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Minimum Cost Constrained Input-Output and Control Configuration

Co-Design Problem: A Structural Systems Approach
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Abstract

In this paper, we study the minimal cost constrained input-output (I/O) and control configurationco-design

problem. Given a linear time-invariantplant, where a collection of possible inputs and outputs is known a

priori, we aim to determine the collection of inputs, outputs and communication among them incurring in the

minimum cost, such that desired control performance, measured in terms of arbitrary pole-placement capability

of the closed-loop system, is ensured. We show that this problem is NP-hard in general (in the size of the

state space). However, the subclass of problems, in which the dynamic matrix is irreducible, is shown to be

polynomially solvable and the corresponding algorithm is presented. In addition, under the same assumption, the

same algorithm can be used to solve the minimal cost constrained I/O selection problem, and the minimal cost

control configuration selection problem, individually. Inorder to illustrate the main results of this paper, some

simulations are also provided.

I. INTRODUCTION

Real world systems, such as power systems, public or business organizations, and large manufac-

turing systems, are often too complex to be tackled by the classical paradigm of mostly centralized

decision-making. Such systems are typically characterized by a multitude of decision-makers; due to

the distributed nature of the sensing model, in which no decision maker may have a priori access to the

entire set of relevant data. Moreover, the communications between the decision-makers may be limited,

as is the case in almost all practical networked scenarios. This often rules out the possibility of all-to-all

data exchange; hence, centralized data processing and decision-making. An alternative approach consists

of decentralization or decentralized processing, in whichthe key idea is to equip the individual network

decision-makers with autonomous decision-making abilities based on partial system data.
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Clearly, the success of decentralized processing relies oncarefully crafting the nature of partial data

accessible to the local decision-makers (i.e., the information pattern). Therefore, in this paper, our goal

is to identify the critical system locations to be monitoredand controlled, and architect the required

data exchange between the local components at minimal infrastructure and communication costs, desired

closed-loop control performance may be achieved. The first set of steps in control systems design thus

consist of addressing the following questions [1]:

Q1 Which actuators are required to ensure controllability?

Q2 Which sensors are needed to ensure observability?

Q3 What is theinformation pattern, i.e., which sensors need to supply data to which actuators,such

that desired control objectives (for instance, stabilizability) may be ensured?

In this paper, we address theinput-output(I/O) selection problem (Q1-Q2), and thecontrol con-

figuration (CC) selection problem (Q3), with the additional constraint that different actuators, sensors

and means-of-communication can incur in different costs. These costs can reflect manufacturing, main-

tenance and installation costs, or selection preferences.For instance, consider the selection of phasor

measurement units (PMUs) for state estimation in power electric grids [2], where sensor parameters

such as sampling rate and choice of installation site may dramatically affect the cost, or leader selection

problems in which some agents are preferred to others in executing some tasks [3]. Alternatively, the

communication cost may be associated with the use of optic-fiber cable to forward data form sensors

to actuators, hence, the cost would depend on its length.

The major focus of the present paper involves the optimization and qualitative assessment of intrinsic

system-theoretic constructs to achieve satisfactory cost-effective decentralized control. Specifically, in

this cost-effective decentralized control context, we focus on theco-designof sensing-actuation infras-

tructures and information patterns, i.e., which sensor outputs should communicate or be available to

which actuators for feedback.

Utilizing concepts from control theory, graph theory and combinatorial optimization, the major focus

of the present paper involves the optimization and qualitative assessment of intrinsic system-theoretic

constructs, as well as to develop new design/analysis toolsand algorithms that can harness the physical

dynamics of such systems to meet the specified large-scale control objectives’ guarantees.

Related Work

Recently, the I/O selection problem have received increasing attention in the literature, especially, since

the publication of [4]. In [4], theminimal controllability problem(MCP), i.e., the problem of determining

the sparsest input matrix that ensures controllability of agiven the system dynamics matrix, was shown



to be NP-hard, and some greedy algorithms provided. Exact solutions to MCP are explored in [5],

and in [6], using graph theoretical constructions, the minimal controllability problem is shown to be

polynomially solvable for almost all numerical realizations of the dynamic matrix, satisfying a predefined

pattern of zeros/nonzeros. Alternatively, in [7], [8], [9], [10] the configuration of actuators is sought to

ensure certain performance criteria; more precisely, [7],[8], [10] focus on optimizing properties of the

controllability Grammian, whereas [9] studies leader selection problems, in which leaders are viewed

as inputs to the system, and the selection criteria aims to speed up convergence. In addition, in [9], [7],

[8] the submodularity properties of functions of the controllability Grammian are explored, and design

algorithms are proposed that achieve feasible placement with certain guarantees on the optimality gap.

The I/O selection problem considered in the present paper differs from the aforementioned problems in

the following two aspects: first, the selection of the inputsis restricted to belong to a specific given set

of possible inputs, i.e., we study constrained input placement, and, hence, differing from [4], [5], [6] in

which unconstrained input placement is studied. Secondly,it contrasts with [7], [8], [9], [10] in the sense

that we do not aim to ensure performance in terms of a functionof the controllability Grammian, but we

aim to minimize the overall actuation cost, measured in terms of manufacturing/installation/preference

costs. Furthermore, instead of optimizing a specific (numerical) system instance, we focus on structural

design guarantees that hold for almost all (numerical) system instantiations with a specified dynamic

coupling structure. In addition, within the scope of the present problem, we provide optimal solutions

under mild assumptions on the dynamics of the system, under very general cost formulations. Note that,

if we consider general dynamical systems, even with uniformcost, the problem tackled by us is NP-

hard [11]. The latter problem is referred to as the minimal constrained input selection (CMIS) problem,

i.e., the problem of determining the minimum number of inputs that ensures structural controllability,

which has been extensively studied, see [12], [13] and references therein. In a sense, this provides

justification for the traditional approaches to solve the I/O selection problem, which include suboptimal

methods such as heuristics, genetic algorithms or relaxations, see for instance [14], [15], [16], [17],

[18], and references therein.

Regarding the CC problem [14], it is worthy to point out that some meaningful advances were recently

achieved in terms of determining the numerical gains to achieve closed-loop systems performance, given

the existence of feasible informations patterns, that wereaccomplished by using convex optimization

tools [19]. More precisely, the set of feasible solutions isoften characterized in terms of a property

called quadratic invariance, which has been subsequently shown to be necessary and sufficient [20],

see also [21] for a review about the recent developments. Nevertheless, these methods always assume

that there exists a feasible information pattern, and no restriction is imposed in terms of the sparsity or



the cost incurred by a feasible information pattern. This isone of the goals of the present paper; in a

sense, we can use the approach in the present paper to determine feasible information patterns that can,

subsequently, be used to determine gains for numerical system instances using the existing tools. In

[22] the design of wireless control networks is pursued, where given a decentralized plant, modeled as a

discrete linear time invariant system equipped with actuators and sensors, the communication topology

design between actuators and sensors to achieve decentralized control was posed as a CC selection

problem. Both theoretical and computational perspectiveswere provided, although the CC selection

problem admits a degree of simplification in the discrete time setting. The CC selection problem has

also been considered in [23] where a method for determining the minimum number of essential inputs

and outputs required for decentralization was provided; however, the characterization does not cope

with all cases, see, for instance [24] (page 219). Another work that is related with ours is [25], which

studies only the CC selection problem, for a given placementof inputs and outputs, i.e., the inputs and

outputs do not incur in any cost. Furthermore, the methodology in [25] is not applicable when some of

the communication costs are taken to be infinite, i.e., when asensor cannot directly communicate with

an actuator, as is often the case in many large-scale (possibly geographically distributed) systems.

Nevertheless, as also referred in [14] there are very few methods that address the I/O and CC

problemsjointly, and to the best of our knowledge none that considers generalactuation/sensing and

communication costs. Hereafter, we show that the problem isdifficult (NP-hard) to solve in general,

however, we identify an important subclass that admits polynomial complexity solutions. More precisely,

we show that there exist efficient tools to address the I/O andCC selectionco-designwhen the dynamics

matrix is irreducible. Notice that this comprises a varietyof inter-connected dynamical systems [26],

multi-agent networks [26], [27], or dynamics based in consensus-like protocols [28], [27], where the

irreducibility is essentially ensured by the networkconnectivity.

The closest work to the one presented in here, in the sense that it explores the I/O and control config-

uration co-design problem, is the one in [6], where thesparsestI/O selection and control configuration

problems, under the assumption that only the structure of the system dynamics is known but without

constraints on the possible inputs/outputs, were addressed. An extension of [6] was presented in [29],

where general (possibly heterogeneous) costs to actuate and measure state variables, but with uniform

communication or feedback link cost, was considered. However, the I/O cost structure considered in [29]

is somewhat different from that considered in this paper; inthe former, the cost is imposed on the state

variables that are to be actuated/observed and not on the specific actuators/sensors as considered inP1

in this paper. In summary, the present work differs from thatpresented in [6], [29] in the following

three major aspects: (i) it considers additional constraints on the possible inputs and outputs used; (ii)



the costs depend on the inputs and outputs used to perform a task; and (iii) the communication cost

between input-output pairs is arbitrary. ◦

The main contributions of this paper are as follows: (i) we show that the minimum cost constrained

I/O and control configuration co-design problem is NP-hard;(ii) we present an efficient algorithm1

(polynomial in the dimension of the state, input and output)to solve it, when the dynamic matrix is

irreducible; and (iii) we show how our solution, when the dynamic matrix is irreducible, can be used

to solve the minimum cost constrained I/O selection problem, and the minimum cost CC selection

problem, individually.

The rest of the paper is organized as follows. In Section II, we provide the formal problem statement,

together with some motivation. Section III reviews some concepts and introduces results in structural

systems theory. Subsequently, in Section IV we present the main technical results (proofs are relegated

to the Appendix), followed by an illustrative example in Section V. Conclusions and discussions on

further research are presented in Section VI.

II. PROBLEM STATEMENT

In this paper, we consider a given (possibly large-scale) plant and a collection of inputs and outputs

modeled by

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (1)

wherex(t) = [x1(t) . . . xn(t)]
T ∈ Rn, u = [u1(t) . . . up(t)]

T ∈ Rp andy = [y1(t) . . . ym(t)]
T ∈ Rm

are the state, input and output, respectively. In addition,let Ā ∈ {0, 1}n×n be the binary matrix that

represents the structural pattern ofA, and B̄ ∈ {0, 1}n×p, C̄ ∈ {0, 1}m×n the structural patterns of the

input and output matrices, respectively. Similarly, letK̄ ∈ {0, 1}p×m be theinformation pattern, where

K̄i,j = 1 if output j is available to actuatori, and zero otherwise.

Further, we aim to ensure that a system achieves the specifiedlarge-scale controlguaranteeswhen

the closed-loop system uses static output feedback, under communication constrains imposed by an

information pattern. Specifically, by the careful design ofI/O and information pattern infrastructures,

we want to ensure that the resulting closed-loop system has no fixed modes, as our design guarantee [30].

To this end, denote by[M̄ ] = {M : Mij = 0 if M̄ij = 0} an equivalence class of matrices of appropriate

dimensions. The set of fixed modes of the closed-loop system (1) w.r.t. an information pattern̄K is

given by σK̄ =
⋂

K∈[K̄] σ(A + BKC) (see [30]), whereσ(M) denotes the set of eigenvalues of the

matrixM . It is known that (see [30]) if, for a non-empty symmetric open setW ⊂ C, σK̄ ⊂ W (where

C denotes the set of complex numbers), then there exists a gainK ∈ [K̄] such that all the eigenvalues

1The Matlab implementation of the algorithm can be found in https://www.mathworks.com/matlabcentral/fileexchange/49977



(also known as the poles) of the closed-loop systemA + BKC are inW. Equivalently, we want to

ensure that the poles of the closed-loop system can be placedarbitrarily by appropriately tuning the

numerical feedback gain parameters under the obtained (designed) information pattern.

Yet, in real-world large-scale systems, more often than not, the exact parameters of theplant are not

available, or may change over time. Hence, to ensure that thedesired closed-loop performance guarantees

as discussed above are met, in this paper we adopt a structural design and analysis viewpoint and aim to

jointly address the I/O and control configuration (CC) selection such that the closed-loop system has no

structurally fixed modes(SFMs). The structural version of fixed modes was introducedin [31], which,

essentially, are the fixed modes attributed to the structural pattern, i.e., location of zeros and nonzeros, of

a system, as opposed to fixed modes that originate from a perfect canceling of the numerical parameters.

Specifically, a structural LTI system(Ā, B̄, C̄) is said to have structurally fixed modes (SFMs) w.r.t. an

information patternK̄, i.e., (Ā, B̄, C̄, K̄) has no SFMs, if for allA ∈ [Ā], B ∈ [B̄], C ∈ [C̄], we have
⋂

K∈[K̄] σ(A +BKC) 6= ∅.

Conversely, a structural system(Ā, B̄, C̄, K̄) has no structurally fixed modes, if there exists at least

one instantiationA ∈ [Ā], B ∈ [B̄], C ∈ [C̄] which has no fixed modes, i.e.,∩K∈[K̄]σ(A+BKC) = ∅.

In this latter case, it may be shown (see [32]) that almost allsystems in the sparsity class(Ā, B̄, C̄) have

no fixed modes, and, hence, allow pole-placement arbitrarily close to any pre-specified (symmetrical

about the real axis) set of eigenvalues. This also justifies our constraint of designing systems with no

SFMs in problemP1.

In summary, we choose the non-existence of SFMs as our designcriterion because, informally, it

would imply that all LTI systems represented by(A,B,C) with a given sparsity pattern, i.e., location

of zeros/nonzeros(Ā, B̄, C̄), have no fixed modes, and, hence, would allow pole-placementarbitrarily

close to any pre-specified set of eigenvalues.

Thus, in the present paper, we address theminimal cost constrained I/O and control configuration

co-design problem stated as follows.

Problem Statement

Let cu(i) ∈ Rn
+ denote the (non-negative) cost associated with selecting the ith input ui (i ∈ I =

{1, . . . , p}), cy(j) ∈ Rn
+ denote the (non-negative cost) associated with selecting the jth output yj

(j ∈ J = {1, . . . , m}), andcf ((i, j)) ∈ Rn
+∪{∞}, with (i, j) ∈ I ×J , denote the cost associated with

feeding outputj to input i, also referred to as communication cost, wherecf ((i
′, j′)) = ∞ if output j′

is not available to inputi′. This paper aims to study the following problem.



P1 Find the triple(I∗,J ∗,F∗) that solves the following optimization problem:

min
I ⊂ {1, . . . , p}

J ⊂ {1, . . . ,m}

F ⊂ (I × J )

∑

i∈I

cu(i) +
∑

j∈J

cy(j) +
∑

(i,j)∈F

cf((i, j)) (2)

s.t. (Ā, B̄(I), C̄(J ), K̄(F)) has no SFMs,

where B̄(I) corresponds to the sub-matrix of̄B comprising the columns with indices inI, C̄(J )

corresponds to the sub-matrix ofC̄ comprising the rows with indices inJ , andK̄(F)i,j = 1 if (j, i) ∈ F .

Due to the combinatorial nature of the I/O and CC co-design problems (see for instance [14]) are

typically solved using a two-step (generally suboptimal) procedure, namely solving first the input/output

(I/O) selection problem, followed by the control configuration (CC) selection problem. Formally, the

structural theory counterparts of these problems are givenas follows:

Minimum Cost Constrained I/O selection problem

P I/O
1 : Given the structure of the dynamic matrix̄A ∈ {0, 1}n×n, the structure of the input matrix

B̄ ∈ {0, 1}n×p and the input costscu(i), with i = 1, . . . , p, theminimum cost constrained input selection

problem consists in determineI∗ that solves the following optimization problem:

min
I ⊂ {1, . . . , p}

∑

i∈I

cu(i) (3)

s.t. (Ā, B̄(I)) is structurally controllable,

whereB̄(I) corresponds to the sub-matrix of̄B comprising the columns with indices inI, and a system

(Ā, B̄) is said to bestructurally controllableif there exists a controllable pair(A0, B0) of real matrices,

i.e., a system described by these matrices, with zero entries imposed by the zero entries of(Ā, B̄). ⋄

Minimum Cost Constrained CC selection problem

PCC
1 : Given the structure of the dynamic matrix̄A ∈ {0, 1}n×n, the structure of the input and output

matricesB̄ ∈ {0, 1}n×p, C̄ ∈ {0, 1}m×n, and the communication costscf ((i, j)) ∈ Rn
+ ∪ {∞}, with

(i, j) ∈ (I × J ) ≡ ({1, . . . , p} × {1, . . . , m}), the minimum cost constrained control configuration

selectionproblem consists in determineF∗ that solves the following optimization problem:

min
F⊂(I×J )

∑

(i,j)∈F

cf((i, j)) (4)

s.t. (Ā, B̄, C̄, K̄(F)) has no SFMs.

⋄



III. PRELIMINARIES AND TERMINOLOGY

We start by reviewing some computational complexity concepts [33], followed by some concepts

related with the study of structural systems theory [13], [6].

Computational Complexity

A (computational) problem is said to bereducible in polynomial timeto another if there exists a

procedure to transform the former to the latter using a number of operations which is polynomial in

the size of its inputs. Such a reduction is useful in determining the complexity class [33] a problem

belongs to. For instance, recall that a problemP in NP (i.e., the class of non-deterministic polynomial

algorithms) is said to be NP-complete if all other NP problems can be polynomially reduced toP [33].

The set of NP-complete problems is referred to as the NP-complete class. The following result may be

used to prove the NP-completeness of a given problem.

Lemma 1 ([33]): If a problemPA is NP-complete,PB is in NP andPA is reducible in polynomial

time toPB, thenPB is NP-complete. ⋄

The NP-complete class is used to describe the complexity of decision versions of problems. For

instance, the following constitutes a decision problem that is particularly relevant in the structural

design context: Given̄A ∈ {0, 1}n×n and B̄ ∈ {0, 1}n×p, is there a collection of inputs̄B(J ), where

J ⊂ {1, . . . , p} and whereB̄(J ) corresponds to the sub-matrix of̄B comprising the columns with

indices inJ , with |J | = k such that(Ā, B̄(J )) is structurally controllable?

Alternatively, it is often natural to consider the optimization versions associated with the decision

problems. For instance, the optimization version of the problem stated above aims to determine the

minimumk such that the aforementioned property holds. This optimization problem is referred to as the

constrained minimum structural input selection (CMIS) problem, given byP I/O
1 with uniform non-zero

actuation costs. Note that, if a solution to the optimization problem is known, the decision problem is

straightforward to solve. Consequently, the optimizationproblem formulations of NP-complete problems,

are referred to as being NP-hard, since they are at least as difficult as the NP-complete problems; in

other words, by solving an instance of the optimization problem (the NP-hard problem), one can obtain

a solution to an NP-complete problem.

Graph Theory and Structural Systems

The following standard terminology and notions from graph theory can be found, for instance, in [6].

Let D(Ā) = (X , EX ,X ) be the digraph representation ofĀ in (1), where the vertex setX represents the

set of state variables (also referred to as state vertices) and EX ,X = {(xi, xj) : Aji 6= 0} denotes the



set of edges. Similarly, we define the following digraphs:D(Ā, B̄) = (X ∪ U , EX ,X ∪ EU ,X ) whereU

represents the set of input vertices andEU ,X = {(ui, xj) : B̄ji 6= 0}; andD(Ā, B̄, K̄, C̄) = (X ∪ U ∪

Y , EX ,X ∪ EX ,Y ∪ EU ,X ∪ EY ,U) denotes the digraph associated with the closed-loop system, whereY

represents the set of output vertices andEX ,Y = {(xi, yj) : C̄ji 6= 0} and the set of feedback edges/links

is given byEY ,U = {(yi, uj) : K̄ji 6= 0}.

A digraph Ds = (Vs, Es) with Vs ⊂ V and Es ⊂ E is called asubgraphof D. If Vs = V, Ds is

said to spanD. Finally, a subgraph with some propertyP is maximal if there is no other subgraph

Ds′ = (Vs′, Es′) of D, such thatDs is a subgraph ofDs′, andDs′ satisfies propertyP . A sequence

of directed edges{(v1, v2), (v2, v3), · · · , (vk−1, vk)}, in which all the vertices are distinct, is calledan

elementary pathfrom v1 to vk, as well as a vertex in a digraph with no incoming and outgoingedges

(with some abuse of terminology). A vertex with an edge to itself (i.e., aself-loop), or an elementary

path fromv1 to vk comprising an additional edge(vk, v1), is called acycle.

In addition, a digraphD is said to be strongly connected if there exists an elementary path between

any pair of vertices. Astrongly connected component(SCC) is a maximal subgraphDS = (VS, ES) of

D such that for everyv, w ∈ VS there exists a path fromv to w and fromw to v.

Using the above constructions, we can now present some graphtheoretical properties that the digraph

associated with the closed-loop systemD(Ā, B̄, C̄, K̄) must satisfy to avoid the existence of SFMs.

Theorem 1 ([34]): The structural system(Ā, B̄, C̄) associated with (1) has no SFMs w.r.t. an infor-

mation patternK̄, if and only if both of the following conditions hold:

a) each state vertexx ∈ X is contained in a strongly connected component ofD(Ā, B̄, C̄, K̄) which

includes an edge ofEY ,U ;

b) there exists a finite disjoint union of cyclesCk = (Vk, Ek) (subgraph ofD(Ā, B̄, C̄, K̄)) with

k ∈ N such thatX ⊂
⋃k

j=1 Vj. ⋄

The conditions in Theorem 1 hold only if the system is bothstructurally controllableand structurally

observable2. More precisely, we have the following result.

Proposition 1 ([34], [6]): If (Ā, B̄, C̄, K̄) has no SFMs, then(Ā, B̄) and (Ā, C̄) are structurally

controllable and observable, respectively. ⋄

A. Optimal Assignment Problem

The optimal assignment problem consists in determining thecollectionM∗ of pairs of indices of a

k× k square matrixH that correspond to the diagonal entries of the matrixP ∗
1HP ∗

2 , whereP ∗
1 andP ∗

2

2A system(Ā, C̄) is said to bestructurally observableif there exists an observable pair(A0, C0) with zero entries enforced by the

zero entries in(Ā, C̄).



are permutation matrices such that

(P ∗
1 , P

∗
2 ) = arg min

P1,P2∈P
trace(P1HP2),

with P denoting the class of allk × k permutation matrices. In what follows, we consider, for the

optimal assignment problem, block matricesH given by

Hn+p+m =

[

Hx,x
n×n Hx,u

n×p Hx,y
n×m

Hu,x
p×n Hu,u

p×p Hu,y
p×m

Hy,x
m×n Hy,u

m×p Hy,y
m×m

]

,

where the labels of the columns associated with the first block are{x1, . . . , xn}, the second{u1, . . . , up},

and the third{y1, . . . , ym}. Similarly, the labels of the rows associated with the first block are{x1, . . . , xn},

the second{u1, . . . , up}, and the third{y1, . . . , ym}. For example, the first row and third column of the

n×n matrixHxx
n×n is indexed by the pair(x1, x3), and the first row and third column of then×p matrix

H
u,x
n×p is indexed by the pair(u1, x3). Consequently, any solution to the optimal assignment problem

M∗ ⊂ L× L, whereL = {x1, . . . , xn, u1, . . . , up, y1, . . . , ym}, consists ofn + p+m pairs of indices.

Further, we can associate a matrixH with a digraph representationD(H) = (L, E), whereE ⊆ L×L.

In particular, a matrixH is irreducible if and only ifD(H) is an SCC. In addition, we have the following

result given by König (see Appendix in [35]):

Proposition 2: Given a square matrixH, whereD(H) = (L, E), and a solution optimal assignment

problemM∗, then the digraphD = (L,M∗)) corresponds to a disjoint collection of cycles that spans

D(H). ⋄

Remark 1: In the sequel, we will use the solution of an optimal assignment problem to establish

results aboutD(Ā, B̄, C̄, K̄), which is mainly possible due to the labeling we chose to the rows and

columns of the matrixH to be used in the assignment problem, and consistent with some of the edges

in D(Ā, B̄, C̄, K̄). In particular, using Proposition 2, we will be able to ensure thatD(Ā, B̄, C̄, K̄)

satisfies condition b) in Theorem 1. ⋄

IV. MAIN RESULTS

In this section, we present the main results of the present paper. More precisely, we first show thatP1

is NP-hard (Theorem 2). However, the subclass of problems, in which the dynamic matrix is irreducible,

is shown to be polynomially solvable, using, for instance, Algorithm 1. The correctness and complexity

of Algorithm 1 is presented in Theorem 3. Finally, we show howAlgorithm 1 can be used to solve

polynomially the minimal cost constrained I/O selection problem as given inPI/O
1 , and the minimal

cost CC problem as given inPCC
1 , if we consider similar assumptions.

We begin by showing thatP1 is NP-hard.



Theorem 2:The minimal cost constrained I/O and control configuration co-design problem, given in

P1, is NP-hard. ⋄

Nonetheless, the fact that a problem is NP-hard does not preclude the existence of a subclass of

problem instances that are easier to solve. In fact, this is the case when we restrict the structure

of the dynamics to be irreducible. In Algorithm 1, we presentan algorithm to solveP1, under the

aforementioned constraint. Next, we provide its proof of correctness and complexity, given in terms of

a cubic polynomial in the dimension of the state, input and output.

Theorem 3:Algorithm 1 is correct and its complexity isO((n+m+ p)3). ⋄

Next, we provide the solution toP I/O
1 , under the assumption that the structure of the dynamics matrix

is irreducible, by resorting to Algorithm 1. Notice that this problem is also NP-hard, since we obtain

the CMIS problem by considering uniform non-zero actuationcosts.

Theorem 4:If Ā is irreducible, thenP I/O
1 is polynomially solvable using Algorithm 1, when setting

C̄ = In (then× n identity matrix),cy(j) = 0, with j = 1, . . . , n, andcf((i, j)) = 0 for (i, j) ∈ I ×J .

⋄

Remark 2:By duality between controllability and observability in LTI systems, Theorem 4 readily

extends to the minimal cost constrained output selection, which consists in determining the minimum

number of outputs, given a possible configuration of outputsC̄, that incurs in the minimum cost and

ensures structural observability. ⋄

Similarly, we can solve the minimum cost CC selection problem PCC
1 , as follows.

Theorem 5:If Ā is irreducible, thenPCC
1 is polynomially solvable using Algorithm 1, by setting

cu(i) = 0, with i ∈ I, andcy(j) = 0, with j ∈ J . ⋄

In the next section, we provide a couple of examples that illustrate the results attained in this paper.

V. AN ILLUSTRATIVE EXAMPLE

In this section, we provide two examples where a feasible solution toP1 exists; more precisely, two

different cases in Algorithm 1 are explored.

Example 1

Let the structure of the dynamics, input and output matricesbe given as follows:

Ā =

[ 0 1 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 1 0

]

, B̄ =

[ 1 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 1 1

]

, and C̄ =
[

1 1 0 0 0 0
1 0 1 0 0 0
0 0 0 1 1 1

]

.



ALGORITHM 1: Solution toP1

Input: The structural plant matrices(Ā, B̄, C̄) (with Ā irreducible), the input costscu(i)

(i ∈ I = {1, . . . , p}), output costscy(j) (j ∈ J = {1, . . . , m}), and the communication (feedback)

costscf((i, j)) ((i, j) ∈ I × J ).

Output: A solution (I∗,J ∗,F∗) to P1.

1. Let

[CĀ]i,j =







0, if Āi,j = 1

∞, otherwise
,

and compute the optimal assignment problemM ′ consideringCĀ.

2. If M ′ incurs in finite cost,then determine

(i∗, j∗) = arg min
(i,j)∈I×J

cu(i) + cy(j) + cf((i, j)),

and, if cu(i∗) + cy(j
∗) + cf((i

∗, j∗)) < ∞, then setI∗ = {i∗}, J ∗ = {j∗}, andF∗ = {(i∗, j∗)},

otherwise there is no feasible solution; in particular, since the input and output costs are finite, it

follows that there is no feasible information pattern;

elseconsider the following matrix

C∗ =











CT
Ā

∞n×p CT
C̄

CT
B̄

I∗p×p ∞p×m

∞m×n CT
K̄

I∗m×m











,

where

[CB̄]i,j =







cu(j), if B̄i,j = 1

∞, otherwise
,

[CC̄ ]i,j =







cy(i), if C̄i,j = 1

∞, otherwise
,

and [CK̄ ]i,j = cf((i, j)), and infinite otherwise. In addition,I∗r×r is ther × r matrix with zero

entries in its diagonal and infinity in the off-diagonal entries, and∞k×l is thek × l matrix with its

entries set to infinity.

Now, compute a solution to the optimal assignment problemM∗ associated withC∗. If M∗ incurs

in finite cost, then setI∗ = {i ∈ I : (ui, .) ∈ M∗}, J ∗ = {j ∈ J : (., yj) ∈ M∗}, and

F∗ = {(i, j) ∈ I × J : (yj, ui) ∈ M∗}, otherwise there is no feasible solution; in particular, since

the input and output cost are finite, it follows that there is no feasible information pattern;



In addition, let the input costs are given bycu = [10 10 20 20], the output costs bycy = [15 15 50],

and the communication costs by

K̄ =

[

5 ∞ 25
∞ 5 25
20 ∞ 10
∞ 20 10

]

.

First, notice thatĀ is irreducible, and we can resort to Algorithm 1 to solveP1. After we execute

Algorithm 1, the solution obtained isI∗ = {1}, J ∗ = {1} andF∗ = {(1, 1)}, illustrated in Figure 1-b)

by the non-black and non-dashed edges, and incurring in a total cost of30.

Example 2

Let the structure of the dynamics, input and output matricesbe given as follows:

Ā =

[

0 1 0 0 0
1 0 1 1 1
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0

]

, B̄ =

[

0 1 0
0 0 0
0 0 1
1 0 0
0 1 1

]

, and C̄ =
[

1 0 0 1 0
0 0 1 1 0
0 0 0 0 1

]

,

In addition, let the input costs are given bycu = [5 10 10], the output costs bycy = [10 10 1], and the

communication costs by

K̄ =
[

10 10 ∞
100 ∞ 30
∞ 100 30

]

.

First, notice thatĀ is irreducible, and we can resort to Algorithm 1 to solveP1. The solution obtained

is I∗ = {1, 2, 3}, J ∗ = {1, 2, 3} and F∗ = {(2, 1), (3, 3), (1, 2)}, illustrated in Figure 2-b) by the

non-black and non-dashed edges, and incurring in a total cost of 186.

Fig. 1. In a) we depict the digraph representation associated with C
∗ defined upon the parameters given in Example 1, where a possible

solution to the optimal assignment problem is depicted by the red edges. In b) we provideD(Ā, B̄(I∗), C̄(J ∗), K̄(F∗)) accordingly with

the triple(I∗,J ∗,F∗) determined by Algorithm 1, where the inputs and outputs withdashed edges have not been selected. In addition,

we depict by the bold arrows the disjoint union of cycles inD(Ā, B̄, C̄, K̄) that contains allx-vertices, and the SCC containing at least

an edge of the form(yj , ui), as required by Theorem 1-b) and Theorem 1-a), respectively; hence, Theorem 1 holds, and the closed-loop

system(Ā, B̄, C̄, K̄) has no SFMs.



Fig. 2. In a) we depict the digraph representation associated with C
∗ defined upon the parameters given in Example 2, where a possible

solution to the optimal assignment problem is depicted by the red edges. In b) we provideD(Ā, B̄(I∗), C̄(J ∗), K̄(F∗)) accordingly

with the triple (I∗,J ∗,F∗) determined by Algorithm 1. In addition, we depict by the boldarrows the disjoint union of cycles in

D(Ā, B̄, C̄, K̄) that contains allx-vertices, and the SCC containing at least an edge of the form(yj , ui), as required by Theorem 1-b)

and Theorem 1-a), respectively; hence, Theorem 1 holds, andthe closed-loop system(Ā, B̄, C̄, K̄) has no SFMs.

VI. CONCLUSIONS AND FURTHER RESEARCH

In this paper we have shown that the minimal cost constrainedI/O and control configuration co-design

problem is an NP-hard problem; hence, efficient algorithms are not likely to exist. Nevertheless, this

does not preclude the existence of classes, where it is possible to determine solutions efficiently. In fact,

we provided a systematic method with polynomial complexity(in the dimension of the state, inputs

and outputs) to jointly solve the input-output and control configuration selection problem that incurs in

a overall minimal cost, under the assumption that the structure of the dynamics matrix is irreducible.

Future research will consist of determining other subclasses of interest where the current problem can

be efficiently solved.

APPENDIX

Proof of Theorem 2

To prove thatP1 is NP-hard, we provide a reduction from a known NP-hard problem, the CMIS (see

Section II, problemP I/O
1 ), to a particular instance ofP1 when the costs (input/output/communication) are

equal and uniform, which we refer to asP ′
1. Consequently, the corresponding decision problems can be

polynomially reduced to each other, and the result follows by invoking Lemma 1. First, we notice that it

is possible to polynomially verify if a solution toP ′
1 is feasible, and, consequently, to the corresponding

decision problem, see, for instance [25]; hence, the decision version ofP ′
1 is an NP problem. Now,

we construct a polynomial reduction from the CMIS problem toP ′
1. Towards this goal, let̄A, B̄ and

cu(i), i ∈ I = {1, . . . , p}, in P ′
1 be the same as in the CMIS problem. In addition, letC̄ = In be the



n× n identity matrix,cy(j) = 0 for j ∈ J = {1, . . . , n} and cf ((i, j)) = 0 for (i, j) ∈ I × J . To see

that a solution to the proposed problemP ′
1 provides us with a solution to CMIS, recall that a feasible

solution toP ′
1, i.e., (Ā, B̄, C̄, K̄) without SFMs, implies that(Ā, B̄) is structurally controllable (see

Proposition 1). Now, to see thatB(I∗) in P ′
1 is also a solution to CMIS, let us assume, by contradiction

that it is not. Then, there existsI ′ such thatB̄(I ′) incurs in a lower cost than̄B(I), and such that

(Ā, B̄(I ′)) is structurally controllable. Now, becausēC is the identity matrix and̄K can be full without

increasing the cost, it follows that there exists a collection of cycles that comprise the inputs labeled by

I ′, as well as a set of labels for the outputs and feedback given by J ′ andF ′, respectively. However,

this collection of cycles provides with a solutionM′ to the optimal assignment problem that incurs in

lower cost thanM∗, which is a contradiction since we assumed thatM∗ is a solution to the optimal

assignment problem. �

Proof of Theorem 3

As discussed in the preliminaries, a solutionM∗ to the optimal assignment problem ofC∗ al-

ways provides a collection ofn + m + p pairs of labels of the formM∗ ⊂ L × L, whereL =

{x1, . . . , xn, u1, . . . , up, y1, . . . , ym}. Subsequently, by construction ofC∗, if the weight-sum cost of the

entries inC∗ labeled inM∗ is finite, then there exists a collection of disjoint cycles in the digraph

representation ofC∗ (see Proposition 2). Now, notice that by construction, onlyedges associated to

finite entries inC∗ are used; hence, the cycles comprise only edges of the form(xi, xj), (ui, xj),

(xi, yj), (yj, ui), as well as(ui, ui) and (yj, yj). Further, the latter edges(ui, ui) and (yj, yj) do not

contribute to ensure either condition a) or b) in Theorem 1, nor are they represented inD(Ā, B̄, C̄, K̄);

hence, they can be neglected from the analysis. Subsequently, by noticing that if any edge of the form

(ui, xj), (xi, yj), (yj, ui) belongs toM∗, then so are the other two, otherwise,M∗ does not comprise a

family of cycles with finite weight. Nonetheless, it might bethe case that there is no edge of the form

(ui, xj), (xi, yj), (yj, ui), that corresponds to the case whereM′ incurs in finite cost, which implies that

there exists a disjoint union of cycles comprising only vertices with labels{x1, . . . , xn}; subsequently,

all edges of the form(uj, uj) and (yk, yk) are used inM∗. In this case, the weight-sum ofM∗ is

equal to zero and, although condition Theorem 1-b) is satisfied, it follows that there is no edge of the

form (yi, uj) in the SSC containing the state variables inD(Ā, B̄, C̄, K̄). To preclude this case, ifM′

incurs in finite cost, we consider the triple(B̄({i}), C̄({j}), K̄({(i, j)})) that incurs in the smallest

cost; hence, condition Theorem 1-a) is satisfied, and Theorem 1 holds. Alternatively, ifM ′ does not

incur in finite cost, then additional edges that are not of theform (xi, xj) are required to be associated

with a solution to the optimal assignment problem, as resultof Proposition 2. Further, both conditions



in Theorem 1 are satisfied: more precisely, a) is satisfied sinceD(Ā) is an SCC (by assumption), and

there must exist at least an edge of the form(yj, ui) in M∗, as well as inD(Ā, B̄(I∗), C̄(J ∗), K̄(F∗))

obtained using Algorithm 1. On the other hand, Theorem 1-b) is satisfied by considering, the edges of

a solution to the optimal assignment problem used to defineD(Ā, B̄(I∗), C̄(J ∗), K̄(F∗)).

Finally, we notice that the algorithm’s complexity isO((n + m + p)3), since it is the complexity

of applying the Hungarian algorithm to the optimal assignment problem associated withC∗; all the

remaining steps have lower complexity which renders them moot to the final complexity. �

Proof of Theorem 4

First, we notice that sincēA is irreducible, from Theorem 3, it follows that Algorithm 1 determines

the optimal solution toP1. Further, if (Ā, B̄, C̄, K̄) has no SFMs, then it is structurally controllable

and observable (see Proposition 1). Because we have that thesystem is structurally observable and all

outputs can be fed to all inputs without increasing the cost,it follows that the problem consists in

determining the collection of inputs that incurs in the minimum cost; hence, by noticing that this is the

same as theP I/O
1 , the result follows. �
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