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Online Learning of Feasible Strategies in
Unknown Environments

Santiago Paternain and Alejandro Ribeiro

Abstract—Define an environment as a set of convex constraint
functions that vary arbitrarily over time and consider a cost
function that is also convex and arbitrarily varying. Agents that
operate in this environment intend to select actions that are
feasible for all times while minimizing the cost’s time average.
Such action is said optimal and can be computed offline if the
cost and the environment are known a priori. An online policy
is one that depends causally on the cost and the environment.
To compare online policies to the optimal offline action define
the fit of a trajectory as a vector that integrates the constraint
violations over time and its regret as the cost difference with the
optimal action accumulated over time. Fit measures the extent
to which an online policy succeeds in learning feasible actions
while regret measures its success in learning optimal actions.
This paper proposes the use of online policies computed from a
saddle point controller which are shown to have fit and regret that
are either bounded or grow at a sublinear rate. These properties
provide an indication that the controller finds trajectories that are
feasible and optimal in a relaxed sense. Concepts are illustrated
throughout with the problem of a shepherd that wants to stay
close to all sheep in a herd. Numerical experiments show that
the saddle point controller allows the shepherd to do so.

I. INTRODUCTION

The motivation for this paper is the navigation of a time
varying convex environment defined as a set of convex con-
straints that an agent must satisfy at all times. The constraints
are unknown a priori, vary arbitrarily in time in a possibly
discontinuous manner, and are observed locally in space and
causally in time. The goal of the agent is to find a feasible
strategy that satisfies all of these constraints. This paper shows
that an online version of the saddle point algorithm of Arrow
and Hurwicz [1] executed by the agent succeeds in finding
such strategy. If the agent wants to further minimize a convex
cost, we show that the same algorithm succeeds in finding an
strategy that is feasible at all times and optimal on average.

To understand the contribution of this paper it is important
to observe that the navigation problem outlined above can be
mathematically formulated as the solution of a convex program
[2]–[6] whose solution is progressively more challenging when
we progress from deterministic settings to stochastic and
online settings. Indeed, in a determinist setting the cost and
constraints are fixed. This yields a canonical convex opti-
mization problem that can be solved with extremum seeking
controllers based on gradient descent [7]–[10], primal-dual
methods [1], [11]–[14], or interior point methods [15, Chapter
11]. In a stochastic setting cost and constraints are not constant
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but vary randomly according to a stationary distribution. The
agent’s goal is then expressed as the selection of an action
that minimizes the expected value of the objective function
while satisfying constraints in an average sense [16]–[18] This
problem is more complicated than its deterministic counterpart
but it can be solved using, e.g., stochastic gradient descent
[19]–[21] or stochastic quasi-Newton’s methods [22].

In this paper we consider online formulations in which cost
and constraints can vary arbitrarily, perhaps strategically, and
where the goal is to find an action that is good on average
and that satisfies the constraints at all times – assuming such
an action exists, which, when functions change strategically,
restricts adversarial actions. In this case, unconstrained cost
minimization can be formulated in the language of regret
[23]–[25] whereby agents operate online by selecting plays
that incur a cost selected by nature. The cost functions are
revealed to the agent ex post and used to adapt subsequent
plays. The goodness of these online policies are determined by
comparing to the optimal action chosen offline by a clairvoyant
agent that has prescient access to the cost. Regret is defined
as the difference of the accumulated cost attained online and
the optimal offline cost. It is a remarkable fact that an online
version of gradient descent is able to find plays whose regret
grows at a sublinear rate when the cost is a convex function
[26], [27] – therefore suggesting vanishing per-play penalties
of online plays with respect to the clairvoyant play.

The constrained optimization equivalent of gradient descent
is the saddle point method applied to the determination of
a saddle point of the Lagrangian function [1]. This method
interprets each constraint as a separate potential and descends
on a linear combination of their gradients. The coefficients of
this linear combination are multipliers that adapt dynamically
so as to push the agent to the optimal solution in the feasible
region. Saddle point algorithms and variations have been
widely studied [11]–[14] and used in various domains such
as decentralized control [28], [29] and image processing, see
e.g. [30]. Our observation is that since an online version
of gradient descent succeeds in achieving small regret, it is
not unreasonable to expect an online saddle point method to
succeed in finding feasible actions with small regret.

The main contribution of this paper is to prove that this
expectation turns out to be true. We show that an online
saddle point algorithm that observes costs and constraints ex
post succeeds in finding policies that are feasible and have
small regret. Central to this development is the definition of
a viable environment as one in which there exist an action
that satisfies the time varying constraints at all times and
the introduction of the notion of fit (Section II). The latter
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is defined as a vector that contains the time integrals of the
constraints evaluated across the trajectory and is the analogous
of regret for the satisfaction of constraints. In the same way
in which the accumulated payoff of the online trajectory is
compared with the payoff of the offline trajectory, fit compares
the accumulation of the constraints along the trajectory with
the feasibility of an offline viable strategy. As such, a trajectory
can achieve small fit by becoming feasible at all times or
by alternating periods in which the constraints are violated
with periods in which the constraints are satisfied with slack.
This notion of fit is appropriate for constraints that have a
cumulative nature. For cases where this is not appropriate we
introduce the notion of saturated fit in which only violations
of the constraint are accumulated. A trajectory with small
saturated fit is one in which the constraints are violated by
a significant amount only for a short period of time.

Technical developments begin with the derivation of a
projected gradient controller to limit the growth of regret in an
environment without constraints (Section III). The purpose of
this section is to introduce tools and to clarify connections with
existing literature in discrete time [26], [27] and continuous
time regret [31]–[33]. An important conclusion here is that
regret in continuous time can be bounded by a constant that is
independent of the time horizon, as opposed to the sublinear
growth that is observed in discrete time.

We then move onto the main part of the paper in which
we propose to control fit and regret growth with the use of
an online saddle point controller that moves along a linear
combination of the negative gradients of the instantaneous
constraints and the objective function. The coefficients of
this linear combination are adapted dynamically as per the
instantaneous constraint functions (Section IV). This online
saddle point controller is a generalization of (offline) saddle
point in the same sense that an online gradient controller
generalizes (offline) gradient descent. We show that if there
exists an action that satisfies the environmental constraints at
all times, the online saddle point controller achieves bounded
fit if optimality is not of interest (Theorem 2). When optimality
is considered, the controller achieves bounded regret and a
fit that grows sublinearly with the time horizon (Theorem
3). Analogous results are derived for saturated fit. I.e., it is
bounded by a constant when optimality is not of interest and
grows sublinearly otherwise (corollaries 2 and 3). Throughout
the paper we illustrate concepts with the problem of a shepherd
that has to stay close to his herd (Section II-B). A numerical
analysis of this problem closes the paper (Section V) except
for concluding remarks (Section VI).

Notation. A multivalued function f : Rn → Rm is defined by
stacking component functions, i.e., f := [f1, . . . , fm]T . The
notation

∫
f(x)dx := [

∫
f1(x)dx, . . . ,

∫
fm(x)dx]T repre-

sents a vector stacking individual integrals. An inequality x ≤
y between vectors x, y ∈ Rn is interpreted componentwise. An
inequality x ≤ c between a vector x = [x1, . . . , xn]T ∈ Rn
and a scalar c ∈ R means that xi ≤ c for all i.

II. VIABILITY, FEASIBILITY AND OPTIMALITY

We consider a continuous time environment in which an
agent selects actions that result in a time varying set of

penalties. Use t to denote time and let X ⊆ Rn be a closed
convex set from which the agent selects action x ∈ X . The
penalties incurred at time t for selected action x are given by
the value f(t, x) of the vector function f : R×Rn → Rm. We
interpret the vector penalty function f as a definition of the
environment. Our interest is in situations where the agent is
faced with an environment f and must choose an action x ∈ X
– or perhaps a trajectory x(t) – that guarantees nonpositive
penalties f(t, x(t)) ≤ 0 for all times t not exceeding a time
horizon T . Since the existence of this trajectory depends on the
specific environment we define a viable environment as one
in which it is possible to select an action with nonpositive
penalty for times 0 ≤ t ≤ T as we formally specify next.

Definition 1 (Viable environment). We say that an environ-
ment f : R×Rn → Rm is viable over the time horizon T for
an agent that selects actions x ∈ X if there exists a feasible
action x† ∈ X such that

f(t, x†) ≤ 0, for all t ∈ [0, T ]. (1)

The set X† := {x† ∈ X : f(t, x†) ≤ 0, for all t ∈ [0, T ]} is
termed the feasible set of actions.

Since for a viable environment it is possible to have multiple
feasible actions it is desirable to select one that is optimal
with respect to some criterion of interest. Introduce then the
objective function f0 : R × Rn → R, where for a given time
t ∈ [0, T ] and action x ∈ X the agent suffers a loss f0(t, x).
The optimal action is defined as the one that minimizes the
accumulated loss

∫ T
0
f0(t, x) dt among all viable actions, i.e.,

x∗ := argmin
x∈X

∫ T

0

f0(t, x) dt (2)

s.t. f(t, x) ≤ 0, for all t ∈ [0, T ].

For the definition in (2) to be valid the function f0(t, x) has to
be integrable with respect to t. In subsequent definitions and
analyses we also require integrability of the environment f as
well as convexity with respect to x as we formally state next.

Assumption 1. The functions f(t, x) and f0(t, x) are inte-
grable with respect to t in the interval [0, T ].

Assumption 2. The functions f(t, x) and f0(t, x) are convex
with respect to x for all times t ∈ [0, T ].

If the environment f(t, x) and functions f0(t, x) are known
beforehand, finding the action in a viable environment that
minimizes the total aggregate cost is equivalent to solving
the convex optimization problem in (2) for which a number
of algorithms are known. Here, we consider the problem
of adapting a strategy x(t) when the functions f(t, x) and
f0(t, x) are arbitrary and revealed causally. I.e., we want to
choose the action x(t) using observations of viability f(t, x)
and cost f0(t, x) in the open interval [0, t). This implies that
f(t, x(t)) and f0(t, x(t)) are not observed before choosing
x(t). The action x(t) is chosen ex ante and the corresponding
viability f(t, x(t)) and cost f0(t, x(t)) are incurred ex post.
Further observe that the constraints and objective functions
may change abruptly if the number of discontinuities in these
are finite for finite T . This makes the problem different
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from time varying optimization in which the goal is to track
the optimal argument of f0(t, x) subject to the constraint
f(t, x) ≤ 0 under the assumption that these functions change
continuously and at a sufficiently small rate [34]–[36].

A. Regret and fit

We evaluate the performance of trajectories x(t) through
the concepts of regret and fit. To define regret we compare
the accumulated cost

∫ T
0
f0(t, x(t)) dt incurred by x(t) with

the cost incurred by the optimal action x∗ defined in (2),

RT :=

∫ T

0

f0(t, x(t)) dt−
∫ T

0

f0(t, x∗) dt. (3)

Analogously, we define the fit of the trajectory x(t) as the
accumulated penalties f(t, x(t)) incurred for times t ∈ [0, T ],

FT :=

∫ T

0

f(t, x(t)) dt. (4)

The regret RT and fit FT can be interpreted as performance
losses associated with online causal operation as opposed to
offline clairvoyant operation. If FT is positive in a viable en-
vironment we are in a situation in which, had the environment
be known a priori, we could have selected an action x† with
f(t, x†) ≤ 0. The fit measures how far the trajectory x(t)
comes from achieving that goal. As in the case of the fit, if
the regret RT is large we are in a situation in which prior
knowledge of environment and cost would had resulted in the
selection of the action x∗ – and in that senseRT indicates how
much we regret not having had that information available.

Because of the cumulative nature of fit, it is possible to
achieve small fit by alternating between actions for which the
constraint functions take positive and negative values. This is
valid when cumulative constraints are an appropriate model,
which happens for quantities that can be stored or preserved
in some sense – such as energy budgets enforced through
average power constraints. For situations where this is not
appropriate, we define the saturated fit in which constraint
slacks are saturated to a small constant δ. Formally, let δ > 0
be a positive constant and define the function f̄δ(t, x)) =
max {f(t, x),−δ}. Then, the δ-saturated fit is defined as

F̄T =

∫ T

0

f̄δ(t, x(t)) dt. (5)

Since f̄δ(t, x) is the pointwise maximum of two convex
functions with respect to the actions, it is a convex function
itself and F̄T is not different than the fit for the environment
defined by f̄δ(t, x). By taking small values of δ we can reduce
the negative portion of the fit to be as small as desired.

A good learning strategy is one in which x(t) approaches
x∗. In that case, the regret and fit grow for small T but eventu-
ally stabilize or, at worst, grow at a sublinear rate. Considering
regret RT and fit FT separately, this observation motivates the
definitions of feasible trajectories strongly feasible trajectories,
and strong optimal trajectories that we formally state next.

Definition 2. Given an environment f : R × Rn → Rm, a
cost f0 : R× Rn → R, and a trajectory x(t) we say that:

Feasibility. The trajectory x(t) is feasible in the environment
if the fit FT grows sublinearly with T . I.e., if there exist a
function h(T ) with lim supT→∞ h(T )/T = 0 and a constant
vector C such that for all times T it holds,

FT :=

∫ T

0

f(t, x(t)) dt ≤ Ch(T ). (6)

Strong Feasibility. The trajectory x(t) is strongly feasible in
the environment if the fit FT is bounded for all T . I.e., if there
exists a constant vector C such that for all times T it holds,

FT :=

∫ T

0

f(t, x(t)) dt ≤ C. (7)

Strong optimality. The trajectory x(t) is strongly optimal in
the environment if the regret RT is bounded for all T . I.e., if
there exists a constant C such that for all times T it holds,

RT :=

∫ T

0

f0(t, x(t)) dt−
∫ T

0

f0(t, x∗) dt ≤ C. (8)

Having the regret satisfy RT ≤ C irrespectively of T is
an indication that f0(t, x(t)) is close to f0(t, x∗) so that the
integral stops growing. This is not necessarily so because we
can also achieve small regret by having f0(t, x(t)) oscillate
above and below f0(t, x∗) so that positive and negative values
of f0(t, x(t))−f0(t, x∗) cancel out. In general, the possibility
of having small regret by a trajectory that does not approach
x∗ is a limitation of the concept of regret. Alternatively, we
can think of the optimal offline policy x∗ as fixing a budget for
cost accumulated across time. An optimal online policy meets
that budget up to a constant C – perhaps by overspending at
some times and underspending at some other times.

Likewise, when the fit satisfies FT ≤ C irrespectively of
T , it suggests that x(t) approaches the feasible set. This need
not be true as it is possible to achieve bounded fit by having
f(t, x(t)) oscillate around 0. Thus, as in the case of regret,
we can interpret strongly feasible trajectories as meeting the
accumulated budget

∫ T
0
f(t, x(t)) dt ≤ 0 up to a constant term

C. This is in contrast with feasible actions x† that meet the
budget f(t, x†) ≤ 0 for all times. Feasible trajectories differ
from strongly feasible trajectories in that the fit is allowed to
grow at a sublinear rate. This means that feasible trajectories
do not meet the accumulated budget within a constant C but
do meet the time averaged budget (1/T )

∫ T
0
f(t, x(t)) dt ≤ 0

within that constant. The notion of optimality – as opposed
to strong optimality – could have been defined as a case in
which regret is bounded by a sublinear function of T . This is
not necessary here because our results state strong optimality.

In this work we solve three different problems: (i) Finding
strongly optimal trajectories in unconstrained environments.
(ii) Finding strongly feasible trajectories. (iii) Finding feasible,
strongly optimal trajectories. We develop these solutions in
sections III, IV-A, and IV-B, respectively. Before that, we
present two pertinent remarks and we clarify concepts with
the introduction of an example.

Remark 1 (Not every trajectory is strongly feasible). In
definition (7) we consider the integral of a measurable function
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in a finite interval, hence it is always bounded by a constant.
Yet if the latter depends on the time horizon T , the trajectory
is not strongly feasible, because it is not uniformly bounded
for all time horizons T . The same remark is valid for the
definitions of strongly optimal and feasible.

Remark 2 (Connection with Stochastic Optimization).
One can think about the online learning framework as a
generalization of the stochastic optimization setting (see e.g.
[19], [37]). In the latter, the objective and constraint functions
depend on a random vector θ ∈ Rp. Formally, the cost is a
function f0 : Rn × Rp → R and the constraints are given by
a multivalued function f : Rn × Rp → Rm. The constrained
stochastic optimization problem can be then formulated as

x∗ := argmin E [f0(x, θ)]

s.t. E [f(x, θ)] ≤ 0,
(9)

where the above expectations are with respect to the random
vector θ. When the process that determines the temporal evo-
lution of the random vector θt is stationary, the expectations
can be replaced by time averages. In that sense problem (9)
is equivalent to the problem of generating trajectories that are
feasible and optimal in the sense of Definition 2.

B. The shepherd problem

Consider a target tracking problem in which an agent –
the shepherd – follows a group of m targets – the sheep.
Specifically, let z(t) = [z1(t), z2(t)]T ∈ R2 denote the
position of the shepherd at time t. To model smooth paths
for the shepherd introduce a polynomial parameterization so
that each of the position components zk(t) can be written as

zk(t) =

n−1∑
j=0

xkjpj(t), (10)

where pj(t) are polynomials that parameterize the space of
possible trajectories. The action space of the shepherd is then
given by the vector x = [x10, . . . , x1,n−1, x20, . . . , x2,n−1]T ∈
R2n that stacks the coefficients of the parameterization in (10).

Further define yi(t) = [yi1(t), yi2(t)]T as the position of the
ith sheep at time t for i = 1, . . . ,m and introduce a maximum
allowable distance ri between the shepherd and each of the
sheep . The goal of the shepherd is to find a path z(t) that
is within distance ri of sheep i for all sheep. This can be
captured by defining an m-dimensional environment f with
each component function fi defined as

fi(t, x) = ‖z(t)− yi(t)‖2 − r2
i for all i = 1..m. (11)

That the environment defined by (11) is viable means that
it is possible to select a vector of coefficients x so that the
shepherd’s trajectory given by (10) stays close to all sheep for
all times. To the extent that (10) is a loose parameterization
– we can approximate arbitrary functions with sufficiently
large index n, if the time horizon is fixed and not allowed
to tend to infinity –, this simply means that the sheep are
sufficiently close to each other at all times. E.g., if ri = r
for all times, viability is equivalent to having a maximum
separation between sheep smaller than 2r.

As an example of a problem with an optimality criterion
say that the first target – the black sheep – is preferred in that
the shepherd wants to stay as close as possible to it. We can
accomplish that by introducing the objective function

f0(t, x) = ‖z(t)− y1(t)‖2. (12)

Alternatively, we can require the shepherd to minimize the
work required to follow the sheep. This behavior can be in-
duced by minimizing the integral of the acceleration which in
turn can be accomplished by defining the optimality criterion
[cf. (2)],

f0(t, x) =
∥∥z̈(t)∥∥ =

∥∥∥∥∥
[ n−1∑
j=0

x1j p̈j(t),

n−1∑
j=0

x2j p̈j(t)

]∥∥∥∥∥. (13)

Trajectories x(t) differ from actions in that they are allowed
to change over time, i.e., the constant values xkj in (10) are
replaced by the time varying values xkj(t). A feasible or
strongly feasible trajectory x(t) means that the shepherd is
repositioning to stay close to all sheep. An optimal trajectory
with respect to (12) is one in which he does so while staying
as close as possible to the black sheep. An optimal trajectory
with respect to (13) is one in which the work required to follow
the sheep is minimized. In all three cases we apply the usual
caveat that small fit and regret may be achieved with stretches
of underachievement following stretches of overachievement.

III. UNCONSTRAINED REGRET IN CONTINUOUS TIME.

Before considering the feasibility problem we consider the
following unconstrained minimization problem. Given an un-
constrained environment (f(t, x) ≡ 0) our goal is to generate
strong optimal trajectories x(t) in the sense of Definition 2,
selecting actions from a closed convex set X , i.e., x(t) ∈ X
for all t ∈ [0, T ]. Given the convexity of the objective function
with respect to the action, as per Assumption 2, it is natural
to consider a gradient descent controller. To avoid restricting
attention to functions that are differentiable with respect to x,
we work with subgradients. For a convex function g : X → R
a subgradient gx satisfies the

g(y) ≥ g(x) + gx(x)T (y − x) for all y ∈ X. (14)

In general, subgradients are defined at all points for all convex
functions. At the points where the function f is differentiable
the subgradient and the gradient coincide. In the case of vector
functions f : Rn → Rm we group the subgradients of each
component into a matrix fx(x) ∈ Rn×m defined as

fx(x) =
[
f1,x(x) f2,x(x) · · · fm,x(x)

]
, (15)

where fi,x(x) is a subgradient of fi(x). In addition, since
the action must always be selected from the set X we define
the controller in a way that the actions are the solution of a
projected dynamical system over the set X . The solution has
been studied in [38] and we define the notion as follow.

Definition 3 (Projected dynamical system). Let X be a closed
convex set.
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Projection of a point. For any z ∈ Rn, there exits a unique
element in X , denoted PX(z) such that

PX(z) = argmin
y∈X

‖y − z‖. (16)

Projection of a vector at a point. Let x ∈ X and v a vec-
tor, the projection of v over the set X at the point x is

ΠX(x, v) = lim
δ→0+

(PX(x+ δv)− x) /δ. (17)

Projected dynamical system. Given a closed convex set X
and a vector field F (t, x) which takes elements from R ×X
into Rn the projected differential equation associated with X
and F is defined to be

ẋ(t) = ΠX (x, F (t, x)) . (18)

In the above projection if the point x is in the interior of
X then the projection is not different from the original vector
field, i.e., ΠX(x, F (t, x)) = F (t, x). On the other hand if the
point x is in the border of X , then the projection is just the
component of the vector field that is tangential to the set X
at the point x. Let’s consider for instance the case where the
set X is a box in Rn. Let X = [a1, b1]× ...× [an, bn] where
a1..an and b1...bn are real numbers. Then for each component
of the vector field we have that

ΠX (x, F (t, x))i =

 0 if xi = ai and F (t, x)i < 0,
0 if xi = bi and F (t, x)i > 0,
F (t, x)i otherwise.

(19)
Therefore, when the projection is included, the proposed
controller takes the form of the following projected dynamical
system:

ẋ = ΠX (x,−εf0,x(t, x)) , (20)

where ε > 0 is the gain of the controller. Before stating the first
theorem we need a Lemma concerning the relation between
the original vector field and the projected vector field. This
lemma is used in the proofs of theorems 1, 2 and 3.

Lemma 1. Let X be a convex set and x0 ∈ X and x ∈ X .
Then

(x0 − x)TΠX(x0, v) ≤ (x0 − x)T v. (21)

Proof: See Apendix A.
Let’s define an Energy function Vx̄ : Rn → R as

Vx̄(x) =
1

2
(x− x̄)T (x− x̄). (22)

Where x̄ ∈ X ⊂ Rn is an arbitrary fixed action. We are now
in conditions to present the first theorem, which states that the
solution of the gradient controller defined in (20) is a strongly
optimal trajectory, i.e., with bounded regret for all T .

Theorem 1. Let f0 : R×X → R be cost function satisfying
assumptions 1 and 2, with X ⊆ Rn convex. The solution x(t)
of the online projected gradient controller in (20) is strongly
optimal in the sense of Definition 2. In particular, the regret
RT can be bounded by

RT ≤ Vx∗ (x(0)) /ε, for all T (23)

where Vx̄ is the Energy function in (22).

Proof: Consider an action trajectory x(t), an arbitrary
given action x̄ ∈ X , and the corresponding energy function
Vx̄(x(t)) as per (22). The derivative V̇x̄(x(t)) of the energy
function with respect to time is then given by

V̇x̄(x(t)) = (x(t)− x̄)T ẋ(t). (24)

If the trajectory x(t) follows from the online projected gradient
dynamical system in (20) we can substitute the trajectory
derivative ẋ by the vector field value and reduce (24) to

V̇x̄(x(t)) = (x(t)− x̄)TΠX (x(t),−εf0,x(t, x(t))) . (25)

Use now the result in Lemma 1 with v = −εf0,x(t, x(t)) to
remove the projection operator from (25) and write

V̇x̄(x(t)) ≤ −ε(x(t)− x̄)T f0,x(t, x(t)). (26)

Using the defining equation of a subgradient (14), we can
upper bound the inner product −(x(t) − x̄)T f0,x(t, x(t)) by
the difference f0(t, x̄)− f0(t, x(t)) and transform (26) into

V̇x̄(x(t)) ≤ ε (f0(t, x̄)− f0(t, x(t))) . (27)

Rearranging terms in the preceding inequality and integrating
over time yields∫ T

0

f0(t, x(t)) dt−
∫ T

0

f0(t, x̄) dt ≤ −1

ε

∫ T

0

V̇x̄(x(t)) dt.

(28)
Since the primitive of V̇x̄(x(t)) is Vx̄(x(t)) we can evaluate
the integral on the right hand side of (28) and further use the
fact that Vx̄(x) ≥ 0 for all x ∈ Rn to conclude that

−
∫ T

0

V̇x̄(x(t))dt = Vx̄(x(0))− Vx̄(x(T )) ≤ Vx̄ (x(0)) .

(29)
Combining the bounds in (28) and (29) we have that∫ T

0

f0(t, x(t)) dt−
∫ T

0

f0(t, x̄) dt ≤ Vx̄(x(0))/ε. (30)

Since the above inequality holds for an arbitrary point x̄ ∈ Rn
it holds for x̄ = x∗ in particular. When making x̄ = x∗ in (30)
the left hand side reduces to the regret RT associated with
the trajectory x(t) [cf. (3)] and in the right hand side we have
Vx̄(x(0))/ε = Vx∗(x(0))/ε. Eq. (23) follows because (30) is
true for all times T . This implies that the trajectory is strongly
optimal according to (8) in Definition 2.

The strong optimality of the online projected gradient
controller in (20) that we claim in Theorem 1 is not a
straightforward generalization of the optimality of gradient
controllers in constant convex potentials. The functions f0 are
allowed to change arbitrarily over time and are not observed
until after the cost f0(t, x(t)) has been incurred.

Since the initial value of the Energy function Vx∗(x(0)) is
the square of the distance between x(0) and x∗, the bound
on the regret in (23) shows that the closer we start to the
optimal point the smaller the accumulated cost is. Likewise,
the larger the controller gain ε, the smaller the bound on the
regret is. Theoretically, we can make this bound arbitrarily
small. This is not possible in practice because larger ε entails
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trajectories with larger derivatives which cannot be imple-
mented in systems with physical constraints. In the example
in Section II-B the derivatives of the state x(t) control the
speed and acceleration of the shepherd. The physical limits of
these quantities along with an upper bound on the cost gradient
f0,x(t, x) can be used to estimate the largest allowable gain ε.

Another observation regarding the bound on the regret is
that it does not depend on the function that we are minimizing
–except for the location of the point x∗. For instance by scaling
a function the bound on the regret is kept constant if the same
gain ε can be selected. This is not surprising since a scaling
in the function implies a bigger cost but it also entails a larger
action derivative, which allows to track better changes on the
function. However, if a bound on the maximum allowed gain
exists then the regret bound cannot be invariant to scalings.

Remark 3. In discrete time systems where t is a natural
variable and the integrals in (3) are replaced by sums, online
gradient descent algorithms are used to reduce regret; see e.g.
[26], [27]. The online gradient controller in (20) is a direct
generalization of online gradient descent to continuous time.
This similarity notwithstanding, the result in Theorem 1 is
stronger than the corresponding bound on the regret in discrete
time which states a sublinear growth at a rate not faster than√
T if the cost function is convex [26], and log T if the cost

function is strictly convex [27]. The key where this difference
lies is in the fact that discrete time algorithms have to ”pay”
to switch from the action at time t to the action at time t+ 1.
In the proofs of [26], [27] a term related to the norm square
of the gradient is present in the upper bound on the regret
while in continuous time this term is absent. The bound on
the norm of the gradient is related to the selecting a different
action. As in the case of fictitious plays that lead to no regret
in the continuous time but not in discrete time (see e.g. [31],
[39], [40]) the bounds on the regret in continuous time are
tighter than in discrete time for online gradient descent.

IV. SADDLE POINT ALGORITHM

Given an environment f(t, x) and an objective function
f0(t, x) verifying assumptions 1 and 2 we set our attention
towards two different problems: design a controller whose
solution is a strongly feasible trajectory and a controller
whose solution is a feasible and strongly optimal trajectory. As
already noted, when the environment is known beforehand the
problem of finding such trajectories is a constrained convex
optimization problem, which we can solve using the saddle
point algorithm of Arrow and Hurwicz [1]. Following this idea,
let λ ∈ Λ = Rm+ , be a multiplier and define the time-varying
Lagrangian associated with the online problem as

L(t, x, λ) = f0(t, x) + λT f(t, x). (31)

Saddle point methods rely on the fact that for a constrained
convex optimization problem, a pair is a primal-dual optimal
solution if and only if the pair is a saddle point of the
Lagrangian associated with the problem; see e.g. [15]. The
main idea of the algorithm is then to generate trajectories
that descend in the opposite direction of the gradient of the

Lagrangian with respect to x and that ascend in the direction
of the gradient with respect to λ.

Since the Lagrangian is differentiable with respect to λ,
we denote by Lλ(t, x, λ) = f(t, x) the derivative of the
Lagrangian with respect to λ. On the other hand, since the
functions f0(·, x) and f(·, x) are convex, the Lagrangian is
also convex with respect to x. Thus, its subgradient with
respect to x always exist, let us denote it by Lx(t, x, λ). Let
ε be the gain of the controller, then following the ideas in [1]
we define a controller that descends in the direction of the
subgradient with respect to the action x

ẋ = ΠX (x,−εLx(t, x, λ))

= ΠX (x,−ε(f0,x(t, x) + fx(t, x)λ)) , (32)

and that ascends in the direction of the subgradient with
respect to the multiplier λ

λ̇ = ΠΛ (λ, εLλ(t, x, λ)) = ΠΛ (λ, εf(t, x)) . (33)

The projection over the set X in (32) is done to assure
that the trajectory is always in the set of possible actions.
The operator ΠΛ(λ, f) is a projected dynamical system in
the sense of Definition 3 over the set Λ. This projection is
done to assure that λ(t) ∈ Rm+ for all times t ∈ [0, T ].
An important observation regarding (32) and (33) is that the
environment is observed locally in space and causally in time.
The values of the environment constraints and its subgradients
are observed at the current trajectory position x(t) and the
values of f(t, x(t)) and fx(t, x(t)) affect the derivatives of
x(t) and λ(t) only. Notice that if the environment function
satisfies f(t, x) ≡ 0 we recover the algorithm defined in (20)
as a particular case of the saddle point controller.

A block diagram for the controller in (32) - (33) is shown
in Figure 1. The controller operates in an environment to
which it inputs at time t an action x(t) that results in a
penalty f(t, x(t)) and cost f0(t, x(t)). The value of these
functions and their subgradients fx(t, x(t)) and f0,x(t, x(t))
are observed and fed to the multiplier and action feedback
loops. The action feedback loop behaves like a weighted
gradient descent controller. We move in the direction given by
a linear combination of the the gradient of the objective func-
tion f0,x(t, x(t)) and the constraint subgradients fi,x(t, x(t))
weighted by their corresponding multipliers λi(t). Intuitively,
this pushes x(t) towards satisfying the constraints and to the
minimum of the objective function in the set where constraints
are satisfied. However, the question remains of how much
weight to give to each constraint. This is the task of the
multiplier feedback loop. When constraint i is violated we
have fi(t, x(t)) > 0. This pushes the multiplier λi(t) up,
thereby increasing the force λi(t)fi,x(t, x(t)) pushing x(t) to-
wards satisfying the constraint. If the constraint is satisfied, we
have fi(t, x(t)) < 0, the multiplier λi(t) being decreased, and
the corresponding force decreasing. The more that constraint
i is violated, the faster we increase the multiplier, and the
more we increase the force that pushes x(t) towards satisfying
fi(t, x(t)) < 0. If the constraint is satisfied, the force is
decreased and may eventually vanish altogether if we reach
the point of making λi(t) = 0.
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Gradient descent on actions

Gradient ascent on multipliers

Environment

ΠX

(
x(t),−ε [f0,x(t, x(t)) + fx(t, x(t))λ(t)]

)

ΠΛ

(
λ(t), εf(t, x(t))

)

∫

∫

f(t, x(t)), fx(t, x(t)), f0,x(t, x(t))

ẋ(t)

λ̇(t)

x(t)

λ(t)

Fig. 1: Block diagram of the saddle point controller. Once that action
x(t) is selected at time t, we measure the corresponding values of
f(t, x(t)), fx(t, x(t)) and f0,x(t, x(t)). This information is fed to
the two feedback loops. The action loop defines the descent direction
by computing weighted averages of the subgradients fx(t, x(t))
and f0,x(t, x(t)). The multiplier loop uses f(t, x(t)) to update the
corresponding weights.

A. Strongly feasible trajectories
We begin by studying the saddle point controller defined by

(32) and (33) in a problem in which optimality is not taken
into account, i.e., f0(t, x) ≡ 0. In this case the action descent
equation of the controller (32) takes the form:

ẋ = ΠX (x,−εLx(t, x, λ)) = ΠX (x,−εfx(t, x)λ) , (34)

while the multiplier ascent equation (33) remains unchanged.
The bounds to be derived for the fit ensure that the trajectories
x(t) are strongly feasible in the sense of Definition 2. To state
the result consider an arbitrary fixed action x̄ ∈ X and an
arbitrary multiplier λ̄ ∈ Λ and define the energy function

Vx̄,λ̄(x, λ) =
1

2

(
||x− x̄||2 + ||λ− λ̄||2

)
. (35)

We can then bound fit in terms of the initial value
Vx̄,λ̄(x(0), λ(0)) of the energy function for properly chosen
x̄ and λ̄ as we formally state next.

Theorem 2. Let f : R×X → Rm, satisfying assumptions 1
and 2, where X ⊆ Rn is a convex set. If the environment is
viable, then the solution x(t) of the dynamical system defined
by (34) and (33) is strongly feasible for all T > 0. Specifically,
the fit is bounded by

FT,i ≤ min
x†∈X†

1

ε
Vx†,ei(x(0), λ(0)), (36)

where ei with i = 1..m form the canonical base of Rm.

Proof: Consider action trajectories x(t) and multi-
plier trajectories λ(t) and the corresponding energy function
Vx̄,λ̄(x(t), λ(t)) in (35) for arbitrary given action x̄ ∈ X and
multiplier λ̄ ∈ Λ. The derivative V̇x̄,λ̄(x(t), λ(t)) of the energy
with respect to time is then given by

V̇x̄,λ̄(x(t), λ(t)) = (x(t)− x̄)T ẋ(t) + (λ(t)− λ̄)T λ̇(t). (37)

Substitute the action and multiplier derivatives by their corre-
sponding values given in (34) and (33) to reduce (37) to

V̇x̄,λ̄(x(t), λ(t)) =(x(t)− x̄)TΠX (x,−εfx(t, x(t))λ(t))

+ (λ(t)− λ̄)TΠΛ (λ, εf(t, x(t))) . (38)

Then, using the result of Lemma 1 for both X and Λ, the
following inequality holds:

V̇x̄,λ̄(x(t), λ(t)) ≤ ε(x̄− x(t))T fx(t, x(t))λ(t)

+ ε(λ(t)− λ̄)T f(t, x(t)). (39)

Notice that f(t, x)λ(t) is a convex function with respect to
the action, therefore we can upper bound the inner product
(x̄ − x(t))T fx(t, x(t))λ(t) by the quantity f(t, x̄)Tλ(t) −
f(t, x(t))Tλ(t) and transform (39) into

V̇x̄,λ̄(x(t), λ(t)) ≤ ε (f(t, x̄)− f(t, x(t)))
T
λ(t)

+ ε(λ(t)− λ̄)T f(t, x(t)). (40)

Further note that in the above equation the second and the
third term are opposite. Thus, it reduces to

V̇x̄,λ̄(x(t), λ(t)) ≤ ε
[
λT (t)f(t, x̄)− λ̄T f(t, x(t))

]
. (41)

Rewriting the above expression and then integrating both sides
with respect to time from t = 0 to t = T we obtain

ε

∫ T

0

(
λ̄T f(t, x(t))− λT (t)f(t, x̄)

)
dt

≤ −
∫ T

0

V̇x̄,λ̄(x(t), λ(t))dt.

(42)

Integrating the right side of the above equation we obtain

−
∫ T

0

V̇x̄,λ̄(x(t),λ(t))dt (43)

= Vx̄,λ̄(x(0), λ(0))− Vx̄,λ̄(x(T ), λ(T )).

Then using the fact that Vx̄,λ̄(x(t)), λ(t)) ≥ 0 for all t, yields

−
∫ T

0

V̇x̄,λ̄(x(t), λ(t))dt ≤ Vx̄,λ̄ (x(0), λ(0)) . (44)

Then, combining (42) and (44), we have that∫ T

0

λ̄T f(t, x(t))− λT (t)f(t, x̄)dt ≤
(
Vx†,λ̄(x(0), λ(0))

)
/ε.

(45)
Since the environment is viable, there exist a fixed action x†

such that f(t, x†) ≤ 0 for all t ≥ 0. Then choosing x̄ = x†,
since λ(t) ≥ 0 for all t, we have that

λT (t)f(t, x†) ≤ 0 ∀t ∈ [0, T ]. (46)

Therefore the left hand side of (45) can be lower bounded by

λ̄T
∫ T

0

f(t, x(t))dt ≤
(
Vx†,λ̄(x(0), λ(0)

)
/ε. (47)

Choosing λ̄ = ei where ei is the ith element of the canonical
base of Rm, we have that for all i = 1..m:∫ T

0

fi(t, x(t))dt ≤
(
Vx†,ei(x(0), λ(0))

)
/ε. (48)
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Notice that since the above inequality holds for any x† ∈ X†
it is also true for the particular x† that minimizes the right
hand side. The left hand side of the above inequality is the ith
component of the fit. Thus, since the m components of the fit
of the trajectory generated by the saddle point algorithm are
bounded for all T , the trajectory is strongly feasible with the
specific upper bound stated in (36).

Theorem 2 assures that if an environment is viable for
an agent that selects actions over a set X , the solution of
the dynamical system given by (34) and (33) is a trajectory
x(t) that is strongly feasible in the sense of Definition 2.
This result is not trivial, since the function f that defines the
environment is observed causally and can change arbitrarily
over time. In particular, the agent could be faced with an
adversarial environment that changes the function f in a way
that makes the value of f(t, x(t)) larger. The caveat is that the
choice of the function f must respect the viability condition
that there exists a feasible action x† such that f(t, x†) ≤ 0
for all t ∈ [0, T ]. This restriction still leaves significant
leeway for strategic behavior. E.g., in the shepherd problem of
Section II-B we can allow for strategic sheep that observe the
shepherd’s movement and respond by separating as much as
possible. The strategic action of the sheep are restricted by the
condition that the environment remains viable, which in this
case reduces to the not so stringent condition that the sheep
stay in a ball of radius 2r if all ri = r.

Since the initial value of the energy function
Vx†,ei(x(0), λ(0)) is the square of the distance between
x(0) and x† added to a term that depends on the distance
between the initial multiplier and ei, the bound on the fit
in (36) shows that the closer we start to the feasible set
the smaller the accumulated constraint violation becomes.
Likewise, the larger the gain ε, the smaller the bound on
the fit is. As in section III we observe that increasing ε can
make the bound on the fit arbitrarily small, yet for the same
reasons discussed in that section this can’t be done.

Further notice that for the saddle point controller defined
by (34) and (33) the action derivatives are proportional not
only to the gain ε but to the value of the multiplier λ. Thus,
to select gains that are compatible with the system’s physical
constraints we need to determine upper bounds in the multi-
plier values λ(t). An upper bound follows as a consequence
of Theorem 2 as we state in the following corollary.

Corollary 1. Given the controller defined by (34) and (33)
and assuming the same hypothesis of Theorem 2, if the set of
actions X is bounded in norm by R, then the multipliers λ
are bounded for all times by

0 ≤ λi(t) ≤
(
4R2 + 1

)
, for all i = 1, . . . ,m. (49)

Proof: First of all notice that according to (33) a projec-
tion over the positive orthant is performed for the multiplier
update. Therefore, for each component of the multiplier we
have that λi(t) ≥ 0 for all t ∈ [0, T ]. On the other
hand, since the trajectory of the multipliers is defined by
λ̇(t) = ΠΛ(λ(t), εf(t, x(t)), while λ(t) > 0 we have that
λ̇(t) = εf(t, x(t)). Let t0 be the first time instant for which

λi(t) > 0 for a given i ∈ {1, 2, ..,m}, i.e.,

t0 = inf {t ∈ [0, T ], λi(t) > 0} . (50)

In addition, let T ∗0 be the first time instant greater than t0
where λi(t) = 0, if this time is larger than T we set T ∗0 = T ,
formally this is

T ∗0 = max {inf {t ∈ (t0, T ], λi(t) > 0} , T} . (51)

Further define ts+1 = inf {t ∈ [T ∗s , T ], λi(t) > 0} , and

T ∗s = max {inf {t ∈ (ts, T ], λi(t) > 0} , T} . (52)

From the above definition it holds that in any time in the
interval (T ∗s , ts+1], we have λi(t) = 0. And therefore in
those intervals the multipliers are bounded. Consider now
τ ∈ (ts, T

∗
s ]. In this case it holds that∫ τ

ts

λ̇i(t)dt =

∫ τ

ts

εfi(t, x(t))dt. (53)

Notice that the right hand side of the above equation is,
proportional to the ith component of the fit restricted to the
time interval [t0, τ ]. In Theorem 2 it was proved that the
ith component of the fit is bounded for all time horizons by
Vx†,ei(x(ts), 0)/ε. In this particular case we have that

Vx†,ei(x(ts), 0) =
1

2

(
(x(ts)− x†)2 + (0− ei)2

)
, (54)

and since for any x ∈ X we have that ‖x‖ ≤ R, we conclude

Vx†,ei(x(ts), 0) ≤ 1

2

(
(2R)2 + 12

)
. (55)

Therefore, for all τ ∈ (tsT
∗
s ] λi(τ) ≤ 1

2

(
4R2 + 12

)
. This

completes the proof that the multipliers are bounded.
The bound in Corollary 1 ensures that action derivatives

ẋ(t) remain bounded if the subgradients are. This means that
action derivatives increase, at most, linearly with ε and is not
compounded by an arbitrary increase of the multipliers.

The cumulative nature of the fit does not guarantee that the
constraint violation is controlled. This is because time intervals
of constraint violations can be compensated by time intervals
where the constraints are negative. Thus, it is of interest
to show that the saddle point controller archives bounded
saturated fit for all time horizon. We formalize this result next.

Corollary 2. Let the hypothesis of Theorem 2 hold. Let δ >
0 and let F̄T be the saturated fit defined in (5). Then, the
solution of the dynamical system (34) and (33) when f(t, x) is
replaced by f̄δ(t, x)) = max {f(t, x),−δ} archives a bounded
saturated fit. Furthermore the bound is given by

F̄T,i ≤ min
x†∈X†

1

ε
Vx†,ei(x(0), λ(0)), (56)

where ei with i = 1..m form the canonical base of Rm.

Proof: Since f̄δ(t, x) is the pointwise maximum of two
convex functions, it is a convex function itself. As a con-
sequence of Theorem 2 the fit for the environment f̄δ(t, x)
satisfies∫ T

0

f̄δ(t, x(t)) dt ≤ min
x†∈X†

1

ε
Vx†,ei(x(0), λ(0)). (57)
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The fact that the left hand side of the above equation corre-
sponds to the saturated fit [c.f. (5)] completes the proof.

The above result establishes that a trajectory that follows the
saddle point dynamics for the environment defined by f̄δ(t, x)
achieves bounded saturated fit. This means that it is possible
to adapt the controller (34) and (33), so that the fit is bounded
while not alternating between periods of large under and over
satisfaction of the constraints

B. Strongly optimal feasible trajectories

This section presents bounds on the growth of the fit and the
regret of the trajectories x(t) that are solutions of the saddle
point controller defined by (32) and (33). These bounds ensure
that the trajectory is feasible and strongly optimal in the sense
of Definition 2. To derive these bounds we need the following
assumption regarding the objective function.

Assumption 3. There is a finite constant K independent of
the time horizon T such that for all t in the interval [0, T ].

K ≥ f0(t, x∗)−min
x∈X

f0(t, x), (58)

where x∗ is the solution of the offline problem (2).

The existence of the bound in (58) is a mild requirement.
Since the function f0(t, x) is convex, for any time t it is lower
bounded if the action space is bounded, as is the case in most
applications of practical interest. The only restriction imposed
is that minx∈X f0(t, x) does not become progressively smaller
with time so that a uniform bound K holds for all times t. The
bound can still hold if X is not compact as long as the span of
the functions f0(t, x) is not unbounded below. A consequence
of Assumption 3 is that the regret cannot decrease faster than
a linear rate as we formally state in the following lemma.

Lemma 2. Let X ⊂ Rn be a convex set. If Assumption 3
holds, then the regret defined in (3) is lower bounded by −KT
where K is the constant defined in (58), i.e.,

RT ≥ −KT. (59)

Proof: See Appendix B.
Observe that regret is a quantity that we want to make small

and, therefore, having negative regret is a desirable outcome.
The result in Lemma 2 puts a floor on how much we can
succeed in making regret negative. Using the bound in (59) and
the definition of the energy function in (35) we can formalize
bounds on the regret and the fit, for an action trajectory x(t)
that follows the saddle point dynamics in (32) and (33).

Theorem 3. Let X ⊂ Rn be a compact convex set and let
f : R×X → Rm and f0 : R×X → R, be functions satisfying
assumptions 1, 2 and 3. If the environment is viable, then the
solution of the system defined by (32) and (33) is a trajectory
x(t) that is feasible and strongly optimal for all time horizons
T > 0 if the gain ε > 1. In particular, the fit is bounded by

FT,i ≤ O
(√

KT, ε0
)
, (60)

and the regret is bounded by

RT ≤
1

ε
Vx∗,0 (x(0), λ(0)) , (61)

where Vx̄,λ̄(x, λ) is the energy function defined in (35), x∗ is
the solution to the problem (2) and K is the constant defined in
(58). The notation O

(
ε0
)

refers to a function that is constant
with respect to the gain ε.

Proof: See Appendix C
Theorem 3 assures that if the environment is viable for an

agent selecting actions from a bounded set X , the solution of
the saddle point dynamics defined in (32)-(33) is a trajectory
that is feasible and strongly optimal. The bounds on the fit in
theorems 2 and 3 prove a trade off between optimality and
feasibility. If optimality of the trajectory is not of interest it
is possible to get strongly feasible trajectories with fit that
is bounded by a constant independent of the time horizon T
(cf. Theorem 2). When an optimality criterion is added to the
problem, its satisfaction may come at the cost of a fit that may
increase as

√
T . An important consequence of this difference

is that even if we could set the gain ε to be arbitrarily large,
the bound on the fit cannot be made arbitrarily small. This
bound would still grow as

√
KT . The result in Theorem 3

also necessitates Assumption 3 as opposed to Theorem 2.
As in the cases of theorems 1 and 2 it is possible to have

the environment and objective function selected strategically.
Further note that, again, the initial value of the energy function
used to bound regret is related with the square of the distance
between the initial action and the optimal offline solution of
problem (2). It also follows from the proof that this distance
is related to the bound on the fit. Thus, the closer we start
from this action the tighter the bounds will be. We next show
that similar results holds for the saddle point dynamics if we
consider the notion of saturated fit in lieu of fit.

Corollary 3. Let the hypothesis of Theorem 3 hold. Let δ >
0 and let F̄T be the saturated fit defined in (5). Then, the
solution of the dynamical system (32) and (33), when f(t, x)
is replaced by f̄δ(t, x)) = max {f(t, x),−δ} achieves a regret
satisfying (61) and saturated fit that is bounded by

F̄T,i ≤ O
(√

KT, ε0
)
. (62)

Proof: Same as Corollary 2.
The above result establishes that a trajectory that follows the

saddle point dynamics for the environment defined by f̄δ(t, x)
achieves bounded saturated fit. This means that it is possible
to adapt the controller (32) and (33), so that the growth of
the fit is controlled while not alternating between periods of
large under and over satisfaction of the constraints. In the
next section we evaluate the performance of the saddle point
controller, after a pertinent remark on the selection of the gain.

Remark 4 (Gain depending on the Time Horizon). If it
were possible to select the gain as a function of the time
horizon T , fit could be bounded by a constant that does not
grow with T . Take (88) and choose λ̄ = eiT , where ei is the
i-th component of the canonical base of Rm we have that

T

∫ T

0

fi(t, x(t))dt ≤ (Vx∗,Tei(x(0), λ(0))) /ε+KT. (63)

With this selection of λ̄ the function Vx∗,Tei (x(0), λ(0)))
grows like T 2. Dividing both sides of the above equation by
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T we have that the i-th component of the fit is bounded by

FT,i ≤ O(T )/ε+K. (64)

If the gain is set to have order O(T ), the right hand side
of (64) becomes of order O(T 0). This means that fit can be
bounded by a constant that does not depend on T .

V. NUMERICAL EXPERIMENTS

We evaluate performance of the saddle point algorithm
defined by (32)-(33) in the solution of the shepherd problem
introduced in Section II-B. We determine sheep paths using a
perturbed polynomial characterization akin to the one in (10).
Specifically, letting pj(t) be elements of a polynomial basis,
the path yi(t) = [yi,1(t), yi,2(t)]T of the ith sheep is given by

yi,k(t) =

ni−1∑
j=0

yi,k,jpj(t) + wi,k(t), (65)

where k = 1, 2 denotes different path components, ni the
dimension of the base that parameterizes the path followed by
sheep i, and yi,k,j represent the corresponding ni coefficients.
The noise terms wi,k(t) are Gaussian white with zero mean,
standard deviation σ and independent across components and
sheep. Their purpose is to obtain more erratic paths.

To determine yi,k,j we make wi,k(t) = 0 in (65) and require
all sheep to start at yi(0) = [0, 0]T and finish at yi(T ) =
[1, 1]T . A total of L random points {ỹl}Ll=1 are then drawn
independently and uniformly at random in the unit box [0, 1]2.
Sheep i = 1 is required to pass through points ỹl at times
lT/(L + 1), i.e., y1(lT/(L + 1)) = ỹl. For each of the other
sheep i 6= 1 we draw L random offsets {∆ỹi,l}Ll=1 uniformly
at random from the box [−∆,∆]2 and require the ith sheep
path to satisfy yi(lT/(L + 1)) = ỹl + ∆ỹi,l. Paths yi(t) are
then chosen as those that minimize the path integral of the
acceleration squared subject to the constraints of each path

y∗i = argmin

∫ T

0

‖ÿi(t)‖2dt,

s.t. yi(0) = [0, 0]T , yi(T ) = [1, 1]T ,

yi(lT/(L+ 1)) = ỹl + ∆ỹi,l, (66)

where, by construction ∆ỹ1,l = 0. The paths in (66) can be
computed as solutions of a quadratic program [41]. Let y∗i (t)
be the trajectory given by (65) when we set yi,k,j = y∗i,k,j .
We obtain the paths yi,k(t) by adding wi,k(t) to y∗i (t).

In subsequent numerical experiments we consider m = 5
sheep, a time horizon T = 1, and set the proximity constraint
in (11) to ri = 0.3. We use the polynomial basis pj(t) = tj

in both, (10) and (65). The number of basis elements in both
cases is set to n = ni = 30. To generate sheep paths we
consider a total of L = 3 randomly chosen intermediate points,
set the variation parameter to ∆ = 0.1, and the perturbation
standard deviation to σ = 0.1. These problem parameters are
such that the environment is most likely viable in the sense of
Definition 1. We check that this is true by solving the offline
feasibility problem. If the environment is not viable a new one
is drawn before proceeding to the implementation of (32)-(33).

We emphasize that even if the path of the sheep is known to
us, the information is not used by the controller. The latter is
only fed information of the position of the sheep at the current
time, which it uses to evaluate the environment functions
fi(t, x) in (11), their gradients fix(t, x) and the gradient of
f0(t, x). In the first problem considered f0(t, x) is identically
zero, in the second takes the form of (12) and in the last
problem the form of (13). Since the agent is dynamicless, there
are not physical constraints on the derivatives of the system,
therefore the gain ε in (32)-(33) can be set to have any value.

A. Strongly feasible trajectories

We consider a problem without optimality criterion in
which case (32)-(33) simplifies to (34)-(33) and the strong
feasibility result in Theorem 2 applies. The system’s behavior
is illustrated in Figure 2 when the gain is set to ε = 50. In
this problem the average and maximal speed of the sheep is
5.1km/h and 14.8km/h respectively while for the shepherd
these are 6.1km/h and 18.3km/h for the selected gain. This
speeds are in in the range of reasonable velocities for this
particular problem. A qualitative examination of the sheep and
shepherd paths shows that the shepherd succeeds in following
the herd. A more quantitative evaluation is presented in
Figure 3 where we plot the instantaneous constraint violation
fi(t, x(t)) with respect to each sheep for the trajectories
x(t). Observe the oscillatory behavior that has the constraint
violations fi(t, x(t)) hovering at around fi(t, x(t)) = 0. When
the constraints are violated, i.e., when fi(t, x(t)) > 0, the
saddle point controller drives the shepherd towards a position
that makes him stay within ri of all sheep. When a constraint
is satisfied we have fi(t, x(t)) < 0. This drives the multiplier
λi(t) towards 0 and removes the force that pushes the shepherd
towards the sheep (c.f. Figure 3). The absence of this force
makes the constraint violation grow and eventually surpass
the maximum tolerance fi(t, x(t)) = 0. At this point the
multipliers start to grow and, as a consequence, to push the
shepherd back towards proximity with the sheep.

The behavior observed in Figure 3 does not contradict the
result in Theorem 2 which gives us a guarantee on fit, not
on instantaneous constraint violations. The components of
the fit are shown in Figure 4a where we see that they are
indeed bounded. Thus, the trajectory is feasible in the sense
of Definition 2, even if the instantaneous problem’s constraints
are being violated at specific time instances. Further note that
the fit is not only bounded but actually becomes negative. This
is a consequence of the relatively large gain ε = 50 which
helps the shepherd to respond quickly to the sheep movements.
The fit for a second experiment in which the gain is reduced
to ε = 5 is shown in Figure 4b. In this case the fit stabilizes at
a positive value. This behavior is expected because reducing
ε decreases the speed with which the shepherd can adapt to
changes in the sheep paths. More to the point, the bound on
the fit in Theorem 2 is inversely proportional to the gain ε.
The paths and instantaneous constraints violations for ε = 5
are not shown but they are qualitatively similar to the ones
shown for ε = 50 in figures 2 and 3.
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(a) Experiment with gain ε = 50.
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(b) Experiment with gain ε = 5.

Fig. 4: Fit FT for two different controller gains in the feasibility-only problem (Section V-A). Fit is bounded in both cases as predicted by
Theorem 2. As is also predicted by Theorem 2, the larger the value of the gain ε the smaller the bound on the fit of the shepherd’s trajectory.
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Fig. 2: Path of the sheep and the shepherd for the feasibility-only
problem (Section V-A) when the gain of the saddle point controller
is set to be ε = 50. The shepherd succeed in following the herd since
its path – in red – is close to the path of all sheep.

B. Preferred sheep problem

Besides satisfying the constraints in (11), the shepherd
wishes to follow the first (black) sheep as close as possible.
This translates into the optimality criterion (12). Since the
sheep trajectories are viable the hypotheses of Theorem 3 hold.
Thus, for a shepherd following the dynamics (32) and (33),
the resulting trajectory is feasible and strongly optimal.

Given that the trajectory is guaranteed to be feasible, we
expect to have the fit bounded by a sublinear function of
T . This does happen, as can be seen in the fit trajectories
illustrated in Figure 5 where a gain ε = 50 is used. In fact,
the fit does not grow and is bounded by a constant for all
time horizons T . The trajectory is therefore not only feasible
but strongly feasible. This does not contradict Theorem 3
because strong feasibility implies feasibility. The reason why
it’s reasonable to see bounded fit here is that the objective
function pushing the shepherd closer to the sheep is, in a sense,
redundant with the constraints that push the shepherd to stay
closer to all sheep. This redundancy can be also observed in the
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(a) Instantaneous constraint value.
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(b) Temporal evolution of the multipliers.

Fig. 3: Relationship between the instantaneous value of the con-
straints and their corresponding multipliers for the feasibility-only
problem (Section V-A). At the times in which the value of a constraint
is positive, its corresponding multiplier increases. When the value of
the multipliers is large enough a decrease of the value of the constraint
function is observed. Once the constraint function is negative the
corresponding multiplier decreases until it reaches zero.
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fact that the fit in this problem (c.f. Figure 5) is smaller than the
fit in the problem of Section V-A (c.f. Figure 4a). To explain
why this may happen, focus on the value of the multipliers in
Figure 3b between, e.g., times 0.07h < t < 0.21h. During this
time the multipliers are equal to zero because all constraints
are satisfied. As a consequence, the Lagrangian subgradient
with respect to the action is identically zero in the time
interval. In turn, this implies that the action is constant and
no effort is made to reduce the value of the constraints. If the
optimality criterion was present, the shepherd would be pushed
towards the black sheep and fit would be further reduced.

The regret corresponding to the trajectory for this experi-
ment with ε = 50 is shown in Figure 6. Since the trajectory
is strongly optimal as per Theorem 3, we expect regret to
be bounded. This is the case in Figure 6 The path of the
shepherd is not shown for this experiment as it is qualitatively
analogous to the one in Figure 2 for the feasibility-only
problem considered in Section V-A.

C. Minimum acceleration problem

We consider, an environment defined by the distances be-
tween the shepherd and the sheep given by (11), with the
minimum acceleration objective defined in (13). Since the con-
struction of the target trajectories gives a viable environment
we satisfy, again, the hypotheses of Theorem 3. Hence, for
a shepherd following the dynamics given by (32) and (33),
the action trajectory is feasible and strongly optimal. In this
section the gain of the controller is set to ε = 50.

A feasible trajectory implies that the fit must be bounded
by a function that grows sublinearly with the time horizon T .
Notice that this is the case in Figure 8. Periods of growth of
the fit are observed, yet the presence of inflection points is an
evidence of the growth being controlled. The fit in this problem
is larger than the one in problem V-B (c.f figures 5 and 8).
This result is predictable since the constraints and the objective
function push the action in different directions. For instance,
suppose that all constraints are satisfied and that the Lagrange
multipliers are zero. Then, the subgradient of the Lagrangian is
equal to the subgradient of the objective function. Hence the
action will be modified trying to minimize the acceleration
without taking the constraints (distance with the sheep) into
account. Hence, pushing the action to the boundary of the
feasible set. In this problem, this translates into the fact that
the shepherd does not follow the sheep as closely as in the
problems in sections V-A and V-B (c.f Figure 7).

Since the trajectory is strongly optimal, we should observe
a regret bounded by a constant. This is the case in Figure
9, where in fact we observe negative regret for some time
intervals. Negative regret implies that the trajectory of the
shepherd is incurring a total cost that is smaller than the one
associated with the optimal solution. Notice that while the
optimal fixed action minimizes the total cost as defined in (2) it
does not minimize the objective at all times. Thus, by selecting
different actions the shepherd can suffer smaller instantaneous
losses than the ones associated with the optimal fixed action. If
this is the case, regret – which is the integral of the difference
between these two losses – can be negative.
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Fig. 5: Fit FT for the preferred sheep problem (Section V-B) when
the gain of the saddle point controller is set to be ε = 50. As predicted
by Theorem 3 the trajectory is feasible since the fit is bounded, and,
in fact, appears to be strongly feasible. Since the subgradient of the
objective function is the same as the subgradient of the first constrain
the fit is smaller than in the pure feasibility problem (c.f Figure 4).
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Fig. 6: Regret RT for the preferred sheep problem (Section V-B)
when the gain of the saddle point controller is set to be ε = 50. The
trajectory is strongly optimal, as predicted by Theorem 3, since the
regret is bounded by a constant. The initial increment in the regret
is due to the fact that the shepherd starts away from the first sheep
while in the optimal offline trajectory would start close to it.
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Fig. 7: Path of the sheep and the shepherd for the minimum
acceleration problem (Section V-C) when the gain of the saddle point
controller is set to be ε = 50. Observe that the shepherd path – in
red – is not as close to the path of the sheep as in Figure 2. This
is reasonable because the objective function and the constraints push
the shepherd in different directions.
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Fig. 8: Fit FT for the minimum acceleration problem (Section V-C)
when the gain of the saddle point controller is set to ε = 50. Since the
fit is bounded, the trajectory is feasible in accordance with Theorem
3. Since the gradient of the objective function and the gradient of the
feasibility constraints tend to point in different directions, the fit is
larger than in the preferred sheep problem (c.f Figure 5).
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Fig. 9: Regret RT for the minimum acceleration problem (Section
V-C) when the gain of the saddle point controller is set to be ε = 50.
The trajectory is strongly optimal as predicted by Theorem 3. Observe
that regret is negative due to the fact that the agent is allowed to select
different actions at different times as opposed to the clairvoyant player
that is allowed to select a fixed action.

D. Saturated Fit

We apply the modified saddle point algorithm in the setting
of Section V-B so to consider the saturated fit [c.f. (5)] in
lieu of the fit. Since the construction of the target trajectories
gives a viable environment the hypotheses of Corollary 3
are satisfied. Hence for a shepherd following the dynamics
given by (32) and (33), the trajectories are such that have
saturated fit bounded by a function that grows sub linearly
and bounded regret. For the simulation in this section the gain
of the controller is set to ε = 50. Observe that the shepherd
succeeds in following the herd, since his path remains close
to the sheep (c.f. Figure 10). As predicted by the Corollary 3
the fit of the trajectory is bounded by a function that grows
sub linearly and the regret is bounded by a constant as it can
be observed in figures 11 and 12 respectively. Further notice
that the regret in this scenario is similar to the regret of the
trajectory in the preferred sheep problem (c.f. Section V-B).
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Fig. 10: Path of the sheep and the shepherd for preferred sheep
problem when saturated fit is considered (Section V-D) and the gain
of the saddle point controller is set to be ε = 50. The shepherd
succeed in following the herd since its path – in red – is close to the
path of all sheep.
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Fig. 11: Saturated fit Fsat
T for the preferred sheep problem (Section

V-D) when the gain of the saddle point controller is set to ε = 50.
Since the saturated fit grows sublinearly in accordance with Corollary
3, the trajectory is feasible.
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Fig. 12: RegretRT for the preferred sheep problem when saturated fit
is considered (Section V-D)and the gain of the saddle point controller
is set to be ε = 50. The regret is bounded as predicted by Corollary
3 and therefore the trajectory is strongly optimal. Notice that regret
in this case is identical to regret in the preferred sheep problem when
regular fit is considered (c.f. Figure 6).
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VI. CONCLUSION

We considered a continuous time environment in which
an agent must select actions to satisfy a set of constraints
that are time varying and unknown a priori. We defined a
viable environment as one in which there is a fixed action
that satisfies the constraints at all times. We defined the fit as
the cumulated constraint violation and the notions of feasible
and strongly feasible trajectories. Feasible trajectories are such
that the fit is bounded by a constant independent of the time
horizon, and strongly feasible trajectories are such that the
fit is bounded by a sublinear function of the time horizon.
An objective function was considered to select a strategy
that meets an optimality criterion and we defined regret in
continuous time as the difference between the cumulative costs
of the agent and the best clairvoyant agent. We then defined
strongly optimal trajectories as those for which the regret is
bounded by a constant that is independent of the time horizon.

We proposed an online version of the saddle point controller
of Arrow-Hurwicz to generate trajectories with small fit and
regret. We showed that for any viable environment the tra-
jectories that follow the dynamics of this controller are: (i)
Strongly feasible if no optimality criterion is considered. (ii)
Feasible and strongly optimal when an optimality criterion is
considered. Numerical experiments on a shepherd that tries to
follow a herd of sheep support these theoretical results.

Future research includes studying asymptotic convergence
of the saddle point dynamics to the optimal trajectory and
studying systems with second order dynamics. In this setting,
it is possible to add a term in the objective function that
penalizes the action derivative, therefore allowing to control it
and maintaining in a desired range.

APPENDIX

A. Proof of Lemma 1

In order to develop this proof we need to define the tangent
cone and to state Lemma 3 relating the projection of a vector
over it and the projection over a convex set

Definition 4 (Tangent cone). Let X ⊂ Rn be a closed convex
set. We define the tangent cone to X at x0 as

TX(x0) =
⋃

θ>0,x∈X

θ(x− x0). (67)

The above union is over all the points of the set X and over
all the positive reals θ. Notice that the

⋃
θ>0 θ(x− x0) is the

ray from x0 and intersecting the point x. Thus, the tangent
cone is the closure of the cone formed by all rays emanating
from x0 and intersecting at least one point x ∈ X with x 6= x0.

Lemma 3. Let X ∈ Rn be a closed convex set, let x0 ∈ X
and let v ∈ Rn. Then the projection of v over the set X at x0

defined in (16) is

ΠX(x0, v) = PTX(x0)(v). (68)

Proof: The proof follows from Lemma 4.6 in [38].
Proof of Lemma 1: Consider the case in which x0 ∈

int(X). Then, for any v there exits a small enough δ > 0

such that x0 + δv ∈ X . Hence PX(x0 + δv) = x0 + δv and it
holds that

PX(x0 + δv)− x0 = vδ. (69)

Thus ΠX(x, v) = v and (21) is verified. When x0 ∈ ∂X two
cases are possible; either x0 + δv ∈ TX(x0) for small enough
δ > 0 or x0 + δv /∈ TX(x0) for all δ > 0. In the first case
because of Lemma 3 it is verified that

ΠX(x0, v) = PTX(x0)(v) = v. (70)

And therefore (21) holds. Let us now consider the last case in
which x0 ∈ ∂X and x0+δv /∈ TX(x0). Because X is a convex
set there exists a vector a ∈ Rn with ‖a‖ = 1 defining a
supporting hyperplane at x0 H = {x ∈ Rn : aT (x−x0) = 0},
and for all x ∈ X we have that

aT (x− x0) ≤ 0. (71)

If the set X is smooth at x0 then the border of the tangent cone
at the point x0 is contained in the hyperplane H, therefore
ΠX(x0, v) ⊂ H. Thus, aTΠX(x0, v) = 0 and we have as
well that aT v ≥ 0, otherwise there must exists a δ > 0
such that x0 + δv ∈ TX(x0). On the other hand if there is
a corner at x0 there are infinite supporting hyperplanes. One
of them verifies that aT v ≥ 0 and contains the boundary of
the tangent cone, thus aTΠX(x0, v) = 0. Since ΠX(x0, v)
is the projection of v over the tangent cone, we have that:
ΠX(x0, v) = PTX(x0)(v) = (aT⊥v)a⊥, where a⊥ ∈ Rn and
verifies that aTa⊥ = 0 and ‖a⊥‖ = 1. Projecting the vectors
x0 − x and v over a and a⊥, we have

(x0 − x)T v = (x0 − x)TavTa+ (x0 − x)Ta⊥v
Ta⊥. (72)

From the previous discussion the above equation reduces to

(x0 − x)T v = (x0 − x)TavTa+ (x0 − x)TΠX(x0, v). (73)

By combining the fact that vTa ≥ 0 and (71) the left hand
side of the above equality can be lower bounded by

(x0 − x)T v ≥ (x0 − x)TΠX(x0, v). (74)

Hence we have proved the lemma for all posible cases.

B. Proof of Lemma 2

Let x(t) be the action at time t when the agent follows the
dynamics defined by (32) and (33), because of Assumption 3,
we have that

f0(t, x(t))− f0(t, x∗) ≥ −K, (75)

Integrating both sides of the above equation yields∫ T

0

f0(t, x(t))dt−
∫ T

t=0

f0(t, x∗)dt ≥ −KT. (76)

Since the left hand side of the above equation is the regret up
to time T defined in (3), the proof is completed.



15

C. Proof of Theorem 3

Consider action trajectories x(t) and multiplier trajectories
λ(t) and the corresponding energy function Vx̄,λ̄(x(t), λ(t)) in
(35), for arbitrary given action x̄ ∈ Rn and multiplier λ̄ ∈ Λ.
The derivative V̇x̄,λ̄(x(t), λ(t)) is given by

V̇x̄,λ̄(x(t), λ(t)) = (x(t)− x̄)T ẋ(t) + (λ(t)− λ̄)T λ̇(t). (77)

If the trajectories x(t) and λ(t) follow from the saddle point
dynamical system defined by (32) and (33) respectively we
can substitute the action and multiplier derivatives by their
corresponding values and reduce (77) to

V̇x̄,λ̄(x(t), λ(t)) = (x(t)− x̄)TΠX(x,−εLx(t, x(t), λ(t)))

+ (λ(t)− λ̄)TΠΛ(λ, εLλ(t, x(t), λ(t))).
(78)

Then, use Lemma 1 for both X and Λ to write

V̇x̄,λ̄(x(t), λ(t)) ≤ −ε(x(t)− x̄)TLx(t, x(t), λ(t)) (79)

+ ε(λ(t)− λ̄)TLλ(t, x(t), λ(t)).

Since L(t, x(t), λ(t)) is a convex function, (14) takes the form

−(x(t)−x̄)TLx(t, x(t), λ(t)) ≤ L(t, x̄, λ(t))−L(t, x(t), λ(t)).
(80)

From the linearity of the Lagrangian with respect to λ we have

(λ(t)− λ̄)TLλ(t, x(t), λ(t)) = L(t, x(t), λ(t))−L(t, x(t), λ̄).
(81)

Combine expressions (80) and (81) to reduce (79) to

V̇x̄,λ̄(x(t), λ(t)) ≤ ε
(
L(t, x̄, λ(t))− L(t, x(t), λ̄)

)
. (82)

Substituting the Lagrangians by the expression (31)

V̇x̄,λ̄(x(t), λ(t)) ≤ ε[f0(t, x̄) + λT (t)f(t, x̄)

−f0(t, x(t))− λ̄T f(t, x(t))]. (83)

Rewriting the above inequality and integrating both sides with
respect to the time from time t = 0 to t = T , we obtain∫ T

0

f0(t, x(t))− f0(t, x̄) + λ̄T f(t, x(t))− λT (t)f(t, x̄)dt

≤ −1

ε

∫ T

0

V̇x̄,λ̄(x(t), λ(t))dt.

(84)

Using the result (44) the above equation reduces to yields∫ T

0

f0(t, x(t))− f0(t, x̄) + λ̄T f(t, x(t))− λT (t)f(t, x̄)dt

≤ 1

ε
Vx̄,λ̄(x(0), λ(0)). (85)

Since (85) holds for any x̄ ∈ X and any λ̄ ∈ Λ, it holds for
x̄ = x∗, λ̄ = 0. Since λT (t)f(t, x∗) dt ≤ 0 ∀t ∈ [0, T ] we
can lower bound the left hand side of (85) to obtain:∫ T

0

f0(t, x(t))− f0(t, x∗)dt ≤ 1

ε
Vx∗,0(x(0), λ(0)). (86)

Notice that the left hand side of the above equation is the
definition of regret given in (3). Thus, we have showed that
(61) holds and since the right hand side of the above equation

is a constant for all T we proved that the trajectory generated
by the saddle point controller is strongly optimal. It remains
to prove that the trajectory generated is feasible. Choosing
x̄ = x∗ in (85) and using the result of Lemma 2 yields∫ T

0

λ̄T f(t, x(t))−λT (t)f(t, x∗) dt

≤ 1

ε
Vx∗,λ̄(x(0), λ(0)) +KT. (87)

Since λT (t)f(t, x∗) dt ≤ 0 ∀t ∈ [0, T ] the left hand side of the
above equation is lower bounded by λ̄T

∫ T
0
f(t, x(t)), yielding

λ̄T
∫ T

0

f(t, x(t))dt ≤
(
Vx∗,λ̄(x(0), λ(0))

)
/ε+KT. (88)

Now let’s choose λ̄ = [FT ]
+

=
[∫ T

0
f(t, x(t)) dt

]+
. Let

I = {i = 1..m|
∫ T

0
fi(t, x(t)) dt ≥ 0)}. Notice that if i 6∈ I ,

then λ̄i
∫ T

0
fi(t, x(t)) dt = 0. On the other hand, if i ∈ I ,

λ̄i
∫ T

0
fi(t, x(t)) dt =

(∫ T
0
fi(t, x(t)) dt

)2

≥ 0. Thus,

λ̄T
∫ T

0

f(t, x(t))dt =
∥∥∥[FT ]

+
∥∥∥2

. (89)

Write then inequality (88) for the particular choice of λ̄ as∥∥∥[FT ]
+
∥∥∥2

≤ 1

ε
Vx∗,[FT ]+(x(0), λ(0)) +KT. (90)

Use the definition of the energy function Vx̄,λ̄ (x, λ) given in
(35) to write the above inequality as∥∥∥[FT ]

+
∥∥∥2

≤ 1

ε

(
‖x(0)− x∗‖2 +

∥∥∥[FT ]
+ − λ(0)

∥∥∥2
)

+KT.

(91)
Expand the second square in the right hand side of the above
expression and re arrange terms to write∥∥∥[FT ]

+
∥∥∥2

+ λT (0) [FT ]
+ 2

ε− 1

≤ 1

ε− 1

(
‖x(0)− x∗‖2 + ‖λ(0)‖2

)
+KT

ε

ε− 1
.

(92)

Adding in both sides of the above inequality ‖λ(0)‖2
(

1
ε−1

)2

,
then factorizing the left hand side the above inequality yields∥∥∥∥[FT ]

+
+ λ(0)

1

ε− 1

∥∥∥∥2

≤ 1

ε− 1
‖x(0)− x∗‖2 +KT

ε

ε− 1

+
‖λ(0)‖2

ε− 1

(
1 +

1

ε− 1

)
.

(93)

Since the term λ(0)/ (ε− 1) is constant with respect to T it
is the case that the norm of [FT ]

+ is bounded by a function
that grows like

√
T . On the other hand it also holds that

‖ [FT ]
+ ‖ is bounded by a constant function of the gain ε.

These observations lead to the conclusion that

‖ [FT ]
+ ‖ ≤ O

(√
KT, ε0

)
. (94)

The above inequality implies that for any i ∈ I it is the case
that FT,i ≤ O

(√
KT, ε0

)
. If i 6∈ I it means that FT,i < 0

and it trivially satisfies (60). Which proves that the trajectories
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that are solution of the saddle point controller defined by (32)
and (33) are feasible since they are bounded by a sublinear
function of the time horizon for all T .
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