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Abstract— Bearing-only localization can be formulated in
terms of optimal graph embedding: one has to assign a 2-D or
3-D position to each node in a graph while satisfying as close
as possible all the bearing-only constraints on the edges. If the
graph is parallel rigid, this can be done via spectral methods.
When the graph is not rigid the reconstruction is ambiguous,
as different subsets of vertices can be scaled differently. It is
therefore important to first identify a partition of the problem
into maximal rigid components. In this paper we show that the
cycle basis matrix of the graph not only translates into an
algorithm to identify all rigid sub-graphs, but also provides
a more intuitive way to look at graph rigidity, showing, for
instance, why triangulated graphs are rigid and why graphs
with long cycles may loose this property. Furthermore, it
provides practical tools to enforce rigidity by adding a minimal
number of measurements.

I. INTRODUCTION

The essence of the bearing-only (also known as angle-
of-arrival) localization problem is to estimate the positions
of points from linear, pair-wise direction constraints. The
problem is most conveniently modeled by a graph, where
the points are associated to the nodes, and the direction
constraints to the edges. As such, this problem has appeared
under various forms in different settings, such as (to cite a
few) sensor network localization [1], [5], [15] and formation
control [3], [6], [14], [18] in the controls and robotics
communities, Structure from Motion in computer vision [4],
[11], and graph drawings [13] in the discrete mathematics
community. A schematic example is given in Figure 1.

In this paper we focus only on the absolute version of the
problem, that is, we assume that all the bearing directions
are expressed with respect to a common rotational reference
frame. For the relative version of the problem, where the
only information available is between pairs of bearings, we
point the reader to [10] and the references therein.

A central notion for the bearing localization problem is the
one of rigidity. Loosely speaking, a bearing-only problem
is rigid when there are enough direction constraints such
that all the feasible solutions are equivalent up to trivial
transformations (global translations and scales). Then, the
direction constraints can be used to build an homogeneous
system of linear equations, and a solution can be found
by looking at a one-dimensional nullspace of a constraint
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Fig. 1. A schematic example of bearing-only localization from computer
vision. Using standard techniques, cameras with overlapping fields of view
can measure their relative pose up to a scale for the translation. Each set
of edges (blue and red) forms a rigid component where the position of the
cameras can be found up to a common scale. However, the scale between
the two components cannot be established from the available measurements.

matrix. On the other hand, when the direction constraints
are not enough, the problem is flexible (i.e., non-rigid), and
the above solution strategy fails because there are different
solutions which are not trivially equivalent. Algebraically,
this correspond to the fact that the dimension of the nullspace
of the constraint matrix is greater than one. In this case, the
best one can do is to segment the problem into the largest
rigid components which can be solved independently.

To the best of our knowledge, the first algorithm for
solving this segmentation task has been proposed in [9]. In
that paper, the authors show how to extract the segmentation
from the nullspace of the constraint matrix. The algorithm
can be though as node-based: the nullspace characterizes
the space of solutions in terms of node positions, and the
algorithm reasons on the clustering by comparing edges
which have an endpoint in common.

In this paper, we propose a novel formulation and a novel
solution which are edge-based and that can be considered
“dual” to the ones of [9]. Instead of representing the space
of feasible solutions using node positions, we use scales on
the edges. The idea is simple: if two edges belong to the
same rigid component they cannot be scaled independently,
and fixing one edge uniquely determine the scale of the other
edge in the same rigid component (although there are some
additional subtle aspects, as we will explain in Section IV).
This new representation not only provides an alternative way
to identify the rigid components, but it also allows us to
reason about the rigidity of the problem in terms of cycles



in the graph, thus providing insights into the reason why
rigid graphs need to have small cycles, and on how one can
add edges to make a problem rigid.

The rest of the paper is organized as follows. First,
we review basic notions from graph theory (Section II)
and the node-based localization problem for rigid problems
(Section III). We then introduce our edge-based formulation
(Sections IV and V), followed by our algorithm for iden-
tifying the rigid components of the problem (Section VI).
Finally, we provide some insights on the relation between
rigidity, long cycles, and the addition of edges (Section VII).

II. ELEMENTS OF GRAPH THEORY

A directed graph G = (V, E) is composed by a set of n
vertexes V = {1, . . . , n} and a set of m edges E ⊆ V × V .
In this paper we assume that G is oriented, that is, each edge
appears only in one direction.

The incidence matrix B̆ of a directed graph is a n ×m
matrix with elements in {−1, 0,+1} that describes the graph
topology. Each column of B̆ corresponds to an edge and has
exactly two non-zero elements. For the column correspond-
ing to edge (i, j), there is a −1 on the i-th row and a +1
on the j-th row.

A walk is an alternating sequence of vertices and edges,
beginning and ending with a vertex, such that the vertices
that follow and precede an edge are just the endpoint of that
edge. A cycle is walk which starts and ends at the same
vertex. A circuit is a cycle in which every node appears
exactly once, except for the starting vertex which appears
exactly twice. A circuit can be described by a vector in
{−1, 0,+1}m, in which an element is +1 or −1 if the
corresponding edge is traversed respectively forwards (from
tail to head) or backwards, and 0 if it does not appear.

A cycle basis of a graph is a minimal set of circuits such
that any cycle in the graph can be written as a combination of
the circuits in the basis. The number of independent circuits
in the cycle basis is called cyclomatic number and, for a
connected graph, it is equal to ` = m−n+ 1. A cycle basis
matrix is a matrix C ∈ {−1, 0,+1}`×m, such that each row
describes one of the circuits in the basis.

III. PRELIMINARIES ON BEARING-ONLY LOCALIZATION

In this section we first formalize the bearing-only local-
ization problem, and then review the standard definitions of
rigidity together with the standard localization approach for
rigid frameworks.

A. Bearing-only Localization

We consider a formation of n robots at (unknown) po-
sitions x1, . . . ,xn, with xi ∈ Rd. The robots are able to
acquire bearing measurements using on-board sensors (e.g., a
camera). In particular, for some pairs (i, j), robot i measures
the bearing towards robot j:

uij =
xj − xi + εij
‖xj − xi + εij‖

(1)

where εij models measurement noise. The measurement
model (1) returns a unit vector, corresponding to a noisy

measurement of the translation (up to scale) between robots
i and j. For the sake of analysis, we will often refer to the
noiseless case, where εij = 0 for all pairs (i, j).

The objective of bearing-only localization is to estimate
the positions x̆ = {x1, . . . ,xn} from the measurements (1).

The problem can be conveniently summarized by a so-
called framework or design F = (G,U) where
• G(V, E) is a directed graph in which each node in
V is associated to a robot position xi, and the edge
set E contains the pairs (i, j) such that the relative
measurement uij is available.

• U = {uij}(i,j)∈E is the set of bearing measurements.
A subframework of F is a framework F ′ = (G′,U ′) where

G′ is a subgraph of G and U ′ ⊆ U .
A set of robot coordinates x̆ = {xi}i∈V is called an

embedding for the framework F . An optimal embedding or
drawing of the framework is an embedding which minimizes
a suitable error criterion with respect to the measurements.

B. Rigid Components

The study of rigidity in bearing-only localization is con-
nected to a practical question: do the available bearing
measurements uniquely define robot positions?

Clearly we do not expect to be able to estimate absolute
robot positions (as we only have relative measurements), and
we cannot determine the scale (as we only have bearings).

Therefore, we need introduce the following notions.
Definition 1 (Trivially parallel embeddings [5]): We say

that two embeddings and are trivially parallel if they only
differ by a global translation and scaling.

Definition 2 (Rigidity [5]): A framework is parallel rigid
if all optimal embeddings are trivially parallel.

Intuitively, in a rigid framework, the measurements com-
pletely define robot positions up to scale and a global
translation. A non-rigid framework is said to be flexible. In a
flexible framework we can still identify rigid subframeworks.

Definition 3 (Rigid components): A rigid component of
F is a subframework F ′ ⊆ F such that F ′ is rigid. A rigid
component is said to be maximal if it is not a subframework
of any other rigid component.

An intuitive way of thinking about rigid components is as
follows: a subframework is rigid if after fixing the position
of two nodes (which essentially fix the global frame and
the scale of the embedding) all other nodes are uniquely
identified by the bearing measurements.

We recall the following result from Kennedy et al. [9].
Theorem 4: The set of all maximally rigid components

P = {G′i} induces a partition of the original edge set E .
Intuitively, Theorem 4 says that finding maximal rigid

components is the same as finding suitable partitions of the
edges, as each edge belongs to a single rigid component.

C. Optimal Embedding in Rigid Frameworks

In the noiseless case, an optimal embedding x̆ must
satisfy (1) for all the given measurements U : i.e., for each
edge (i, j), the relative translation xj − xi induced by the



embedding should be collinear to the measured direction uij :

uij × (xj − xi) = S(uij)(xj − xi) = 0 ∀(i, j) ∈ E , (2)

where × is the cross product (equal to zero when the vectors
are parallel) and S(uij) is a skew-symmetric matrix built
from uij . For instance, in a 3-D problem (d = 3), S(uij):

S(uij) =

 0 −uzij uyij
uzij 0 −uxij
−uyij uxij 0

 (3)

with uij = [uxij u
y
ij u

z
ij ]

T.
In order to make the notation more compact, we let S =

diag
(
{S(uij)}(i,j)∈E

)
∈ R3m×3m, where m = |E|, and

introduce the augmented incidence matrix B̆d = B̆ ⊗ Id,
where B̆ is the incidence matrix of the graph G, underlying
the framework. With this notation, (2) becomes

SB̆dx̆ = 0. (4)

In a noiseless case, the set of solutions of (4) defines
the optimal embeddings of the framework F . Clearly, (4)
will have infinite solutions, as the measurements define the
embedding only up to scale and a global translation. In order
to remove this ambiguity, the standard practice is to fix the
scale of the reconstruction (e.g., by adding a constraint as
‖x̆‖= 1), and set a node to the origin of the reference frame,
i.e., x1 = 03. This node is usually called an anchor. Fixing
x1 at the origin allows rewriting (4) as

SBdx = 0, (5)

where the reduced incidence matrix Bd is obtained by
removing the first d columns of B̆d (corresponding to x1).
Similarly, x is obtained by removing the anchor x1 from x̆.

In the noiseless case, the framework is rigid if and only
if the matrix SBd has exactly one singular value equal to
zero, that is, its nullspace is one-dimensional. In this case,
(5) admits a solution which is unique up to scale.

In the noisy case, eq. (5) admits no solution in general
(except for the trivial solution x = 0), and one rather looks
for a solution that minimizes the norm of the residual errors:

min
x∈X
‖SBdx‖2 (6)

where x is restricted to a set X to rule out the trivial solution
x = 0. In the existing literature, a common choice for X is,

X = {x ∈ Rd(n−1) : ‖x‖ = 1}. (7)

This choice is sufficient for rigid frameworks (although it
does not distinguish between x and its opposite −x).

A more convenient choice, that we adopt in this paper, is

X = {x ∈ Rd(n−1) : uT
ij(xj − xi) ≥ 1 ∀(i, j) ∈ E}. (8)

where one enforces a minimum distance between the nodes
along the measured direction. The set (8) removes the reflec-
tion ambiguity that would appear using (7). Moreover (8)
defines a convex set, and this is advantageous from an

optimization point of view, compared with (7). For these
reasons, variants of (8) are common in computer vision
literature (see, e.g., [8], [16]), where they are often referred
to as cheirality constraints.

IV. A DIFFERENT VIEW ON RIGIDITY

Standard rigidity as discussed in Section III-B reasons in
terms of nodes positions (the embedding) to define rigidity.
In this paper we prefer to reason in terms of edges in the
graph. We will do this using the notion of interdependent
edges in Definition 6. Before doing that, we need to define
the concept of non-degenerate embedding.

Definition 5 (Non-degenerate embedding): An
embedding x̆ = {x1, . . . ,xn} is said to be non-degenerate
if for any pair (i, j) ∈ E , xi 6= xj .

Since two nodes can measure the relative bearing only if
they are not collocated, it is natural to restrict the attention
to non-degenerate embeddings in bearing-only localization.
Now we are ready to define an interdependent edge set.

Definition 6 (interdependent edge set): A set of edges ER
in a framework is said to be interdependent if, given a non-
degenerate optimal embedding x̆a and a constant s, any other
non-degenerate optimal embedding x̆b, is such that:

(xb
j − xb

i ) = s(xa
j − xa

i ) ∀(i, j) ∈ ER (9)

Definition 6 says that if a set of edges is interdependent
we cannot change the corresponding inter-nodal distances
independently, since, by fixing the scale of an edge, we also
constrain the scale of the remaining edges in the set.

The concept of interdependent edge set is tightly coupled
with the concept of rigidity in Definition 2 (at first sight
the two may look identical). However, there is a subtle
difference, shown in Figure 2: two sides of the trapezoid
form a set of interdependent edges, while the corresponding
set of nodes do not form a rigid component.

Fortunately, the two definitions are equivalent when the set
of interdependent edges ER defines a connected subgraph.

Proposition 7: Given a framework F(G,U), if a set of
interdependent edges (Definition 6) forms a connected sub-
graph G′ ⊆ G, then the subframework F(G′,U ′) is parallel
rigid (Definition 2).

Proof: Let us prove the implication: rigidity → in-
terdependent edges. If the framework is rigid two optimal
embeddings x̆a and x̆b can only differ by global translation
ans scaling, i.e., we can write x̆b = sx̆a + t, for a suitable
scaling s and translation t. By inspection we easily see that
this x̆b satisfies (9) hence the edges in the subframework are
interdependent. The reverse implication can be proved in a

Fig. 2. Example of interdependent edges (edges of the same color are
interdependent). While the red edges do not form a rigid component, they
are interdependent: fixing the scale of the red edge on the left uniquely
determines the scale of the red edge on the right.



similar way, observing that fixing the relative nodes positions
as in (9) uniquely defines the position of the nodes as long
as the graph is connected.

The idea is then to reason in terms of interdependent
edges, rather than on the original definition of rigidity. This is
convenient from a computation perspective and offers a more
intuitive way to look at rigid components. Towards this goal,
we first need to reformulate the bearing localization in terms
of the scales for each edge.

V. EDGE-BASED FORMULATION

In this section we propose a different formulation of the
bearing-only localization problem. While later we prove that
this formulation is equivalent to the standard of Section III-
C, it is propaedeutic to our algorithm for the identification
of the rigid components (Section VI).

Instead of writing the parallelism constraint as in (2), we
note that the parallelism between xj − xi and uij requires
that, for some unknown scale λij , it holds:

(xj − xi)− λijuij = 0, ∀(i, j) ∈ E (10)

In matrix form, this becomes

B̆T
d x̆−Uλ = 0, (11)

where, U = diag
(
{uij}(i,j)∈E

)
∈ Rdm×m is a sparse ma-

trix with diagonal blocks equal to the vectors uij . Note that
since the measurements have unit norm, U has orthonormal
columns, i.e., UTU = Im. In this formulation, we compute
the scale vector λ .

= {λij}(i,j)∈E in addition to x̆.
As in the standard formulation of Section III-C, we remove

the translational ambiguity by fixing x1 = 0d, which
amounts to substituting B̆ and x̆ with their reduced versions:

BT
dx−Uλ = 0. (12)

As before, in the noisy case, we replace the set of linear
constraints with the least-squares minimization

min
x,λ∈Λ

∥∥BT
dx−Uλ

∥∥2
,

(13)

where, to rule out trivial solutions, we restrict λ in

Λ = {λ ∈ Rm : λij ≥ 1 ∀(i, j) ∈ E}. (14)

Compared to (6), in our formulation we add a nondegen-
eracy condition on the scale vector λ rather than on the
embedding x.

If the scale factors λ were known, (13) would have been
a localization problem from relative position measurements,
that admits a unique solution for connected graphs and can
be readily solved via linear least squares [2].

A. Relation with the Standard Formulation

Before moving on with our analysis, let us clarify the
relation between (13) and the standard formulation of (6).

Proposition 8 (Equivalence with standard formulation):
There exists a bijective mapping between the solution set of
Problem (13) and the solution set of Problem (6).

Proof: Let us rewrite Problem (13) as:

min
x

(
min
λ∈Λ

∥∥BT
dx−Uλ

∥∥2) (15)

where we split the minimization w.r.t. x and λ. Since λ
appears quadratically in (15), its optimal value, for every
choice of x, is:

λ?(x) =
(
UTU

)−1
UBT

dx = UBT
dx, (16)

which, component-wise, becomes

λ?ij(x) = uT
ij(xj − xi). (17)

Note that we have to impose λ ∈ Λ; however, comparing
(17) with (8), we can substitute the condition λ ∈ Λ with
x ∈X . Hence (13) becomes

min
x∈X

∥∥(Idm −UUT
)
BT

dx
∥∥2 . (18)

Since Idm−UUT is block diagonal (with d×d blocks), we
can develop the objective function into single terms:

∥∥∥(Idm −UUT
)
BT

dx
∥∥∥2 =

∑
(i,j)∈E

∥∥∥(Id − uiju
T
ij)(xj − xi)

∥∥∥2
=

∑
(i,j)∈E

(xj − xi)
T(Id − uiju

T
ij)(xj − xi)

=
∑

(i,j)∈E

(xj − xi)
TS(uij)

TS(uij)(xj − xi)

=
∑

(i,j)∈E

‖S(uij)(xj − xi)‖2, (19)

where we used the fact that the matrix (Id − uiju
T
ij)

2 =
Id − uiju

T
ij , and the fact that (as one can verify by direct

computation) S(uij)
TS(uij) = Id − uiju

T
ij .

In matrix form, (18) becomes minx∈X‖SBdx‖2, which
is identical (6), hence proving that solving Problem (13) is
the same as solving Problem (6), and there is a bijective
mapping between the corresponding solutions via (16).

Proposition 8 tells us every conclusion we draw on (13)
can be readily applied to the standard formulation (6).

B. Cycle Basis Matrix and Scale Estimation

In this section we show that Problem (13) can be rewritten
in terms of the sole scale vector λ, using a cycle basis matrix
of the graph underlying the localization problem.

First, we note that, for any given scale vector λ, we can
compute the optimal position estimate:

x?(λ) =
(
BdB

T
d

)−1
BdUλ (20)

To make the notation more compact we define the matrix

PB = Idm −BT
d

(
BdB

T
d

)−1
Bd (21)

Plugging x? (as a function of λ) back into (13), we get:

min
λ∈Λ
‖PBUλ‖2 (22)



Now we note that it holds (see, e.g., [12]):

PB = CT
d

(
CdC

T
d

)−1
Cd (23)

where Cd = C ⊗ Id and C ∈ {−1, 0,+1}`×m is a cycle
basis matrix of the graph underlying the problem.

Developing the squared norm in (22) and using (23):

arg min
λ∈Λ

λTUTCT
d

(
CdC

T
d

)−1
CdUλ (24)

Defining D =
(
CdC

T
d

)− 1
2 (the cycle matrix is full rank,

hence the matrix D is always invertible), we get our final
formulation

arg min
λ∈Λ

‖DCdUλ‖2 = arg min
λ∈Λ

‖Mλ‖2 (25)

where we defined the constraint matrix of the framework
as M = DCdU ∈ Rd`×m. Essentially, we reformulated
Problem (6), which looks for a suitable embedding x,
and transformed it into Problem (25), which looks for the
scale factors λ. From Proposition 8, we know that the two
problems are equivalent. In the noiseless case, the framework
is rigid if and only if the matrix M has exactly one singular
value equal to zero, that is, its nullspace is one-dimensional.

Note that, since D is an invertible transformation, the
nullspace of the constraint matrix M = DCdU is the same
as the null space CdU . As pointed out in the following, this
matrix has an intuitive interpretation that combines both ge-
ometric and topological aspects of bearing-only localization.

Remark 9 (Structure of CdU ): The matrix CdU has the
same structure of the cycle basis matrix C, but while C has
scalar entries −1, 0,+1 for edge k, the matrix CdU includes
d-vectors −uk,0,+uk, respectively (see Figure 3 for a
simple example). Therefore, CdU captures at the same time
the topology of the graph (via Cd) and the geometric aspects
(via U ), and block rows of the matrix include the bearing
measurements collected along each cycle in the graph.

We will now use our formulation in (25) to identify all
the rigid components in a flexible framework.

VI. EDGE-BASED RIGID COMPONENTS IDENTIFICATION

For the sake of analysis, we first consider the noiseless
case, for which the unknown scales satisfy Mλ = 0
(compare with (25)).

u 1

u
2

u3

u 4

u5

C =

[
+1 +1 +1 0 0
0 −1 0 −1 +1

]CdU =

[
u1 u2 u3 0 0
0 −u2 0 −u4 u5

]

Fig. 3. Example of structure of the matrix CdU for a small problem with
five bearing measurements. Each block row of CdU can be simply built
by traversing the first (left) or second (right) cycle of the graph in arbitrary
direction (clockwise in the example), and including the encountered bearing
measurements in the corresponding columns (with a negative sign if the
edge does not agree with the direction of travel along the cycle, positive
otherwise).

In the following we write va∼vb to denote equality up-to-
scale between two vectors va and vb. Moreover, we denote
with (A)k the k-th row of a matrixA. We state the following
result, which is the first main contribution of the paper.

Theorem 10: Let us consider a noiseless framework F
with edges numbered from 1 to m. Consider the constraint
matrix M and define L ∈ Rm×kL to be a basis for the
nullspace of M . Then two edges k = (i, j) and k̃ = (̃ı, ̃)
are interdependent if and only if (L)k ∼ (L)k̃.

Proof: The unknown scale vector λ satisfies Mλ = 0,
hence λ ∈ null(M). Then, we can write

λ = La, (26)

where a ∈ RkL . Then we want to prove the result by showing
that fixing the scale for an edge k uniquely fixes the scale
for all edges k̃ such that (L)k ∼ (L)k̃.

Let us fix the scale for an arbitrary edge k to be 1:

λk = eTkλ = 1, (27)

where we used ek to indicate the vector in the standard basis
of Rm corresponding to the edge k = (i, j).

Therefore, we want to explore the set of vector λ in the
form (26) (i.e., that satisfy Mλ = 0), and that keep fixed
the k-th scale as in (27):

1 = eTkLa = (L)ka. (28)

Note that (L)k 6= 0, otherwise any optimal embedding
would be degenerate. Equation (28) is an underdetermined
linear system with a single equation. One can easily verify
that

ā = (L)Tk/‖(L)Tk‖2 (29)

is a particular solution to this equation and, from linear
algebra [7], all the solutions of the linear system (28) can be
written as

ab = ā+Nkb, (30)

where Nk ∈ RkL×kL−1 is a basis for the nullspace of the
vector (L)k and b ∈ RkL−1.

Going back to the original problem (27), all the solutions
that keep fixed the k-th scale are given by

λb = Lab = Lā+LNkb, b ∈ RkL−1. (31)

To prove the first part of the claim, let us consider an
edge k̃ that is in the same interdependent edge set of k. By
definition of interdependent edge set, fixing the scale of k
uniquely determines the scale of k̃, therefore, for any choice
of b, b̃ ∈ RkL−1 it has to hold:

eT
k̃

(λb − λb̃) = 0. (32)

Substituting (31), this implies that

(L)k̃Nk(b− b̃) = 0. (33)

Since b and b̃ are arbitrary, the only way to satisfy this
equality is that (L)k̃ is in the nullspace of Nk. Recalling
thatNk spans the nullspace of the vector (L)k, and using the



relation between the four fundamental spaces of a matrix1,
we deduce that (L)k̃ belongs to span((L)k). However, since
these are vectors, we finally have that

(L)k ∼ (L)k̃, (34)

thus proving the first part of the claim.
To show the second part of the claim, assume that (L)k ∼

(L)k̃. This implies that null((L)k̃) = null((L)k). Using the
same arguments as the above, (31) implies that fixing the
scale of edge k also fixes the scale of k̃.

Theorem 10 effectively transforms the problem of iden-
tifying interdependent set of edges in a framework into the
(noiseless) problem of clustering lines in RkL . The matrix
L can be easily computed from SVD of M . Then, the
number of interdependent sets is given by the number of
distinct directions appearing in the rows of L, and the rigid
components can be simply found by grouping together edges
whose rows in L have the same direction. Notice that the
directions for different interdependent sets need to be only
distinct, and not linearly independent. Therefore, the number
of interdependent sets can be, in general, larger than the
dimension of the nullspace of M .

Theorem 10 provides a way to partition the original set of
edges E into interdependent sets. From the interdependent
sets it is easy to find the maximal rigid components, as
established by the following corollary.

Corollary 11 (Rigid components, interdependent edges):
Consider a collection of interdependent sets of edges in
a framework, as given by Theorem 10. Then, for each
interdependent set ER, each subset Ec ⊆ ER that induces a
connected graph defines a rigid subframework.

The proof is trivial and leverages the result of Proposi-
tion 7 that establishes the equivalence between interdepen-
dent edge set and rigidity for connected graphs.

The corollary shows that after computing the sets of
interdependent edges, we can easily find rigid components
of the original framework by simply looking for connected
components in the set of edges.

A. Extension to Noisy and Almost Degenerate Cases

In the general noisy case (εij 6= 0), there is no embedding
x which can satisfy all the constraints at the same time. As a
consequence, we will have that null(M) = {0}, and we lose
the structure given by the matrix L. In practice, however, for
reasonable levels of noise the last kL singular values of M
will still be close, although not equal, to zero (Figure 4c).

A similar situation can also appears in the noiseless case
for almost-degenerate frameworks. Consider two maximally
rigid components connected with three edges (Figure 4).
Intuitively, if these edges are exactly parallel, then a non-
trivial partition appears (Figure 4a). On the other hand,
if the edges are almost, but not exactly, parallel, then the
entire framework is rigid (Figure 4b). In the latter situation,
however, the relation between the scales of the two initial

1The four fundamental spaces of a matrix A are span(A), null(A),
span(AT) and null(AT ).

(a) A flexible framework. (b) A perturbed version
of (a).
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(c) A plot of the singular values of M for (a), (b) and
a noisy version of (a)

(d) Rigid components for the perturbed and noisy
frameworks of (b) obtained by thresholding the singular
values at 0.2

Fig. 4. Example of a flexible (a), almost flexible (b) and flexible but
noisy frameworks. Different colors indicate different rigid components. For
the last almost flexible and noisy frameworks, the smallest singular values
of M are close to zero (c). If we threshold them, we can still obtain a
useful segmentation into rigid components (d) which is consistent with the
underlying flexible structure (a).

components would be quite sensitive to any noise in the
measurements of the two connecting edges, and, from a
practical standpoint, it might be better to consider the two
components as separate.

In both scenarios, we can fix a threshold under which all
the singular values of M are considered to be zero, thus still
obtaining a matrix L ∈ Rm×kL . The threshold intuitively
indicates the level of noise or the deviation from a parallel
condition that we are willing to tolerate.

Unfortunately, since we have truncated the singular val-
ues, the property mentioned in Theorem 10 will hold only
approximately, i.e., (L)k and (L)k̃ will have similar, but
not exactly equal, directions when the edges k and k̃ are
interdependent. We therefore need to resort to heuristics to
solve the (noisy) problem of clustering lines in RkL , and thus
find the grouping of the edges. In our implementation, we
compute a matrix A ∈ Rm×m of pairwise angles between
the rows of L, and then use Quickshift [17] to obtain the final
clustering. An example of the result is given in Figure 4d.



(a) d = 2, m = 3, rigid (b) d = 2, m = 4, flexible

(c) d = 3, m = 4, rigid (d) d = 3, m = 5, flexible

Fig. 5. Illustrative examples for the rigidity of cycles in d dimensions. For
flexible graphs, the dashed lines represent alternative optimal embeddings
which keep fixed the edge marked in red.

VII. CYCLES AND RIGIDITY ENFORCEMENT

In this section, we give results that show the relation
between rigidity, long cycles, and addition of edges.

We start with the following corollary, which is a direct
result of our formulation.

Corollary 12 (Single-Cycle Frameworks): A framework
in dimension d with m > d + 1 edges arranged in a single
cycle cannot be rigid.

Proof: In the presence of a single cycle, the matrix
M has dimensions d × m. In order for the framework
to be rigid, null(M) must have dimension equal to one.
This is equivalent to saying that M must contain exactly
m−1 linearly independent columns. However, this condition
cannot be satisfied when m− 1 > d.

Illustrative examples of the result in Corollary 12 are given
in Figure 5 for 2-D and 3-D setups.

Next, we consider the question of how the rigidity of a
framework changes with the addition of new edges. The
practical value of this question is that, in many situations, the
measured bearing are obtained through algorithms that use
thresholds to reject estimates that are too noisy. However, it
might be advantageous to selectively lower this threshold in
order to accept measurements that might be noisier, but that
also make the problem rigid. In other situations, one might
be able to control the acquisition of new measurements (e.g.,
through the motion of a robot). Therefore, it is of interest
to determine which measurements have a larger potential
“payoff” in terms of rigidity.

For the sake of analysis, we only consider the noiseless
case. Consider a framework F whose underlying graph is
connected. For our purposes, we can consider the matrix
M = CdU instead of M = DCdU (as we mentioned,
the two matrices have the same nullspace). Now, let F ′ be a
framework obtained from F by adding an edge between two
existing nodes. We denote the corresponding measurement as
uadd. Since we are assuming that initially F is connected,

the addition of one edge implies the creation of a new
cycle. Therefore, the cycle basis matrix of F ′ will have an
additional row and an additional column:

C ′ =

[
C 0
Cadd 1

]
, (35)

where Cadd ∈ R1×m. Note that the upper-right block of C ′

is zero because the original cycles in C cannot include the
edge that we just added. We can then state the following.

Proposition 13: Studying the rigidity of the framework F ′
is equivalent to studying the rigidity of a single cycle with
kL + 1 edges and a constraint matrix of the form

Mcycle =
[
MaddL uadd

]
, (36)

where Madd = (Cadd ⊗ Id)U ∈ Rd×m and L ∈ Rm×kL is
a basis for null(M).

Proof: Following the definitions above, the constraint
matrix for F ′ is given by

M ′ =

[
M 0
Madd uadd

]
. (37)

Denote the vector of scales for F ′ as

λ′ =

[
λ
λadd

]
∈ Rm+1. (38)

We need to consider the nullspace of F ′, that is, the space
of solutions of the equation

M ′λ′ =

[
Mλ

Maddλ+ uaddλadd

]
= 0. (39)

Note that the first block-row of (39) implies that λ must
be in the nullspace of M . We can therefore perform the
substitution λ = Lb, b ∈ RkL , and rewrite (39) as

0 =

[
MLb

MaddLb+ uaddλadd

]
=

[
0 0

MaddL uadd

] [
b

λadd

]
=

[
0

Mcycle

] [
b

λadd

]
. (40)

Since the first block-row in (40) is zero, the dimension of
null(M ′) is the same as the one of null(Mcycle). Since
Mcycle has d rows, we can interpret it as the constraint
matrix of a framework whose cycle basis Ccycle is a single
row, and the columns of Mcycle represent bearing vectors.

Proposition 13 has a couple of important implications.
First, from Corollary 12, if the dimension of the nullspace of
the original M (that is, kL) is larger than d, then F ′ cannot
be rigid.2 Second, the rigidity of F ′ depends on both the
topology of F ′ and the specific values of the bearings. This
is captured by Proposition 13 even in the case of non-generic
embeddings, that is, embedding where the coordinates of
the nodes are algebraically dependent. This is in contrast

2This does not imply that the frameworks with more than two rigid
components cannot be made rigid with the addition of a single cycle (kL
is the dimension of the null space of M , and, as we mentioned, it does
not generally coincide with the number of rigid components). Think, for
instance, of the trapezoid in Figure 2 with the addition of a diagonal.



[
−0.989 +0.145 +0.471
+0.882 −0.447 −0.894

]
(a) Rigid

[
+0.707 +0.707 +0.707
+0.707 −0.707 −0.707

]
(b) Flexible

[
+0.707 +0.707 +0.707
+0.707 −0.707 −0.707

]
(c) Flexible

[
+0.893 +0.450 +0.718
−0.696 −0.924 −0.383

]
(d) Rigid

Fig. 6. Example where topological information alone cannot be used to
predict rigidity. Blue: existing (flexible) framework. Red: additional edge.
Matrix: normalized columns of Mcycle. Note that the topology of the graph
is the same in each of the two pairs (a),(c) and (b),(d). However, depending
on the position of the nodes, frameworks with the same graph topology can
have different rigidity. The equivalent cycle framework correctly predicts
the rigidity: the columns of Mcycle contain linearly dependend (in fact,
identical) columns for (b), (c), and linearly independent columns for (a), (d).

with existing results which considers only the topology of
the graph (through combinatorial conditions) and assume
generic embeddings [5]. A detailed example of this is given
in Figure 6.

VIII. SIMULATIONS AND CONCLUSION

To conclude, we validate our theoretical results by testing
our algorithm for the noiseless case on the same configura-
tions as [9, Figure 5]. Results are shown in Figure 7. One
can easily verify, by visual inspection, that the algorithm
performed correctly, and that each component that has been
found is rigid.

We would like to stress that our results, although equiv-
alent to those obtained in [9], have been obtained by using
an edge-based method instead of a node-based method, thus
empirically showing that both methods are viable in practice.
The real difference between the two is that our formulation
has a simple geometric interpretation (Remark 9), provides
additional insights on the relation between rigidity and the
topology of the graph (expressed in terms of cycles), and
enables to design strategies to enforce rigidity by adding
edges to an existing graph (as shown in Section VII).

As future work, we plan to more rigorously characterize
and compare the robustness of the node-based and edge-
based methods in the presence of noisy measurements.
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