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Abstract

In this paper, we study the minimal cost constrained inpuipot (1/0) and control configuratiooo-design
problem. Given a linear time-invariaqiant, where a collection of possible inputs and outputs is known a
priori, we aim to determine the collection of inputs, ougpahd communication among them incurring in the
minimum cost, such that desired control performance, nredsin terms of arbitrary pole-placement capability
of the closed-loop system, is ensured. We show that thisl@molis NP-hard in general (in the size of the
state space). However, the subclass of problems, in whiehdyimamic matrix is irreducible, is shown to be
polynomially solvable and the corresponding algorithmrissgnted. In addition, under the same assumption, the
same algorithm can be used to solve the minimal cost consttdiO selection problem, and the minimal cost
control configuration selection problem, individually. dnder to illustrate the main results of this paper, some

simulations are also provided.

. INTRODUCTION

Real world systems, such as power systems, public or bssimgmnizations, and large manufac-
turing systems, are often too complex to be tackled by thsswal paradigm of mostly centralized
decision-making. Such systems are typically charactérlze a multitude of decision-makers; due to
the distributed nature of the sensing model, in which nosdecimaker may have a priori access to the
entire set of relevant data. Moreover, the communicati@t&éen the decision-makers may be limited,
as is the case in almost all practical networked scenariais. dften rules out the possibility of all-to-all
data exchange; hence, centralized data processing arsiattensiaking. An alternative approach consists
of decentralization or decentralized processing, in whighkey idea is to equip the individual network
decision-makers with autonomous decision-making aédithased on partial system data.
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Clearly, the success of decentralized processing reliesaoefully crafting the nature of partial data
accessible to the local decision-makers (i.e., the inftiongpattern). Therefore, in this paper, our goal
is to identify the critical system locations to be monitor@ad controlled, and architect the required
data exchange between the local components at minimastnficiure and communication costs, desired
closed-loop control performance may be achieved. The ftsbEsteps in control systems design thus

consist of addressing the following questions [1]:

Q1 Which actuators are required to ensure controllability?
Q2 Which sensors are needed to ensure observability?
Q3 What is theinformation patterni.e., which sensors need to supply data to which actuasois)

that desired control objectives (for instance, stabilildgfh may be ensured?

In this paper, we address theput-output(l/O) selection problem@1-Q2), and thecontrol con-
figuration (CC) selection problem@3), with the additional constraint that different actuaiagsensors
and means-of-communication can incur in different costesg costs can reflect manufacturing, main-
tenance and installation costs, or selection prefererfe@sinstance, consider the selection of phasor
measurement units (PMUs) for state estimation in powertrgdegrids [2], where sensor parameters
such as sampling rate and choice of installation site mamditiaally affect the cost, or leader selection
problems in which some agents are preferred to others inurgcsome tasks [3]. Alternatively, the
communication cost may be associated with the use of ojtge-fiable to forward data form sensors
to actuators, hence, the cost would depend on its length.

The major focus of the present paper involves the optinoradind qualitative assessment of intrinsic
system-theoretic constructs to achieve satisfactory-eifsttive decentralized control. Specifically, in
this cost-effective decentralized control context, weubon theco-designof sensing-actuation infras-
tructures and information patterns, i.e., which sensoputst should communicate or be available to
which actuators for feedback.

Utilizing concepts from control theory, graph theory andntinatorial optimization, the major focus
of the present paper involves the optimization and qualgaissessment of intrinsic system-theoretic
constructs, as well as to develop new design/analysis toalsalgorithms that can harness the physical

dynamics of such systems to meet the specified large-scateotobjectives’ guarantees.

Related Work

Recently, the I/0O selection problem have received incnggaitention in the literature, especially, since
the publication of [4]. In [4], theninimal controllability problen{MCP), i.e., the problem of determining

the sparsest input matrix that ensures controllability ghean the system dynamics matrix, was shown



to be NP-hard, and some greedy algorithms provided. Exdatisoes to MCP are explored in [5],
and in [6], using graph theoretical constructions, the mali controllability problem is shown to be
polynomially solvable for almost all numerical realizatsoof the dynamic matrix, satisfying a predefined
pattern of zeros/nonzeros. Alternatively, in [7], [8], [$]10] the configuration of actuators is sought to
ensure certain performance criteria; more precisely,[B]],[10] focus on optimizing properties of the
controllability Grammian, whereas [9] studies leader cigb@ problems, in which leaders are viewed
as inputs to the system, and the selection criteria aimsaedspp convergence. In addition, in [9], [7],
[8] the submodularity properties of functions of the coli&doility Grammian are explored, and design
algorithms are proposed that achieve feasible placemehtagrtain guarantees on the optimality gap.
The 1/0 selection problem considered in the present pajfierslifrom the aforementioned problems in
the following two aspects: first, the selection of the inpstgestricted to belong to a specific given set
of possible inputs, i.e., we study constrained input plaa@mand, hence, differing from [4], [5], [6] in
which unconstrained input placement is studied. Secortdigntrasts with [7], [8], [9], [10] in the sense
that we do not aim to ensure performance in terms of a funafdhe controllability Grammian, but we
aim to minimize the overall actuation cost, measured in seainmanufacturing/installation/preference
costs. Furthermore, instead of optimizing a specific (nucagrsystem instance, we focus on structural
design guarantees that hold for almost all (numerical)esgsinstantiations with a specified dynamic
coupling structure. In addition, within the scope of thesam@ problem, we provide optimal solutions
under mild assumptions on the dynamics of the system, uretgrgeneral cost formulations. Note that,
if we consider general dynamical systems, even with unifoost, the problem tackled by us is NP-
hard [11]. The latter problem is referred to as the minimailstrained input selection (CMIS) problem,
i.e., the problem of determining the minimum number of igptitat ensures structural controllability,
which has been extensively studied, see [12], [13] and eafss therein. In a sense, this provides
justification for the traditional approaches to solve th@ $election problem, which include suboptimal
methods such as heuristics, genetic algorithms or relaxstisee for instance [14], [15], [16], [17],
[18], and references therein.

Regarding the CC problem [14], it is worthy to point out thaire meaningful advances were recently
achieved in terms of determining the numerical gains toeaehclosed-loop systems performance, given
the existence of feasible informations patterns, that vem@mplished by using convex optimization
tools [19]. More precisely, the set of feasible solution®ien characterized in terms of a property
called quadratic invariance which has been subsequently shown to be necessary andesuf{i20],
see also [21] for a review about the recent developmentsefieiess, these methods always assume

that there exists a feasible information pattern, and ntricésn is imposed in terms of the sparsity or



the cost incurred by a feasible information pattern. Thisng of the goals of the present paper; in a
sense, we can use the approach in the present paper to detdeasible information patterns that can,
subsequently, be used to determine gains for numericaémsysistances using the existing tools. In
[22] the design of wireless control networks is pursued, lggven a decentralized plant, modeled as a
discrete linear time invariant system equipped with actisadnd sensors, the communication topology
design between actuators and sensors to achieve decadralontrol was posed as a CC selection
problem. Both theoretical and computational perspectivese provided, although the CC selection
problem admits a degree of simplification in the discreteetsetting. The CC selection problem has
also been considered in [23] where a method for determiriegntinimum number of essential inputs
and outputs required for decentralization was providedydwer, the characterization does not cope
with all cases, see, for instance [24] (page 219). Anothakwioat is related with ours is [25], which
studies only the CC selection problem, for a given placeméinputs and outputs, i.e., the inputs and
outputs do not incur in any cost. Furthermore, the methagoio [25] is not applicable when some of
the communication costs are taken to be infinite, i.e., whearsor cannot directly communicate with
an actuator, as is often the case in many large-scale (psgbgraphically distributed) systems.

Nevertheless, as also referred in [14] there are very fewhoust that address the 1/0O and CC
problemsjointly, and to the best of our knowledge none that considers geaetaation/sensing and
communication costs. Hereafter, we show that the problenifigult (NP-hard) to solve in general,
however, we identify an important subclass that admitsmpatyial complexity solutions. More precisely,
we show that there exist efficient tools to address the I/OG@delectiorco-designvhen the dynamics
matrix is irreducible. Notice that this comprises a variefyinter-connected dynamical systems [26],
multi-agent networks [26], [27], or dynamics based in cossis-like protocols [28], [27], where the
irreducibility is essentially ensured by the netwadnnectivity

The closest work to the one presented in here, in the sensi gxplores the 1/0 and control config-
uration co-design problem, is the one in [6], where $parsest/O selection and control configuration
problems, under the assumption that only the structure efstfstem dynamics is known but without
constraints on the possible inputs/outputs, were additegse extension of [6] was presented in [29],
where general (possibly heterogeneous) costs to actudteneasure state variables, but with uniform
communication or feedback link cost, was considered. Hewekie 1/0 cost structure considered in [29]
is somewhat different from that considered in this papethaformer, the cost is imposed on the state
variables that are to be actuated/observed and not on tledis@etuators/sensors as considere@®in
in this paper. In summary, the present work differs from thegsented in [6], [29] in the following

three major aspects: (i) it considers additional constsaim the possible inputs and outputs used; (ii)



the costs depend on the inputs and outputs used to perforskaaad (iii) the communication cost
between input-output pairs is arbitrary. o

The main contributions of this paper are as follows: (i) wewhhat the minimum cost constrained
I/O and control configuration co-design problem is NP-hdi; we present an efficient algorit
(polynomial in the dimension of the state, input and outgatlolve it, when the dynamic matrix is
irreducible; and (iii) we show how our solution, when the dgmic matrix is irreducible, can be used
to solve the minimum cost constrained I/O selection problanmd the minimum cost CC selection
problem, individually.

The rest of the paper is organized as follows. In Sedfibn & provide the formal problem statement,
together with some motivation. Sectidnl lll reviews someaapts and introduces results in structural
systems theory. Subsequently, in Secfioh IV we present tia technical results (proofs are relegated
to the Appendix), followed by an illustrative example in 8ec [Vl Conclusions and discussions on

further research are presented in Secfioh VI.

[I. PROBLEM STATEMENT

In this paper, we consider a given (possibly large-scalahtphnd a collection of inputs and outputs
modeled by
i(t) = Az(t) + Bu(t), y(t) = Cz(?), (1)

wherez(t) = [z1(t) ... z,(t)]T € R", u=[us(t) ... u,()] € RP andy = [yi(t) ... ym(t)]" € R™
are the state, input and output, respectively. In additienA € {0,1}"*" be the binary matrix that
represents the structural patternf and B € {0,1}"*?,C € {0,1}™*" the structural patterns of the
input and output matrices, respectively. Similarly, iétc {0, 1}?*™ be theinformation pattern where
K, ; =1 if output j is available to actuator, and zero otherwise.

Further, we aim to ensure that a system achieves the spelfigetscale controjuaranteesvhen
the closed-loop system uses static output feedback, uraemanication constrains imposed by an
information pattern. Specifically, by the careful designl/@ and information pattern infrastructures,
we want to ensure that the resulting closed-loop system tiéiged modesas our design guarantee [30].
To this end, denote bj/] = {M : M;; = 0 if M,; = 0} an equivalence class of matrices of appropriate
dimensions. The set of fixed modes of the closed-loop sysBmv(.t. an information patterd is
given by oz = (e 0(A + BKC) (see [30]), wherer()M) denotes the set of eigenvalues of the
matrix M. It is known that (see [30]) if, for a non-empty symmetric otV C C, oz C W (Where

C denotes the set of complex numbers), then there exists argari/K| such that all the eigenvalues

1The Matlab implementation of the algorithm can be found itpdit/www.mathworks.com/matlabcentral/fileexchangem?



(also known as the poles) of the closed-loop systém BKC are in)V. Equivalently, we want to
ensure that the poles of the closed-loop system can be pktetarily by appropriately tuning the
numerical feedback gain parameters under the obtainedy(del information pattern.

Yet, in real-world large-scale systems, more often than thet exact parameters of tiptant are not
available, or may change over time. Hence, to ensure thatasieed closed-loop performance guarantees
as discussed above are met, in this paper we adopt a stiuddsign and analysis viewpoint and aim to
jointly address the I/O and control configuration (CC) setecsuch that the closed-loop system has no
structurally fixed mode§SFMs). The structural version of fixed modes was introduoel@1], which,
essentially, are the fixed modes attributed to the strulgbatéern, i.e., location of zeros and nonzeros, of
a system, as opposed to fixed modes that originate from agpedaceling of the numerical parameters.
Specifically, a structural LTI systert¥, B, C) is said to have structurally fixed modes (SFMs) w.r.t. an
information patternk, i.e., (A, B,C, K) has no SFMs, if for allA € [4], B € [B], C € [C], we have
Niery oA+ BKC) # 0.

Conversely, a structural systefd, B, C', K') has no structurally fixed modes, if there exists at least
one instantiatiod € [A], B € [B], C' € [C] which has no fixed modes, i.€c(zj0(A+ BKC) = 0.

In this latter case, it may be shown (see [32]) that almostyatems in the sparsity clagd, 5, C') have
no fixed modes, and, hence, allow pole-placement arbitratdse to any pre-specified (symmetrical
about the real axis) set of eigenvalues. This also justifigsconstraint of designing systems with no
SFMs in problenmpP;.

In summary, we choose the non-existence of SFMs as our designion because, informally, it
would imply that all LTI systems represented by, B, C') with a given sparsity pattern, i.e., location
of zeros/nonzero$A, B, C)), have no fixed modes, and, hence, would allow pole-placeiaitrarily
close to any pre-specified set of eigenvalues.

Thus, in the present paper, we addressrttieimal cost constrained I/O and control configuration

co-design problem stated as follows.

Problem Statement

Let ¢,(i) € R} denote the (non-negative) cost associated with selectiegth inputu, (i € 7 =
{1,...,p}), ¢,(j) € R} denote the (non-negative cost) associated with selectiegith output y;
(j€J={1,...,m}), andcy((z,7)) € R} U{oo}, with (i, 7) € T x J, denote the cost associated with
feeding outputj to inputi, also referred to as communication cost, whergi’, j')) = oo if output 5’

is not available to input’. This paper aims to study the following problem.



P, Find the triple(Z*, 7*, F*) that solves the following optimization problem:

min Y i)+ ) e) + D epl(ih)) (2)
ZcA{l,...,p} i€z jeg (i,j)EF
J cAl,...,m}
FC(IZxJ)

st. (A,B(1),C(J),K(F)) has no SFMs

where B(Z) corresponds to the sub-matrix & comprising the columns with indices i, C(7)
corresponds to the sub-matrix @fcomprising the rows with indices if, and K (F), ; = 1if (j,1) € F.
Due to the combinatorial nature of the I/O and CC co-desigiblems (see for instance [14]) are
typically solved using a two-step (generally suboptimatygedure, namely solving first the input/output
(I/0) selection problem, followed by the control configimat (CC) selection problem. Formally, the

structural theory counterparts of these problems are grgefollows:
Minimum Cost Constrained I/O selection problem
PyO: Given the structure of the dynamic matrit € {0,1}"*", the structure of the input matrix

B € {0, 1} and the input costs, (i), withi = 1, ..., p, theminimum cost constrained input selection
problem consists in determiri that solves the following optimization problem:
min > i) 3)
Zc{l,...,p} i€T

s.t. (A, B(Z)) is structurally controllable

where B(Z) corresponds to the sub-matrix 8fcomprising the columns with indices #y and a system
(A, B) is said to bestructurally controllableif there exists a controllable pajri,, By) of real matrices,

i.e., a system described by these matrices, with zero eritriposed by the zero entries ofl, B). ©
Minimum Cost Constrained CC selection problem

PFC: Given the structure of the dynamic matrik € {0,1}"*", the structure of the input and output
matricesB € {0,1}?,C € {0,1}"™", and the communication costs((i,j)) € R" U {oco}, with
(i,j) € T xJ) = ({1,...,p} x{1,...,m}), the minimum cost constrained control configuration

selectionproblem consists in determing* that solves the following optimization problem:
: . 4
pumin > e((ig) (4)

s.t. (A,B,C,K(F)) has no SFMs



I1l. PRELIMINARIES AND TERMINOLOGY

We start by reviewing some computational complexity cotedp3], followed by some concepts

related with the study of structural systems theory [13], [6

Computational Complexity

A (computational) problem is said to reducible in polynomial timéo another if there exists a
procedure to transform the former to the latter using a nunobeperations which is polynomial in
the size of its inputs. Such a reduction is useful in deteimgirihe complexity class [33] a problem
belongs to. For instance, recall that a probl&nin NP (i.e., the class of non-deterministic polynomial
algorithms) is said to be NP-complete if all other NP protderan be polynomially reduced 1@ [33].
The set of NP-complete problems is referred to as the NP-lmmplass. The following result may be
used to prove the NP-completeness of a given problem.

Lemma 1 ([33]): If a problemP, is NP-completePs is in NP andP, is reducible in polynomial
time to Pg, thenPp is NP-complete. o

The NP-complete class is used to describe the complexityeofsibn versions of problems. For
instance, the following constitutes a decision problent ikaparticularly relevant in the structural
design context: Giveml € {0,1}™*™ and B € {0,1}"*?, is there a collection of input®(.7), where
J c {1,...,p} and whereB(J) corresponds to the sub-matrix & comprising the columns with
indices inJ, with | 7| = k such that(A, B(7)) is structurally controllable?

Alternatively, it is often natural to consider the optintia versions associated with the decision
problems. For instance, the optimization version of thebjmm stated above aims to determine the
minimum £ such that the aforementioned property holds. This optitiwmgroblem is referred to as the
constrained minimum structural input selection (CMIS)kpem, given byP/© with uniform non-zero
actuation costs. Note that, if a solution to the optimizagwoblem is known, the decision problem is
straightforward to solve. Consequently, the optimizapawblem formulations of NP-complete problems,
are referred to as being NP-hard, since they are at leastffagiltlias the NP-complete problems; in
other words, by solving an instance of the optimization pFob(the NP-hard problem), one can obtain

a solution to an NP-complete problem.

Graph Theory and Structural Systems

The following standard terminology and notions from grapéary can be found, for instance, in [6].
Let D(A) = (X, Ex x) be the digraph representation 4fin (1), where the vertex set represents the

set of state variables (also referred to as state verticesfa r = {(z;,z;) : Aj; # 0} denotes the



set of edges. Similarly, we define the following digrapfX:A, B) = (X UU, Ex x U Ey.x) Whereld
represents the set of input vertices addy = {(u;,z;) : Bj; # 0}; andD(A, B, K,C) = (X UU U
V., ExxUExryU&rUEyy) denotes the digraph associated with the closed-loop systérare )
represents the set of output vertices d&ady = {(z;,y;) : C;; # 0} and the set of feedback edges/links
is given by&y = {(yi,u;) : Kj; # 0}.

A digraph Dy, = (V,, &) with V, ¢ V and &, C € is called asubgraphof D. If V, =V, D is
said tospanD. Finally, a subgraph with some property is maximalif there is no other subgraph
Dy = (Vy,Ey) of D, such thatD, is a subgraph oD, and D, satisfies propertyP. A sequence
of directed edgeg (v, v2), (ve,v3), -+, (vk_1,vx)}, In Which all the vertices are distinct, is calleah
elementary patlirom v; to v;, as well as a vertex in a digraph with no incoming and outg@dges
(with some abuse of terminology). A vertex with an edge telit§.e., aself-loop, or an elementary
path fromv; to v, comprising an additional eddey, v, ), is called acycle

In addition, a digraplD is said to be strongly connected if there exists an elemgmiath between
any pair of vertices. Astrongly connected componef8CC) is a maximal subgragBs = (Vs, Eg) of
D such that for every, w € Vg there exists a path from to w and fromw to v.

Using the above constructions, we can now present some ginaphretical properties that the digraph
associated with the closed-loop systémA, B, C, K) must satisfy to avoid the existence of SFMs.

Theorem 1 ([34]): The structural systemA, B, C') associated with'{1) has no SFMs w.r.t. an infor-

mation patterni’, if and only if both of the following conditions hold:

a) each state vertex € X is contained in a strongly connected componenbofi, B, C, K) which
includes an edge afy ;
b) there exists a finite disjoint union of cycl€s = (V, &) (subgraph ofD(A, B, C, K)) with
k € N such thatt c (J5_, V. o
The conditions in Theorefd 1 hold only if the system is bstttucturally controllableand structurally
observablg. More precisely, we have the following result.
Proposition 1 ([34], [6]): If (A, B,C,K) has no SFMs, theriA, B) and (4,C) are structurally

controllable and observable, respectively. o

A. Optimal Assignment Problem

The optimal assignment problem consists in determiningctiilection M* of pairs of indices of a

k x k square matrix{ that correspond to the diagonal entries of the makiix/ P;, where P} and Py

A system (A, C) is said to bestructurally observabléf there exists an observable pdido, Co) with zero entries enforced by the

zero entries in(A, 0).



are permutation matrices such that

(P}, Py) = arg min73 tracd P, H P;),

P1,Pe
with P denoting the class of alt x £ permutation matrices. In what follows, we consider, for the
optimal assignment problem, block matricdsgiven by

HET  gTU o gty
)

nxn nxp nxm
. u,T u,u U,y

Hn+p+m — Hp><n Hp><p Hp><m
HY*  HgYY ¥y

mxn Hmxp Hmxm
where the labels of the columns associated with the firsikidoe{z,, ..., z,}, the seconduy, ..., u,},
and the third{y,, .. ., v, }. Similarly, the labels of the rows associated with the fitetk are{z,, ..., z,},
the seconduy, ..., u,}, and the third{y,, ..., y,}. For example, the first row and third column of the
nxn matrix H¥Z is indexed by the paifz;, z3), and the first row and third column of thex p matrix

nxn

H, 7, is indexed by the paifu,,z3). Consequently, any solution to the optimal assignment lprob
M*C Lx L, wherel = {xy,...,2p,u1,...,Up,Y1,-..,Yn}, CONSiSts Ofn + p + m pairs of indices.

Further, we can associate a matfxwith a digraph representatidd(H) = (£, ), where€ C L x L.

In particular, a matrix{ is irreducibleif and only if D(H) is an SCC. In addition, we have the following
result given by Konig (see Appendix in [35]):

Proposition 2: Given a square matri¥/, whereD(H) = (£, ), and a solution optimal assignment
problem M*, then the digrapiD = (£, M*)) corresponds to a disjoint collection of cycles that spans
D(H). o

Remark 1:In the sequel, we will use the solution of an optimal assigmnproblem to establish
results abouD(A, B, C, K), which is mainly possible due to the labeling we chose to tivesrand
columns of the matrix{ to be used in the assignment problem, and consistent witle srthe edges
in D(A, B,C, K). In particular, using Proposition 2, we will be able to emstinat D(4, B, C, K)
satisfies condition b) in Theoren 1. o

IV. MAIN RESULTS

In this section, we present the main results of the presegrgrpMore precisely, we first show th&y
is NP-hard (Theorerl 2). However, the subclass of problemshich the dynamic matrix is irreducible,
is shown to be polynomially solvable, using, for instancigokithm 1. The correctness and complexity
of Algorithm 1 is presented in Theore 3. Finally, we show haigorithm 1 can be used to solve
polynomially the minimal cost constrained I/O selectiomlgem as given inPf/O, and the minimal
cost CC problem as given iR“C, if we consider similar assumptions.

We begin by showing thaP; is NP-hard.



Theorem 2:The minimal cost constrained 1/0O and control configuratiordesign problem, given in
Py, is NP-hard. o

Nonetheless, the fact that a problem is NP-hard does notugledhe existence of a subclass of
problem instances that are easier to solve. In fact, thihvésdase when we restrict the structure
of the dynamics to be irreducible. In Algorithm 1, we presant algorithm to solveP;, under the
aforementioned constraint. Next, we provide its proof afrectness and complexity, given in terms of
a cubic polynomial in the dimension of the state, input antpou

Theorem 3:Algorithm[1 is correct and its complexity ©((n + m + p)?). o

Next, we provide the solution tB!°, under the assumption that the structure of the dynamicexmat
is irreducible, by resorting to Algorithm 1. Notice that g¢hproblem is also NP-hard, since we obtain
the CMIS problem by considering uniform non-zero actuatosts.

Theorem 4:1f A is irreducible, therP!/© is polynomially solvable using Algorithm 1, when setting
C =1, (then x n identity matrix),c,(j) = 0, with j = 1,...,n, andc;((i,5)) = 0 for (i,5) € T x J.

<

Remark 2:By duality between controllability and observability in L§ystems, Theorerml 4 readily
extends to the minimal cost constrained output selectidrichvconsists in determining the minimum
number of outputs, given a possible configuration of outgitsghat incurs in the minimum cost and
ensures structural observability. o

Similarly, we can solve the minimum cost CC selection probfetc, as follows.

Theorem 5:1f A is irreducible, thenPCC is polynomially solvable using Algorithm 1, by setting
c,(1) =0, with s € Z, andc¢,(j) = 0, with j € J. o

In the next section, we provide a couple of examples thastiide the results attained in this paper.

V. AN ILLUSTRATIVE EXAMPLE

In this section, we provide two examples where a feasibletswol to P; exists; more precisely, two

different cases in Algorithm 1 are explored.

Example 1

Let the structure of the dynamics, input and output matrlmegiven as follows:

A=

O
OO
oo
OO
[ =] =]

0
0
0
1
1
0

1100

0900 ~
0090 ,andC:[
0001

0011

==}
[ —

01100
10010
10001
01000
00100
00011



ALGORITHM 1: Solution toP,

Input: The structural plant matricesd, B, C') (with A irreducible), the input costs, (7)
(ieZ={1,...,p}), output costs,(j) (j € J ={1,...,m}), and the communication (feedback)
costse; (i, 1)) ((i. ) € T x 7).

Output: A solution (Z*, 7*, F*) to P;.

1. Let
0, |f Ai,j = 1
oo, otherwise ’

and compute the optimal assignment probl&fh consideringC ;.

2. If M’ incurs in finite costthen determine

(*,7%) = arg(@ﬂ,r)rélzrlxjcu(@) + ¢y (7) +¢p((4, 7)),

and, if ¢, (i*) + ¢, (j*) + ¢ ((i*, 5%)) < oo, then setZ* = {i*}, J* = {j*}, and F* = {(i*, j")},
otherwise there is no feasible solution; in particularcsithe input and output costs are finite, it
follows that there is no feasible information pattern;

elseconsider the following matrix

T T
Ci OOnxp CC

C* - Cg I[;;Xp OOp)(m )
Omxn C[T‘( L xm
where
cu(j), if Bij=1
[Cglij = Lo
00, otherwise
C (7,), if C_’i,' =1
Celij =% " ’

. Y
oo,  otherwise

and[Cgi; = ¢,((4, 7)), and infinite otherwise. In additiof;,, is ther x r matrix with zero

rxr
entries in its diagonal and infinity in the off-diagonal ée$; andooy,; is the k x [ matrix with its
entries set to infinity.

Now, compute a solution to the optimal assignment probldrassociated witlC*. If M* incurs
in finite cost, thensel* ={ieZ: (w;,.) e M*}, T*={jeJ: (.,y;) € M*}, and
Fr=A{(i,j) eI x T : (y;,u;) € M*}, otherwise there is no feasible solution; in particulancsi

the input and output cost are finite, it follows that there asfeasible information pattern;




In addition, let the input costs are given by = [10 10 20 20}, the output costs by, = [15 15 50],
and the communication costs by
w=[331]
oo 20 10
First, notice thatA is irreducible, and we can resort to Algorithm 1 to solRe. After we execute
Algorithm 1, the solution obtained * = {1}, 7* = {1} and F* = {(1, 1)}, illustrated in Figure 1-b)

by the non-black and non-dashed edges, and incurring inahdost of30.

Example 2

Let the structure of the dynamics, input and output matrlmegiven as follows:

10110 000 10010

A= |01000|, B=|001 ,andC:[oono},
01000 100 00001
01000 011

In addition, let the input costs are given by= [5 10 10], the output costs by, = [10 10 1], and the
communication costs by

K= [1220 1%]0 %} '
First, notice thatd is irreducible, and we can resort to Algorithm 1 to soRe The solution obtained
isZ* = {1,2,3}, J* = {1,2,3} and F* = {(2,1),(3,3),(1,2)}, illustrated in Figure 2-b) by the
non-black and non-dashed edges, and incurring in a totalofalss6.

Y1 Y2

a) b)

Fig. 1. In a) we depict the digraph representation assatiatth C* defined upon the parameters given in Example 1, where a possib
solution to the optimal assignment problem is depicted leyréid edges. In b) we provide(A, B(Z*), C(J*), K(F*)) accordingly with

the triple (Z*, J*, F*) determined by Algorithm 1, where the inputs and outputs wakhed edges have not been selected. In addition,
we depict by the bold arrows the disjoint union of cycleslioA, B, C, K) that contains alk:-vertices, and the SCC containing at least

an edge of the fornty;, u;), as required by Theorem 1-b) and Theorem 1-a), respectitielyce, Theorem 1 holds, and the closed-loop
system(A, B, C, K) has no SFMs.



Fig. 2. In a) we depict the digraph representation assatiatth C* defined upon the parameters given in Example 2, where a possib
solution to the optimal assignment problem is depicted ley rérd edges. In b) we providB(A, B(Z*),C(J*), K(F*)) accordingly
with the triple (Z*, 7", F*) determined by Algorithm 1. In addition, we depict by the baldows the disjoint union of cycles in
D(A, B,C, K) that contains alk-vertices, and the SCC containing at least an edge of the fgrm;), as required by Theorem 1-b)
and Theorem 1-a), respectively; hence, Theorem 1 holdstrendlosed-loop systerfd, B, C, K) has no SFMs.

VI. CONCLUSIONS AND FURTHER RESEARCH

In this paper we have shown that the minimal cost constrdif@dnd control configuration co-design
problem is an NP-hard problem; hence, efficient algorithmesreot likely to exist. Nevertheless, this
does not preclude the existence of classes, where it islpedsi determine solutions efficiently. In fact,
we provided a systematic method with polynomial compleXity the dimension of the state, inputs
and outputs) to jointly solve the input-output and contr@hfiguration selection problem that incurs in
a overall minimal cost, under the assumption that the siracdf the dynamics matrix is irreducible.
Future research will consist of determining other subelass interest where the current problem can

be efficiently solved.

APPENDIX
Proof of Theorenfi]2

To prove thatP; is NP-hard, we provide a reduction from a known NP-hard mablthe CMIS (see
Section II, problenP!©), to a particular instance @ when the costs (input/output/communication) are
equal and uniform, which we refer to &. Consequently, the corresponding decision problems can be
polynomially reduced to each other, and the result followsnboking Lemmad_lL. First, we notice that it
is possible to polynomially verify if a solution tB; is feasible, and, consequently, to the corresponding
decision problem, see, for instance [25]; hence, the detisersion ofP; is an NP problem. Now,
we construct a polynomial reduction from the CMIS problen?™o Towards this goal, let, 5 and
cu(i),i € T ={1,...,p}, in P; be the same as in the CMIS problem. In addition,det= T,, be the



n x n identity matrix,c,(j) =0 for j € 7 ={1,...,n} andcs((i,5)) = 0 for (i,5) € Z x J. To see
that a solution to the proposed probléP provides us with a solution to CMIS, recall that a feasible
solution to Py, i.e., (A, B,C, K) without SFMs, implies that A, B) is structurally controllable (see
Proposition 1). Now, to see that(Z*) in P; is also a solution to CMIS, let us assume, by contradiction
that it is not. Then, there existE such thatB(Z’) incurs in a lower cost tha®(Z), and such that
(A, B(Z")) is structurally controllable. Now, becauégis the identity matrix and<” can be full without
increasing the cost, it follows that there exists a coltatiof cycles that comprise the inputs labeled by
7', as well as a set of labels for the outputs and feedback giyefi’band 7', respectively. However,
this collection of cycles provides with a solutiont’ to the optimal assignment problem that incurs in
lower cost thanM*, which is a contradiction since we assumed thdt is a solution to the optimal

assignment problem. [ |

Proof of Theoreni]3

As discussed in the preliminaries, a solutigrt* to the optimal assignment problem &f al-
ways provides a collection of + m + p pairs of labels of the formM* C £ x L, where £ =
{z1,..., 20, u1, ..., up, y1, ..., ym - Subsequently, by construction 6f, if the weight-sum cost of the
entries inC* labeled in M* is finite, then there exists a collection of disjoint cyclesthe digraph
representation o€* (see Proposition 2). Now, notice that by construction, omiiges associated to
finite entries inC* are used; hence, the cycles comprise only edges of the form;), (u;,z;),
(wi,95), (y;,u;), as well as(u;,u;) and (y;,y;). Further, the latter edges:;, v;) and (y;,y;) do not
contribute to ensure either condition a) or b) in Theoremdt,are they represented (A, B, C, K);
hence, they can be neglected from the analysis. Subsegueynthoticing that if any edge of the form
(wi, z5), (xi,95), (y;,u;) belongs taM*, then so are the other two, otherwisef* does not comprise a
family of cycles with finite weight. Nonetheless, it might thee case that there is no edge of the form
(ui, xj), (z4,9;), (y;,u;), that corresponds to the case whavg incurs in finite cost, which implies that
there exists a disjoint union of cycles comprising only \eed with labels{x, ..., z,}; subsequently,
all edges of the form(u;,u;) and (yx,y;) are used inM*. In this case, the weight-sum o¥1* is
equal to zero and, although condition Theorem 1-b) is satisit follows that there is no edge of the
form (y;,u;) in the SSC containing the state variablesZif4, B, C, K). To preclude this case, if1’
incurs in finite cost, we consider the trip(é({i}),C({;j}), K({(i,7)})) that incurs in the smallest
cost; hence, condition Theorem 1-a) is satisfied, and Thedrenolds. Alternatively, ifA/’ does not
incur in finite cost, then additional edges that are not offtien (z;, z;) are required to be associated

with a solution to the optimal assignment problem, as resiuRroposition 2. Further, both conditions



in Theorem 1 are satisfied: more precisely, a) is satisfiecesii(A) is an SCC (by assumption), and
there must exist at least an edge of the fdwn v;) in M*, as well as inD(A, B(Z*),C(J*), K(F*))
obtained using Algorithm 1. On the other hand, Theorem Isk®aitisfied by considering, the edges of
a solution to the optimal assignment problem used to defing, B(Z*), C(J*), K(F*)).

Finally, we notice that the algorithm’s complexity @((n + m + p)?), since it is the complexity
of applying the Hungarian algorithm to the optimal assignmgroblem associated witG*; all the

remaining steps have lower complexity which renders therotrtm the final complexity. |

Proof of Theoreniil4

First, we notice that sincd is irreducible, from Theorem] 3, it follows that Algorithm Etrmines
the optimal solution tagP;. Further, if (4, B,C, K) has no SFMs, then it is structurally controllable
and observable (see Proposition 1). Because we have thays$kem is structurally observable and all
outputs can be fed to all inputs without increasing the cidipllows that the problem consists in
determining the collection of inputs that incurs in the miom cost; hence, by noticing that this is the

same as thé!©, the result follows. [ |
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