order to achieve that goal,
the sensor networks are built over an area of interest. The
sensors collect data on the soil moisture and send them to
the decision unit at NASA via wireless communication. The
decision unit at NASA forms estimates on the evolution
of the soil moisture based on the messages received from
the sensors. Similarly, in networked control systems, the
objective is to control some remote plants. Sensor networks
are built to measure the states of the remote plants, which
then transmit their measurements to the controller via a
wireless communication network. The controller estimates
the state of the remote plant and generates the control signal
based on that estimate [2]. In both scenarios, the quality
of the remote state estimation strongly affects the qualityof
decision making at the remote site, that is, weather prediction
or control signal generation. The networked sensors are
usually constrained by limits on energy. They are not able to
communicate with the estimator at every time step and thus,
the estimator has to produce its best estimate based on the
partial information received from the sensors. Therefore,the
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communication between the sensors and the estimator should
be scheduled wisely, and the estimator should be designed
properly, so that the state estimation error is minimized
subject to the communication constraints.

The sensor scheduling and remote state estimation prob-
lem has been extensively studied in recent years. Imer and
Başar [3] considered the model where the sensor is allowed
to communicate with the estimator only a limited number
of times. The continuous-time version of the problem in
[3] has been studied by Rabiet al. [4]. Xu and Hespanha
[5] considered the networked control problem involving the
state estimation and communication scheduling, which can
be viewed as the sensor scheduling and remote estimation
problem. Wu et al. [6] considered the sensor scheduling
and estimation problem subject to constraints on the average
communication rate over the infinite-time horizon, which can
also be viewed as Kalman-filtering with scheduled obser-
vations. Lipsa and Martins [7] considered the setup where
the sensor is not constrained by communication times but is
charged a communication cost. Nayyaret al. [8] considered
a similar problem with an energy harvesting sensor.

In previous works, the communication between the sensor
and the estimator has been assumed to be perfect (no additive
channel noise), which may not be realistic, even though
it was an important first step. This paper investigates the
effect of communication channel noise on the design of
optimal sensor scheduling and remote estimation strategies.
We consider a discrete time sensor scheduling and remote
estimation problem over a finite-time horizon, where there
is one sensor and one remote estimator. We assume that at
each time step, the sensor makes a perfect observation on the
state of an independent identically distributed (i.i.d.) source.
Next, the sensor decides whether to transmit its observation
to the remote estimator or not. The sensor is charged a
cost for each transmission (communication cost). Since the
communication channel is noisy, the sensor encodes the
message before transmitting it to the estimator. The remote
estimator generates real-time estimate on the state of the
source based on the noise corrupted messages received from
the sensor. The estimator is charged for estimation error
(estimation cost). Our goal is to design the communication
scheduling strategy and encoding strategy for the sensor, and
the estimation strategy (decoding strategy) for the estimator,
to minimize the expected value of the sum of communication
cost and estimation cost over the time horizon. Our solu-
tion consists of a threshold-based communication scheduling
strategy, and a pair of piecewise linear encoding/decoding
strategies. We show that the proposed solution is optimal

http://arxiv.org/abs/1510.00064v1


when the random variables have some specific distributions.

II. PROBLEM FORMULATION

A. System Model

Fig. 1. System model

Consider a discrete time sensor scheduling and remote
estimation problem over a finite-time horizon, that is,t =
1, 2, . . . , T . In the problem, there isone sensor,one encoder
and one remote estimator (which is also called “decoder”).
The sensor observes an independent identically distributed
(i.i.d.) stochastic process,{Xt}, Xt ∈ R, which has Laplace
density,pX , with parameters(0, λ−1). Hence,

pX(x) =







1
2λe

−λx, if x ≥ 0

1
2λe

λx, if x < 0

Assume that at timet the sensor has perfect observation
on Xt. Then the sensor decides whether to transmit the
measurement to the encoder or not. LetUt ∈ {0, 1} be the
sensor’s decision at timet, whereUt = 0 stands for no
communication andUt = 1 stands for communication. If
the sensor communicates at timet, it will be charged a cost
c. “No communication” results in zero communication cost.
Assume that the communication between the sensor and the
encoder is perfect. Denote bỹXt the message received by
the encoder, that is

X̃t =







Xt, if Ut = 1

ǫ, if Ut = 0

whereǫ is a free symbol standing for no message is transmit-
ted. Once the encoder receives the message from the sensor,
it sends an encoded message to the decoder, denoted byYt.
The encoder will not send any message to the decoder if
it does not receive any message from the sensor, which is
denoted byYt = ǫ. Assume that the encoded message is
corrupted by an additive channel noiseVt, Vt ∈ R. {Vt} is
an i.i.d. random process, which is independent of{Xt}. We
take Vt to have gamma distributionΓ(k, θ). Denoting the
message received by the decoder byỸt, we have

Ỹt =







Yt + Vt, if Yt 6= ǫ

ǫ, if Yt = ǫ

When sending the encoded message to the decoder, the
encoder will transmit the sign of̃Xt to the decoder via a
side channel, denoted bySt. Again, the encoder will not
send any message to the decoder via the side channel if it

does not receive any message from the sensor. Assume that
the side channel is noise-free; then

St =







sgn(X̃t), if X̃t 6= ǫ

ǫ, if X̃t = ǫ

After receivingỸt andSt, the decoder produces an estimate
on Xt, denoted byX̂t. The estimator will be charged for
distortion in estimation. Assume that the distortion function
ρ(Xt, X̂t) is the squared error(Xt − X̂t)

2, and the encoder
has average power constraint:

E[Y 2
t |Ut = 1] ≤ PT ,

wherePT is known. The cost at timet is

cUt + (Xt − X̂t)
2
, c > 0,

wherecUt is the communication cost and(Xt − X̂t)
2 is the

estimation cost.

B. Decision Strategies

Assume that at timet, the sensor has memory on all its
observations up tot, denoted byX1:t, and all the decisions
it has made up tot − 1, denoted byU1:t−1. The sensor
determines whether to communicate or not at timet based
on its current information(X1:t, U1:t−1), namely

Ut = ft(X1:t, U1:t−1),

whereft is the scheduling policy of the sensor at timet and
f = {f1, f2, . . . , fT } is the scheduling strategy of the sensor.

Similarly, at time t, the encoder has memory on all the
messages received from the sensor up tot, denoted byX̃1:t,
and all the encoded messages it has sent to the decoder
up to t − 1, denoted byY1:t−1. The encoder generates the
encoded message at timet based on its current information
(X̃1:t, Y1:t−1), namely

Yt = gt(X̃1:t, Y1:t−1),

wheregt is the encoding policy of the encoder at timet and
g = {g1, g2, . . . , gT } is the encoding strategy.

Finally, assume that at timet, the decoder has memory on
all the messages received from the encoder up tot, denoted
by Ỹ1:t, S1:t. The decoder generates the estimate at timet

based on its current information(Ỹ1:t, S1:t), namely

X̂t = ht(Ỹ1:t, S1:t)

whereht is the policy of the decoder at timet and h =
{h1, h2, . . . , hT } is the decoding strategy.

Remark 1: Although we do not assume that the encoder
has memory onU1:t, S1:t, yet it can deduce them from̃X1:t.
Similarly, the decoder can obtainU1:t from Ỹ1:t.



C. Assumptions on the Parameters

Denote byσ2
V the variance ofVt, and recall thatVt has

gamma distributionΓ(k, θ). Then,σ2
V = kθ2. Defineα =:

λ
√
PT , andγ := PT

σ2

V

. Assume that

θ =
√

PT .

Then, we have

α = λθ, γ =
1

k
. (1)

Remark 2: These parameters as well as the form of source
and channel noise distributions, even though they might
seem arbitrary at first sight, are carefully chosen to ren-
der the affine encoding and decoding strategies optimal,
as demonstrated later in Lemma 3. In practice, such a
coincidence could be a deliberate objective of an adver-
sarial agent that controls the channel noise density, since
affine encoding/decoding strategies are worst-case optimal
encoding/decoding policies under second order statistical
constraints (such as encoding power) and distortion measures
(such as mean squared error), as studied in [9].

D. Optimization Problem

Consider the system described above, given the time hori-
zon T , the statistics of{Xt} and{Vt}, the communication
costc, and the power constraintPT . Determine the schedul-
ing strategy, encoding strategy, and decoding strategy(f, g, h)
for the sensor, the encoder, and the decoder, respectively,that
minimize the expected value of the sum of communication
and estimation costs overT , namely,

J(f, g, h) = E

{

T
∑

t=1

cUt + (Xt − X̂t)
2

}

subject to the power constraint of the encoder.

III. PRIOR WORK

We review some results of a communication problem stud-
ied in [10]. Consider the communication system described
in Fig.2. The encoder wants to transmit an input signalX

Fig. 2. Communication system considered in earlier work

to the decoder via a communication channel.X is a random
variable,X ∈ R. The communication channel has an additive
channel noiseV . V is also a random variable,V ∈ R. As-
sume thatX andV are independent, and have characteristic
functionsFX(ω) and FV (ω), respectively. Denote byσ2

X

and σ2
V the variances ofX and V , respectively. Since the

communication channel is noisy, the encoder encodes the
message before sending it to the decoder. Assume that the
encoder generates the messageY according to an encoding
policy g:

Y = g(X).

The encoder is constrained by average powerPT such that

E[Y 2] ≤ PT .

The decoder receives the noise corrupted messageY + V ,
denoted byỸ , and generates an estimate ofX , denoted by
X̂, according to some decoding policyh:

X̂ = h(Ỹ ).

Problem 1: Given zero-mean random variablesX andV ,
and the power constraint of the encoderPT , find g and h

that minimize

J(g, h) = E[(X − X̂)2],

subject toE[g2(X)] ≤ PT .
We reproduce the following theorem from [10].
Theorem 1 ([10]): In Problem 1, the optimal encoder and

decoder are both linear if and only if the characteristic
functions ofX andV satisfy

FX(αω) = F
γ
V (ω),

where α =
√

PT

σ2

X

and γ = PT

σ2

V

. Moreover, the linear

encoding/decoding policies(g∗, h∗) are as follows:

Y = g∗(X) = αX,

X̂ = h∗(Ỹ ) = 1
α

γ
γ+1 Ỹ .

(2)

We apply Theorem 1 to obtain the following lemma.
Lemma 1: Consider the communication problem de-

scribed above, assume thatX andV can be written as

X = Xe − λ−1, V = Vg − kθ

whereXe has exponential distribution with parameterλ, and
Vg has gamma distribution with parameters(k, θ). Further-
more, let θ and PT satisfy θ =

√
PT . Then the optimal

encoding/decoding policies(g∗, h∗) are as described in (2)
with α = λ

√
PT andγ = PT

kθ2 .
Proof: From the definitions ofX and V , we have

E[X ],E[V ] = 0, σ2
X = λ−2 and σ2

V = kθ2. Then α =
√

PT

σ2

X

= λ
√
PT andγ = PT

σ2

V

= PT

kθ2 . By the assumptions on

the parameters (1)

FX(αω) = E

[

ejαω(Xe−λ−1)
]

= E
[

ejαωXe
]

e−jαωλ−1

= (1 − jωθ)−1e−jωθ.

Similarly,

FV (ω) = E

[

ejω(Vg−kθ)
]

=
[

(1− jωθ)−1e−jωθ
]k

.

Hence,
F

γ
V (ω) = [FV (ω)]

1

k = FX(αω).

Applying Theorem 1, we obtain the desired result.

We next extend Theorem 1 to variables with non-zero means.

Lemma 2: Let the optimal encoding/decoding policies to
Problem 1 be(g∗, h∗). Consider the communication problem



with non-zero mean random variablesX ′ and V ′; call it
Problem 2. Assume thatX ′ andV ′ are affine transforms of
X andV :

X ′ = aX + b1, V ′ = V + b2,

wherea, b1, b2 are known constants,a ∈ {−1,+1}, b1, b2 ∈
R. Then, the optimal encoding/decoding policies forProblem
2, denoted by(g′∗, h′∗), are

g′∗(X ′) = g∗
(

X′−b1
a

)

,

h′∗(Ỹ ′) = a · h∗(Ỹ ′ − b2) + b1.

Moreover, the costs of the two problems are equivalent.
Proof: For any encoding/decoding policies(g, h) satis-

fying the power constraint inProblem 1, we have

Y = g(X), E[Y 2] ≤ PT , X̂ = h(Ỹ ) = h(Y + V ).

Define the encoding/decoding policies(g′, h′) in Problem 2
as follows:

Y ′ = g′(X ′) = g
(

X′−b1
a

)

X̂ ′ = h′(Ỹ ′) = a · h(Ỹ ′ − b2) + b1.

where Y ′ is the output of the encoder,̃Y ′ is the noise
corrupted message received by the decoder, andX̂ ′ is the
output of the decoder inProblem 2. Furthermore,

Ỹ ′ = Y ′ + V ′,

and

Y ′ = g

(

X ′ − b1

a

)

= g(X) = Y.

Hence,E[Y ′2] = E[Y 2] ≤ PT , which implies that the
pair (g′, h′) satisfies the power constraint of the encoder in
Problem 2. Moreover,

X̂ ′ = a · h(Ỹ ′ − b2) + b1 = a · h(Y ′ + V ′ − b2) + b1,

= a · h(Y + V ) + b1 = aX̂ + b1.

Let J1(g, h) be the cost corresponding to(g, h) in Problem
1 , and J2(g

′, h′) be the cost corresponding to(g′, h′) in
Problem 2. Then,

J2(g
′, h′) = E

[

(

X ′ − X̂ ′
)2
]

= E

[

(

aX + b1 − aX̂ − b1
)2
]

= a2 · E
[

(X − X̂)2
]

= J1(g, h).

Conversely, for any encoding/decoding policies(g′, h′) sat-
isfying the power constraint inProblem 2, define the encod-
ing/decoding policies(g, h) in Problem 1 as follows:

Y = g(X) = g′ (aX + b1) ,

X̂ = h(Ỹ ) = 1
a
[h′(Ỹ + b2)− b1].

By the same procedure it can be shown that the pair(g, h)
satisfies the power constraint of the encoder inProblem 1
andJ1(g, h) = J2(g

′, h′). Therefore, the costs ofProblem 1
andProblem 2 are equivalent. Moreover, if the optimal cost

of Problem 1 is achieved by(g∗, h∗), then the optimal cost
of Problem 2 can be achieved by(g′∗, h′∗).

Lemma 3: Consider the communication problem de-
scribed above, assume that the input signalX has exponential
distribution with parameterλ, and channel noiseV has
gamma distribution with parameters(k, θ). Furthermore, let
θ, PT satisfyθ =

√
PT . Then the optimal encoding/decoding

policies(g∗, h∗) are as follows:

Y = g∗(X) = αX − αλ−1,

X̂ = h∗(Ỹ ) = 1
α

γ
γ+1 Ỹ + γ

γ+1λ
−1,

whereα = λ
√
PT . Moreover, the optimal cost is

J(g∗, h∗) =
1

γ + 1

1

λ2
:= m.

Proof: Applying Lemma 2 to Lemma 1, by letting
a = 1, b1 = λ−1, b2 = kθ, one should obtain optimal encod-
ing/decoding policies(g∗, h∗) described above. Furthermore,

X̂ = 1
α

γ
γ+1 Ỹ + γ

γ+1λ
−1 = 1

α
γ

γ+1(Y + V ) + γ
γ+1λ

−1,

= 1
α

γ
γ+1 (αX − αλ−1 + V ) + γ

γ+1λ
−1,

= γ
γ+1X + 1

α
γ

γ+1V.

Using (1), the cost of(g∗, h∗) is computed as follows:

J(g∗, h∗) = E[(X − X̂)2]

= E

[

(

X − γ
γ+1X − 1

α
γ

γ+1V
)2
]

= 1
(γ+1)2

[

E[X2] + γ2

α2E[V
2]− 2γ

α
E[XV ]

]

= 1
γ+1

1
λ2 .

IV. M AIN RESULTS

Theorem 2: Consider the problem in Section II-D.

1) The optimal sensor scheduling, encoding and decoding
strategies are in the forms of:

Ut = ft(Xt), Yt = gt(X̃t), X̂t = ht(Ỹt, St).

2) The optimal decision strategies are stationary, i.e., there
exists(f∗, g∗, h∗) minimizing

J(f, g, h) = E

{

T
∑

t=1

cUt + (Xt − X̂t)
2

}

,

where

f∗ = {f∗
1 , f

∗
2 , . . . , f

∗
T}, f∗

1 = · · · = f∗
T := f∗,

g∗ = {g∗1 , g∗2 , . . . , g∗T }, g∗1 = · · · = g∗T := g∗,

h∗ = {h∗
1, h

∗
2, . . . , h

∗
T }, h∗

1 = · · · = h∗
T := h∗.

Proof: At time t = T , we want to design(fT , gT , hT )
to minimize

JT1
(fT , gT , hT ) = E

{

cUT + (XT − X̂T )
2
}

,



subject to the power constraint of the encoder, calledProblem
T1. Let IsT , IeT , IdT be the information about the past
system states available to the sensor, the encoder, and the de-
coder, respectively, at timeT , i.e.,IsT = {X1:T−1, U1:T−1},
IeT = {X̃1:T−1, Y1:T−1}, and IdT = {Ỹ1:T−1, S1:T−1}.
Recall that the decisions at timeT are generated byUT =
fT (XT , IsT ), YT = gT (X̃T , IeT ), X̂T = hT (ỸT , ST , IdT ).

Let IT be the information set about the past system states
at timeT :

IT = {X1:T−1, U1:T−1, X̃1:T−1, Y1:T−1, Ỹ1:T−1, S1:T−1}.

Then IsT , IeT , IdT ∈ IT . Consider another problem, called
Problem T2, whereIT is available to the sensor, the encoder,
and the decoder, and we want to design(f ′

T , g
′
T , h

′
T ) to

minimize

JT2
(f ′

T , g
′
T , h

′
T ) = E

{

cUT + (XT − X̂T )
2
}

.

subject to the power constraint of the encoder, whereUT =
f ′
T (XT , IT ), YT = g′T (X̃T , IT ), X̂T = h′

T (ỸT , ST , IT ).
Since the sensor, the encoder, and the decoder can always
ignore the redundant information and behave as if they only
know IsT , IeT , IdT , respectively, the performance of system
in Problem T2 is no worse than that of theProblem T1, i.e.,

min
(f ′

T
,g′

T
,h′

T
)
JT2

(f ′
T , g

′
T , h

′
T ) ≤ min

(fT ,gT ,hT )
JT1

(fT , gT , hT ).

Similarly, consider a third problem, call itProblem T3, where
IsT , IeT , IdT are not available to the sensor, the encoder, and
the decoder, respectively. We want to design(f ′′

T , g
′′
T , h

′′
T ) to

minimize

JT3
(f ′′

T , g
′′
T , h

′′
T ) = E

{

cUT + (XT − X̂T )
2
}

,

subject to the power constraint of the encoder, whereUT =
f ′′
T (XT ), YT = g′′T (X̃T ), X̂T = h′′

T (ỸT , ST ). By a similar
argument as above, the system inProblem T1 cannot perform
worse than the system inProblem T3, namely,

min
(fT ,gT ,hT )

JT1
(fT , gT , hT ) ≤ min

(f ′′

T
,g′′

T
,h′′

T
)
JT3

(f ′′
T , g

′′
T , h

′′
T ).

Let us come back toProblem T2. Since the communication
costc, the distortion functionρ(·, ·), and the power constraint
of the encoder do not depend onIT , and since{Xt} and{Vt}
are i.i.d. random processes,XT andVT are also independent
of IT , and there is no loss of optimality by restricting

UT = f ′
T (XT ), YT = g′T (X̃T ), X̂T = h′

T (ỸT , ST ),

and

min
(f ′

T
,g′

T
,h′

T
)
JT2

(f ′
T , g

′
T , h

′
T ) = min

(f ′′

T
,g′′

T
,h′′

T
)
JT3

(f ′′
T , g

′′
T , h

′′
T )

The equality above indicates inProblem T1 the sensor, the
encoder and the decoder can ignore their information about
the past, namelyIsT , IeT , and IdT , respectively, and there
is no loss of optimality by restricting

UT = fT (XT ), YT = gT (X̃T ), X̂T = hT (ỸT , ST ),

which proves (1).

Since (fT , gT , hT ) does not takeIT as a parameter,
the design of(fT , gT , hT ) is independent of the design of
(f1:T−1, g1:T−1, h1:T−1). Hence the problem can be viewed
as aT − 1 stages problem and a one stage problem.

By induction, we can show that the design of(f1, g1, h1),
(f2, g2, h2), . . . , (fT , gT , hT ) are mutually independent,
where(ft, gt, ht) is designed to minimize

J(ft, gt, ht) = E

{

cUt + (Xt − X̂t)
2
}

,

subject to the power constraint of the encoder. Furthermore,
sinceXt and Vt are i.i.d. random processes. The optimal
(ft, gt, ht) should be the same for allt = 1, 2, . . . , T , which
proves (2).

By Theorem 2, the problem can be reduced to the “one-
stage” problem and the objective is to determine(f∗, g∗, h∗).
Therefore for simplicity we suppress the subscript for time
in all the expressions for the rest of the paper.

Theorem 3: Consider the problem formulated in Sec-
tion II-D. If the sensor applies symmetric threshold-based
scheduling policyf as follows:

U = f(X) =







1, if |X | > β

0, if |X | ≤ β

whereβ is called the threshold, then the encoding/decoding
policies (g, h) described below are jointly optimal corre-
sponding tof :

g(X̃) =







α|X̃| − αβ − αλ−1, if X̃ 6= ǫ

ǫ, if X̃ = ǫ

h(Ỹ , S) =







S ·
(

1
α

γ
γ+1 Ỹ + γ

γ+1λ
−1 + β

)

, if Ỹ , S 6= ǫ

0, if Ỹ , S = ǫ

whereα = λ
√
PT , γ = PT

kθ2 .
Proof: Case I.U = 0, X̃, Ỹ , S = ǫ. The optimal

estimator should be the conditional mean:

X̂ = E[X |U = 0] = E[X ||X | ≤ β] = 0,

where the third equality is due to the fact thatX is symmet-
rically distributed.

Case II.U = 1, S = +. The problem collapses to Problem
2. Conditioned onX̃ = X > β (which is equivalent to
U = 1, S = +), X̃ is distributed (has density) as follows:

pX̃(x) =







λe−λ(x−β), if x ≥ β

0, if x < β

Hence,X̃ can be written asX̃ = Xe + β whereXe has
exponential distribution with parameterλ. SinceX and V

are independent,X > β does not affect the distribution ofV .
Therefore,V has gamma distribution with parameters(k, θ).
Moreover, the power constraintPT satisfiesθ =

√
PT . Hence



by applying Lemmas 2 and 3, we have the following optimal
encoding/decoding policies and cost

Y = αX̃ − αβ − αλ−1,

X̂ = 1
α

γ
γ+1 Ỹ + γ

γ+1λ
−1 + β.

E[(X − X̂)2|X > β] =
1

γ + 1

1

λ2
= m. (3)

Case III.U = 1, S = −. Again, the problem collapses to
Problem 2.U = 1, S = − is equivalent toX̃ = X < −β.
Conditioned on that,̃X can be written as

X̃ = −Xe − β,

where Xe has exponential distribution with parameterλ.
Following the steps in Case II, we have

Y = −αX̃ − αβ − αλ−1

X̂ = − 1
α

γ
γ+1 Ỹ − γ

γ+1λ
−1 − β

E[(X − X̂)2|X < −β] =
1

γ + 1

1

λ2
= m. (4)

Theorem 4: Consider the problem formulated in Section
II-D. Suppose that the sensor is restricted to apply the sym-
metric threshold-based scheduling policyf with thresholdβ,
β ∈ (0,+∞), and the encoder/decoder apply the correspond-
ing optimal encoding/decoding policies(g, h) in Theorem
3. Then, there exists a unique thresholdβ∗ minimizing
the cost function among all the thresholds. Furthermore,
β∗ =

√
c+m, m = 1

γ+1
1
λ2 .

Proof: The cost function subject tof with thresholdβ,
g, andh can be written as

J(f, g, h) = E

[

cU + (X − X̂)
2
]

= E

[

cU + (X − X̂)
2||X | ≤ β

]

· P(|X | ≤ β)

+ E

[

cU + (X − X̂)
2|X > β

]

· P(X > β)

+ E

[

cU + (X − X̂)
2|X < −β

]

· P(X < −β)

Consider the expectation in the first term:

E

[

cU + (X − X̂)
2||X | ≤ β

]

,

= E
[

X2||X | ≤ β
]

=
∫ β

−β
x2pX(x) 1

P(|X|≤β)dx.

Next, consider the expectation in the second term:

E

[

cU + (X − X̂)
2|X > β

]

= c+ E

[

(X − X̂)
2|X > β

]

= c+m,

where the last equality is due to (3). Similarly, by (4), the
expectation in the third term isc+m. Hence,

J(f, g, h) =
∫ β

−β
x2pX(x)dx

+(c+m)
∫∞

β
pX(x)dx + (c+m)

∫ −β

−∞ pX(x)dx

= 2
∫ β

0
x2pX(x)dx + 2(c+m)

∫∞

β
pX(x)dx.

Taking derivative ofJ(f, g, h) with respect toβ,

d

dβ
J(f, g, h) = 2β2pX(β) − 2(c+m)pX(β).

SincepX(β) > 0, we have

d

dβ
J(f, g, h) =



















0, if β =
√
c+m := β∗

< 0, if β ∈ (0, β∗)

> 0, if β ∈ (β∗,∞)

Hence,β∗ is the unique global minimizer.

V. CONCLUSIONS

In this paper, we considered a sensor scheduling and re-
mote estimation problem with noisy communication channel
between the sensor and the estimator. By making specific
assumptions on the distributions of source and noise, we
have obtained a solution which consists of a symmetric
threshold-based sensor scheduling strategy and a pair of
piecewise linear encoding/decoding strategies. The studyon
the notion of optimality of our approach in the practical,
adversarial settings where channel noise is generated by a
jammer, is left to an extended version of this paper due
to space constraints. Future directions for research include
extensions to hard communication cost constraints and multi-
dimensional settings.
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