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Output Stabilization of Boundary-controlled Parabolic PDEs via
Gradient-based Dynamic Optimization*

Zhigang Ren1, Chao Xu1, Qun Lin2, and Ryan Loxton2

Abstract—This paper proposes a new control synthesis ap-
proach for the stabilization of boundary-controlled parabol-
ic partial differential equations (PDEs). In the proposed ap-
proach, the optimal boundary control is expressed in integral
state feedback form with quadratic kernel function, where the
quadratic’s coefficients are decision variables to be optimized.
We introduce a system cost functional to penalize both state
and kernel magnitude, and then derive the cost functional’s
gradient in terms of the solution of an auxiliary “costate” PDE.
On this basis, the output stabilization problem can be solved
using gradient-based optimization techniques such as sequential
quadratic programming. The resulting optimal boundary control
is guaranteed to yield closed-loop stability under mild conditions.
The primary advantage of our new approach is that the costate
PDE is in standard form and can be solved easily using the finite
difference method. In contrast, the traditional control synthesis
approaches for boundary-controlled parabolic PDEs (i.e., the
LQ control and backstepping approaches) require solving non-
standard Riccati-type and Klein-Gorden-type PDEs.

I. INTRODUCTION

Parabolic partial differential equation (PDE) systems are an
important type of distributed parameter system (DPS) describ-
ing a wide range of natural phenomena, including diffusion,
heat transfer, and fusion plasma transport. Over the past few
decades, control theory for the parabolic DPS has developed
into a mature research topic at the interface of engineering and
applied mathematics [1], [2], [10].

The linear quadratic (LQ) control framework is well-
defined in infinite dimensional function spaces to deal with
the parabolic DPS (e.g., [1], [2]). However, the LQ control
framework requires solving Riccati-type differential equations,
which are nonlinear parabolic PDEs of dimension one greater
than the original parabolic PDE system. For example, to gen-
erate an optimal feedback controller for a scalar heat equation,
a Riccati PDE defined over a rectangular domain must be
solved [11]. Hence, the LQ approach does not actually solve
the controller synthesis problem directly, but instead converts
it into another problem (i.e., solve a Riccati-type PDE) that is
still extremely difficult to solve from a computational point of
view.
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One of the major advances in PDE control in recent years
has been the so-called infinite dimensional Voltera integral
feedback, or the backstepping method (e.g., [5], [9]). In-
stead of Riccati-type PDEs, the backstepping method requires
solving the so-called kernel equations—linear Klein-Gorden-
type PDEs for which the successive approach can be used to
obtain explicit solutions. This method was originally devel-
oped for the stabilization of one dimensional parabolic DPS
and then extended to fluid flows [16], [19], magnetohydro-
dynamic flows [17], and elastic vibration [4]. In addition,
the backstepping method can also be applied to achieve full
state feedback stabilization and state estimation of PDE-ODE
cascade systems [13].

In this paper, we propose a new framework for control
synthesis for boundary-controlled parabolic DPS. This new
framework does not require solving Riccati-type or Klein-
Gorden-type PDEs. Instead, it requires solving a so-called
“costate” PDE, which is much easier to solve from a computa-
tional viewpoint. In fact, many numerical software packages,
such as Comsol Multiphysics and MATLAB PDE ToolBox,
can be used to generate numerical solutions for the costate
PDE. The Riccati PDEs, on the other hand, are usually not in
standard form and thus cannot be solved using off-the-shelf
software packages. The approach proposed in this paper can
be viewed as an extension of optimization-based PID tuning
ideas (see [3], [6], [14], [18]) to infinite dimensional systems.

II. PROBLEM FORMULATION

A. Feedback Kernel Optimization

We consider the following parabolic PDE system:
yt(x, t) = yxx(x, t)+ cy(x, t), (1a)
y(0, t) = 0, (1b)
y(1, t) = u(t), (1c)
y(x,0) = y0(x), (1d)

where c> 0 is a given constant and u(t) is a boundary control.
It is well known that the uncontrolled version of system
(1) is unstable when the constant c is sufficiently large [5].
According to the LQ control [11] and backstepping synthesis
approaches [5], the optimal stabilizing control law takes the
following feedback form:

u(t) =
∫ 1

0
K (1,ξ )y(ξ , t)dξ , (2)

where the feedback kernel K (1,ξ ) is obtained by solving
either a Riccati-type or a Klein-Gorden-type PDE. By intro-
ducing the new notation k(ξ ) = K (1,ξ ), we can write the
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Fig. 1. The feedback kernel (4) for various values of c.

feedback control policy (2) in the following form:

u(t) =
∫ 1

0
k(ξ )y(ξ , t)dξ .

The corresponding closed-loop system is

yt(x, t) = yxx(x, t)+ cy(x, t), (3a)
y(x,0) = y0(x), (3b)
y(0, t) = 0, (3c)

y(1, t) =
∫ 1

0
k(ξ )y(ξ , t)dξ . (3d)

In reference [5], the backstepping method is used to express
the optimal feedback kernel as follows:

K (1,ξ ) =−cξ
I1(

√
c(1−ξ 2))√

c(1−ξ 2)
, (4)

where I1 is the first-order modified Bessel function given by

I1(ω) =
∞

∑
n=0

ω2n+1

22n+1n!(n+1)!
.

The feedback kernel (4) is plotted in Figure 1 for different
values of c. Note that its shape is similar to a quadratic
function. Note also that K (1,ξ )= 0 when ξ = 0. Accordingly,
motivated by the quadratic behavior exhibited in Fig. 1, we
express k(ξ ) in the following parameterized form:

k(ξ ;Θ) = θ1ξ +θ2ξ 2, (5)

where Θ = (θ1,θ2)
⊤ is a parameter vector to be optimized.

Moreover, we assume that the parameters must satisfy the
following bound constraints:

a1 ≤ θ1 ≤ b1, a2 ≤ θ2 ≤ b2, (6)

where a1, a2, b1 and b2 are given bounds.
Let y(x, t;Θ) denote the solution of the closed-loop system

(3) with the parameterized kernel (5). The results in [15]
ensure that such a solution exists and is unique. Our goal is
to stabilize the closed-loop system with minimal energy input.
Accordingly, we consider the following cost functional:

g0(Θ) =
1
2

∫ T

0

∫ 1

0
y2(x, t;Θ)dxdt +

1
2

∫ 1

0
k2(x;Θ)dx. (7)

We now state our kernel optimization problem formally as
follows.

Problem 2.1: Given the PDE system (3) with the param-
eterized kernel (5), find an optimal parameter vector Θ =
(θ1,θ2)

⊤ such that the cost functional (7) is minimized subject
to the bound constraints (6).

B. Closed-Loop Stability

Since (7) is a finite-time cost functional, there is no guar-
antee that the optimized kernel (5) generated by the solution
of Problem 2.1 stabilizes the closed-loop system (3) as t → ∞.
Nevertheless, we now show that, by analyzing the solution
structure of (3), additional constraints can be added to Problem
2.1 to ensure closed-loop stability.

Using the separation of variables approach, we decompose
y(x, t) as follows:

y(x, t) = X (x)T (t). (8)

Substituting (8) into (3a), we obtain

X (x)Ṫ (t) = X ′′(x)T (t)+ cX (x)T (t), (9)

where

Ṫ (t) =
dT (t)

dt
, X ′′(x) =

d2X (x)
dx2 .

Furthermore, from the boundary conditions (3c) and (3d),

X (0)T (t) = 0,

X (1)T (t) =
∫ 1

0
k(ξ ;Θ)X (ξ )T (t)dξ .

Thus, we immediately obtain

X (0) = 0, (10)

X (1) =
∫ 1

0
k(ξ ;Θ)X (ξ )dξ . (11)

Rearranging (9) gives

X ′′(x)+ cX (x)
X (x)

=
Ṫ (t)
T (t)

= σ , (12)

where σ is a constant called the eigenvalue. Clearly,

T (t) = T0eσt , (13)

where T0 = T (0) is a constant to be determined.
To solve for X (x), we must consider three cases: (i) c < σ ;

(ii) c=σ ; (iii) c>σ . In cases (i) and (ii), the general solutions
of (12) are, respectively,

X (x) = X0e
√

σ−cx +X1e−
√

σ−cx,

and
X (x) = X0 +X1x,

where X0 and X1 are constants to be determined from the
boundary conditions (10) and (11). Then the corresponding
solutions of (3) are

y(x, t) = X0T0e
√

σ−cx+σt +X1T0e−
√

σ−cx+σt ,



and
y(x, t) = X0T0eσt +X1T0xeσt .

These solutions are clearly unstable because 0 < c ≤ σ . Thus,
the parameters θ1 and θ2 should be chosen so that the unique
solution of (3) satisfies case (iii) instead of cases (i) and (ii).

In case (iii), the general solution of (12) is

X (x) = X0 cos(
√

c−σx)+X1 sin(
√

c−σx), (14)

where X0 and X1 are constants to be determined from the
boundary conditions (10) and (11). Substituting (14) into (10),
we obtain

X (0) = X0 = 0.

Hence,
X (x) = X1 sin(

√
c−σx). (15)

To simplify the notation, we introduce a new variable α =√
c−σ . Substituting (15) into condition (11), we have

X1 sinα = X1

∫ 1

0
θ1ξ sin(αξ )dξ +X1

∫ 1

0
θ2ξ 2 sin(αξ )dξ ,

and thus

sinα =
∫ 1

0
θ1ξ sin(αξ )dξ +

∫ 1

0
θ2ξ 2 sin(αξ )dξ . (16)

By evaluating the integrals on the right-hand side, equation
(16) can be simplified to obtain

(θ1α2 +θ2α2 −2θ2)cosα
+(α3 −θ1α −2θ2α)sinα +2θ2 = 0.

(17)

For any α satisfying (17), there exists a corresponding solution
of (12) in the form (15). It can be shown that (17) has
an infinite number of positive solutions when Θ = (θ1,θ2)

⊤

satisfies the following inequality:

θ 2
1 +θ 2

2 +2θ1θ2 −2θ1 −4θ2 ≥ 0.

This is demonstrated numerically in Section IV. A formal
proof will be given in a forthcoming journal article [12]. Let
{αn}∞

n=1 be a sequence of positive solutions of (17). Then the
general solution of (12) is

X (x) =
∞

∑
n=1

An sin(αnx),

where An are constants to be determined. The corresponding
eigenvalues are

σn = c−α2
n , n = 1,2,3, . . .

Hence, using (13),

y(x, t) = X (x)T (t) =
∞

∑
n=1

T0Ane(c−α2
n )t sin(αnx). (18)

By virtue of (10) and (11), this solution satisfies the boundary
conditions (3c) and (3d). The constants T0 and An must be
selected appropriately so that the initial condition (3b) is also
satisfied. To ensure stability as t → ∞, each eigenvalue σn =

c−α2
n in (18) must be negative. Thus, we impose the following

constraints on Θ = (θ1,θ2)
⊤:

θ 2
1 +θ 2

2 +2θ1θ2 −2θ1 −4θ2 ≥ 0, (19a)

c−α2 ≤−ε, (19b)

(θ1α2 +θ2α2 −2θ2)cosα
+(α3 −θ1α −2θ2α)sinα +2θ2 = 0, (19c)

where ε is a given positive parameter and α is the smallest
positive solution of (17). Note that α here is treated as
an additional optimization variable. Constraint (19a) ensures
that there are an infinite number of eigenvalues and thus
the solution form (18) is valid. Constraints (19b) and (19c)
ensure that the largest eigenvalue is negative, thus guaranteeing
solution stability. Adding constraints (19) to Problem 2.1
yields the following modified problem.

Problem 2.2: Given the PDE system (3) with the parameter-
ized kernel (5), choose Θ = (θ1,θ2)

⊤ and α such that the cost
functional (7) is minimized subject to the bound constraints
(6) and the nonlinear constraints (19).

The next result is concerned with the stability of the closed-
loop system corresponding to the optimized kernel from
Problem 2.2.

Theorem 2.1: Let (Θ∗,α∗) be an optimal solution of Prob-
lem 2.2, where α∗ is the smallest positive solution of e-
quation (19c) corresponding to Θ∗. Suppose that there exists
a sequence {α∗

n}∞
n=1 of positive solutions to equation (19c)

corresponding to Θ∗ such that y0(x) ∈ span{sin(α∗
n x)}. Then

the closed-loop system (3) corresponding to Θ∗ is stable.
Proof: Because of constraint (19a), the solution form

(18) with αn = α∗
n is guaranteed to satisfy (3a), (3c) and

(3d). If y0(x) ∈ span{sin(α∗
n x)}, then there exists constants

Yn,n ≥ 1, such that

y0(x) =
∞

∑
n=1

Yn sin(α∗
n x).

Taking Yn = T0An ensures that (18) with αn = α∗
n also satisfies

the initial conditions (3b), and is therefore the unique solution
of (3). Since α∗ is the first positive solution of equation (17),
it follows from constraints (19b) and (19c) that for each n ≥ 1,

c− (α∗
n )

2 ≤ c− (α∗)2 ≤−ε < 0.

This shows that all eigenvalues are negative.
Theorem 2.1 requires that the initial function y0(x) be con-
tained within the linear span of sinusoidal functions sin(α∗

n x),
where each α∗

n is a solution of equation (17) corresponding
to Θ∗. The good thing about this condition is that it can
be verified numerically by solving the following optimization
problem: choose span coefficients Yn,1 ≤ n ≤ N, to minimize

J =
∫ 1

0

∣∣∣∣y0(x)−
N

∑
n=1

Yn sin(α∗
n x)

∣∣∣∣2dx, (20)

where N is a sufficiently large integer and each α∗
n is a solution

of equation (17) corresponding to the optimal solution of
Problem 2.2. If the optimal cost value for this optimization



problem is sufficiently small, then the span condition in
Theorem 2.1 is likely to be satisfied, and therefore closed-loop
stability is expected. Based on our computational experience,
the span condition in Theorem 2.1 is usually satisfied. In fact,
as we show in [12], the solutions α∗

n of (17) converge to the
integer multiples of π . Thus, it is reasonable to expect that the
linear span of {sin(α∗

n x)} is “approximately” the same as the
linear span of {sin(nπx)}, which is known to be a basis for
the space of continuous functions defined on [0,1].

III. NUMERICAL COMPUTATION

Problem 2.2 is an optimal parameter selection problem
with decision parameters θ1, θ2 and α . In principle, such
problems can be solved as nonlinear optimization problems
using sequential quadratic programming or other nonlinear
optimization methods. However, to do this, we need the
gradients of the cost functional (7) and the constraint functions
(19) with respect to the decision parameters.

Since the constraint functions in (19) are explicit functions
of the decision variables, their gradients are easily derived
using elementary differentiation. The cost functional (7), on
the other hand, is an implicit function of Θ because it depends
on the state trajectory y(x, t). Thus, computing the gradient
of (7) is a non-trivial task. We now develop a computational
method, analogous to the costate method in the optimal control
of ordinary differential equations [7], [8], [14], for computing
this gradient.

We define the following costate PDE system:
vt(x, t)+ vxx(x, t)+ cv(x, t)

+ y(x, t;Θ)− k(x;Θ)vx(1, t) = 0, (21a)
v(0, t) = v(1, t) = 0, (21b)
v(x,T ) = 0. (21c)

Let v(x, t;Θ) denote the solution of the costate PDE system
(21) corresponding to the parameter vector Θ. Then we have
the following theorem.

Theorem 3.1: The gradient of the cost functional (7) is
given by

∇θ1 g0(Θ) =−
∫ T

0

∫ 1

0
xvx(1, t)y(x, t)dxdt +

1
3

θ1 +
1
4

θ2,

∇θ2 g0(Θ) =−
∫ T

0

∫ 1

0
x2vx(1, t)y(x, t)dxdt +

1
4

θ1 +
1
5

θ2,

where y(x, t) = y(x, t;Θ) and vx(x, t) = vx(x, t;Θ).
Proof: For simplicity, we write y(x, t;Θ) as y(x, t) and

k(x;Θ) as k(x). Let ψ(x, t) be an arbitrary function satisfying

ψ(x,T ) = 0, ψ(0, t) = ψ(1, t) = 0. (22)

Then we can rewrite the cost functional (7) in augmented form
as follows:

g0(Θ) =
1
2

∫ T

0

∫ 1

0
y2(x, t)dxdt +

1
2

∫ 1

0
k2(x)dx

+
∫ T

0

∫ 1

0
ψ(x, t)

{
− yt(x, t)+ yxx(x, t)+ cy(x, t)

}
dxdt. (23)

Using integration by parts and applying conditions (3b), (3c)
and (22), we can simplify the augmented cost functional (23)
to obtain

g0(Θ) =
1
2

∫ T

0

∫ 1

0
y2(x, t)dxdt +

1
2

∫ 1

0
k2(x)dx

+
∫ T

0

∫ 1

0

{
ψt(x, t)+ψxx(x, t)+ cψ(x, t)

}
y(x, t)dxdt

+
∫ 1

0
ψ(x,0)y0(x)dx−

∫ T

0
ψx(1, t)y(1, t)dt.

Now, consider a perturbation δρ in the parameter vector Θ,
where δ is a constant of sufficiently small magnitude and ρ
is an arbitrary vector. The corresponding perturbation in the
state is,

yδ (x, t) = y(x, t)+δ ⟨∇Θy(x, t),ρ⟩+O(δ 2), (24)

and the perturbation in the feedback kernel is,

kδ (x) = k(x)+δ ⟨∇Θk(x),ρ⟩+O(δ 2), (25)

where O(δ 2) denotes omitted second-order terms such that
δ−1O(δ 2)→ 0 as δ → 0. For notational simplicity, we define
η(x, t) = ⟨∇Θy(x, t),ρ⟩. Obviously, η(x,0) = 0, because the
initial profile y0(x) is independent of the parameter vector
Θ. Based on (24) and (25), the perturbed augmented cost
functional takes the following form:

g0(Θ+δρ) =
1
2

∫ T

0

∫ 1

0

{
y(x, t)+δη(x, t)

}2dxdt

+
∫ T

0

∫ 1

0

{
ψt(x, t)+ψxx(x, t)

}{
y(x, t)+δη(x, t)

}
dxdt

+
∫ T

0

∫ 1

0
cψ(x, t)

{
y(x, t)+δη(x, t)

}
dxdt

−
∫ T

0
ψx(1, t)

[∫ 1

0
k(x)

{
y(x, t)+δη(x, t)

}
dx
]

dt

−
∫ T

0
ψx(1, t)

[∫ 1

0
δ ⟨∇Θk(x),ρ⟩y(x, t)dx

]
dt

+
1
2

∫ 1

0

{
k(x)+δ ⟨∇Θk(x),ρ⟩

}2dx

+
∫ 1

0
ψ(x,0)y0(x)dx+O(δ 2). (26)

Taking the derivative of (26) with respect to δ and setting
δ = 0 gives

⟨∇Θg0(Θ),ρ⟩= dg0(Θ+δρ)
dδ

∣∣∣∣
δ=0

=
∫ T

0

∫ 1

0

{
y(x, t)+ψt(x, t)+ψxx(x, t)+ cψ(x, t)

}
η(x, t)dxdt

−
∫ T

0

∫ 1

0
ψx(1, t)k(x)η(x, t)dxdt

−
∫ T

0

∫ 1

0
ψx(1, t)⟨∇Θk(x),ρ⟩y(x, t)dxdt

+
∫ 1

0
k(x)⟨∇Θk(x),ρ⟩dx.

Since the perturbation ρ was selected arbitrarily, the theorem
follows immediately by setting ψ(x, t) = v(x, t;Θ) and taking
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Fig. 2. Uncontrolled open-loop response.

Fig. 3. Optimal closed-loop response.

ρ to be the standard unit basis vectors in R2. This completes
the proof.

By combining the gradient formulas in Theorem 3.1 with
a standard gradient-based optimization method (such as se-
quential quadratic programming), Problem 2.2 can be solved
efficiently.
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Fig. 6. Equation (17) has an infinite number of positive solutions.

IV. NUMERICAL EXAMPLE

We consider Problem 2.2 over a time horizon of [0,T ] =
[0,4]. To solve the problem, we wrote a MATLAB program
that combines the FMINCON optimization function with the
gradient formulas in Theorem 3.1. The state system (3) and
the costate system (21) are solved numerically using the finite
difference method (with 14 spatial intervals and 5000 temporal
intervals). All numerical simulations were performed on a
desktop computer with the following configuration: Intel Core
i7-2600 3.40GHz CPU, 4.00GB RAM, 64-bit Windows 7
Operating System.

Consider the uncontrolled version of (3) in which u(t) = 0.
In this case, the exact solution is [5]

y(x, t) = 2
∞

∑
n=1

Cne(c−n2π2)t sin(nπx)dx, (27)

where Cn are the Fourier coefficients defined by

Cn =
∫ 1

0
y0(x)sin(nπx)dx.

The eigenvalues of (27) are c−n2π2, n = 1,2, . . . The largest
eigenvalue is therefore c−π2, which indicates that system (3)
with u(t) = 0 is unstable for c > π2 ≈ 9.8696.

We choose c = 12 and y0(x) = (2+ x)sin(πx). The corre-
sponding uncontrolled open-loop response (see equation (27))
is shown in Fig. 2. As we can see from Fig. 2, the state



TABLE I
SOLUTIONS OF EQUATION (17) AND CORRESPONDING SPAN

COEFFICIENTS.

n α∗
n α∗

n/π Yn

1 3.6934 1.0801 −0.4211
2 6.4961 2.0678 1.5226
3 9.5794 3.0492 1.4629
4 12.6751 4.0346 −0.7636
5 15.7975 5.0285 0.4483
6 18.9223 6.0231 −0.3458
7 22.0544 7.0201 0.2681
8 25.1874 8.0173 0.9085
9 28.3233 9.0155 1.0726

10 31.4597 10.0139 0.9415
11 34.5975 11.0127 1.0418
12 37.7356 12.0116 0.9709
13 40.8745 13.0107 1.0156
14 44.0136 14.0099 0.9968
15 47.1532 15.0093 0.9908

of the uncontrolled system grows as time increases. For the
feedback kernel optimization, we suppose that the lower and
upper bounds for the optimization parameters are ai = −10
and bi = 10, respectively. We also choose ε = 1 in (19b).
Starting from the initial guess (θ1,θ2,α) = (−1,2,0), our
program terminates after 29 iterations and 21.0904 seconds.
The optimal cost value is g0 = 1.2092 and the optimal solution
of Problem 2.2 is (θ ∗

1 ,θ ∗
2 ,α∗) = (−3.6977,2.3220,3.6934).

The spatial-temporal response of the controlled plant cor-
responding to (θ ∗

1 ,θ ∗
2 ) is shown in Fig. 3. The figure clearly

shows that the controlled system (3) with optimized param-
eters (θ ∗

1 ,θ ∗
2 ) is stable. The corresponding optimal boundary

control and kernel function are shown in Fig. 4 and Fig. 5,
respectively.

Recall from Theorem 2.1 that closed-loop stability is guar-
anteed if α∗ = 3.6934 is the first positive solution of equation
(17) and the initial function y0(x) is contained within the
linear span of {sin(α∗

n x)}, where each α∗
n is a solution of

equation (17) corresponding to (θ ∗
1 ,θ ∗

2 ). By viewing a plot of
the left-hand side of equation (17), it can be easily verified that
α∗ is indeed the first positive solution; see Fig. 6. To verify
the linear span condition, we use FMINCON in MATLAB to
minimize (20) for N = 20. The first 15 positive solutions of
(17) corresponding to the optimal parameters θ ∗

1 = −3.6977
and θ ∗

2 = 2.3220 are given in Table I. The optimal span
coefficients that minimize (20) are also given. The optimal
value of J in (20) is 7.7387 × 10−14, which indicates that
the span condition holds. Note also from Table I that α∗

n/π
converges to an integer as n → ∞.

V. CONCLUSIONS

In this paper, we have introduced a new gradient-based
optimization approach for boundary stabilization of parabolic
PDE systems. Our new approach involves expressing the
boundary controller as an integral state feedback in which
a kernel function needs to be designed judiciously. We do
not determine the feedback kernel by solving Riccati-type
or Klein-Gorden-type PDEs; instead, we approximate the

feedback kernel by a quadratic function and then optimize
the quadratic’s coefficients using dynamic optimization tech-
niques. This preliminary work has also raised several issues
that require further investigation: (i) Can the proposed kernel
optimization approach be applied to other classes of PDE plant
models (i.e., 2D or 3D domains)? (ii) Is it possible to develop
methods for minimizing cost functional (7) over an infinite
time horizon? These issues will be explored in future work.

REFERENCES

[1] A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, “Rep-
resentation and Control of Infinite Dimensional Systems”, Birkhauser,
Boston, 2007.

[2] R. F. Curtain and H. Zwart, “An Introduction to Infinite-dimensional
Linear Systems Theory”, Springer, New York, 1995.

[3] N. J. Killingsworth and M. Krstic, “PID tuning using extremum seeking:
Online, model-free performance optimization”, IEEE Control Systems
Magazine, vol. 26, no. 1, pp. 70-79, 2006.

[4] M. Krstic, B. Guo, A. Balogh and A. Smyshlyaev, “Control of a tip-
force destabilized shear beam by observer-based boundary feedback”,
SIAM Journal on Control and Optimization, vol. 47, no. 2, pp. 553-574,
2008.

[5] M. Krstic and A. Smyshlyaev, “Boundary Control of PDEs: A Course
on Backstepping Designs”, SIAM, Philadelphia, 2008.

[6] B. Li, K. L. Teo, C. Lim and G. Duan, “An optimal PID controller
design for nonlinear constrained optimal control problems”, Discrete
and Continuous Dynamical Systems – Series B, vol. 16, no. 4, pp. 70-79,
2011.

[7] Q. Lin, R. Loxton and K. L. Teo, “Optimal control of nonlinear
switched systems: Computational methods and applications”, Journal
of the Operations Research Society of China, vol. 1, no. 3, pp. 275-311,
2013.

[8] Q. Lin, R. Loxton and K. L. Teo, “The control parameterization method
for nonlinear optimal control: A survey”, Journal of Industrial and
Management Optimization, vol. 10, no. 1, pp. 275-309, 2014.

[9] W. Liu, “Boundary feedback stabilization of an unstable heat equation”,
SIAM Journal on Control and Optimization, vol. 42, no. 3, pp. 1033-
1043, 2003.

[10] W. Liu, “Elementary Feedback Stabilization of the Linear Reaction-
convection-diffusion Equation and the Wave Equation”, Springer, Berlin,
2010.

[11] S. J. Moura and H. K. Fathy, “Optimal boundary control of reaction-
diffusion partial differential equations via weak variations”, Journal of
Dynamic Systems, Measurement, and Control, vol. 135, no. 3, 034501(1-
8), 2013.

[12] Z. Ren, C. Xu, Q. Lin and R. Loxton, “A gradient-based kernel opti-
mization approach for parabolic distributed parameter control systems”,
Pacific Journal of Optimization, accepted.

[13] G. A. Susto and M. Krstic, “Control of PDE-ODE cascades with
Neumann interconnections”, Journal of the Franklin Institute, vol. 347,
no. 1, pp. 284-314, 2010.

[14] K. L. Teo, C. J. Goh and K. H. Wong, “A Unified Computational
Approach to Optimal Control Problems”, Longman Scientific and Tech-
nical, Essex, 1991.

[15] R. Triggiani, “Well-posedness and regularity of boundary feedback
parabolic systems”, Journal of Differential Equations, vol. 36, no. 3,
pp. 347-362, 1980.

[16] R. Vazquez and M. Krstic, “A closed-form feedback controller for
stabilization of the linearized 2-D Navier-Stokes Poiseuille system”,
IEEE Transactions on Automatic Control, vol. 52, no. 12, pp. 2298-
2312, 2007.

[17] R. Vazquez and M. Krstic, “Control of Turbulent and Magnetohydro-
dynamic Channel Flows: Boundary Stabilization and State Estimation”,
Springer, Boston, 2008.

[18] J. Xu, D. Huang and S. Pindi, “Optimal tuning of PID parameters using
iterative learning approach”, SICE Journal of Control, Measurement,
and System Integration, vol. 1, no. 3, pp. 143-154, 2008.

[19] C. Xu, E. Schuster, R. Vazquez and M. Krstic, “Stabilization of
linearized 2D magnetohydrodynamic channel flow by backstepping
boundary control”, Systems & Control Letters, vol. 57, no. 10, pp. 805-
812, 2008.



Output Stabilization of Boundary-controlled Parabolic PDEs via
Gradient-based Dynamic Optimization*

Zhigang Ren1, Chao Xu1, Qun Lin2, and Ryan Loxton2

Abstract—This paper proposes a new control synthesis ap-
proach for the stabilization of boundary-controlled parabol-
ic partial differential equations (PDEs). In the proposed ap-
proach, the optimal boundary control is expressed in integral
state feedback form with quadratic kernel function, where the
quadratic’s coefficients are decision variables to be optimized.
We introduce a system cost functional to penalize both state
and kernel magnitude, and then derive the cost functional’s
gradient in terms of the solution of an auxiliary “costate” PDE.
On this basis, the output stabilization problem can be solved
using gradient-based optimization techniques such as sequential
quadratic programming. The resulting optimal boundary control
is guaranteed to yield closed-loop stability under mild conditions.
The primary advantage of our new approach is that the costate
PDE is in standard form and can be solved easily using the finite
difference method. In contrast, the traditional control synthesis
approaches for boundary-controlled parabolic PDEs (i.e., the
LQ control and backstepping approaches) require solving non-
standard Riccati-type and Klein-Gorden-type PDEs.

I. INTRODUCTION

Parabolic partial differential equation (PDE) systems are an
important type of distributed parameter system (DPS) describ-
ing a wide range of natural phenomena, including diffusion,
heat transfer, and fusion plasma transport. Over the past few
decades, control theory for the parabolic DPS has developed
into a mature research topic at the interface of engineering and
applied mathematics [1], [2], [10].

The linear quadratic (LQ) control framework is well-
defined in infinite dimensional function spaces to deal with
the parabolic DPS (e.g., [1], [2]). However, the LQ control
framework requires solving Riccati-type differential equations,
which are nonlinear parabolic PDEs of dimension one greater
than the original parabolic PDE system. For example, to gen-
erate an optimal feedback controller for a scalar heat equation,
a Riccati PDE defined over a rectangular domain must be
solved [11]. Hence, the LQ approach does not actually solve
the controller synthesis problem directly, but instead converts
it into another problem (i.e., solve a Riccati-type PDE) that is
still extremely difficult to solve from a computational point of
view.
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One of the major advances in PDE control in recent years
has been the so-called infinite dimensional Voltera integral
feedback, or the backstepping method (e.g., [5], [9]). In-
stead of Riccati-type PDEs, the backstepping method requires
solving the so-called kernel equations—linear Klein-Gorden-
type PDEs for which the successive approach can be used to
obtain explicit solutions. This method was originally devel-
oped for the stabilization of one dimensional parabolic DPS
and then extended to fluid flows [16], [19], magnetohydro-
dynamic flows [17], and elastic vibration [4]. In addition,
the backstepping method can also be applied to achieve full
state feedback stabilization and state estimation of PDE-ODE
cascade systems [13].

In this paper, we propose a new framework for control
synthesis for boundary-controlled parabolic DPS. This new
framework does not require solving Riccati-type or Klein-
Gorden-type PDEs. Instead, it requires solving a so-called
“costate” PDE, which is much easier to solve from a computa-
tional viewpoint. In fact, many numerical software packages,
such as Comsol Multiphysics and MATLAB PDE ToolBox,
can be used to generate numerical solutions for the costate
PDE. The Riccati PDEs, on the other hand, are usually not in
standard form and thus cannot be solved using off-the-shelf
software packages. The approach proposed in this paper can
be viewed as an extension of optimization-based PID tuning
ideas (see [3], [6], [14], [18]) to infinite dimensional systems.

II. PROBLEM FORMULATION

A. Feedback Kernel Optimization

We consider the following parabolic PDE system:
yt(x, t) = yxx(x, t)+ cy(x, t), (1a)
y(0, t) = 0, (1b)
y(1, t) = u(t), (1c)
y(x,0) = y0(x), (1d)

where c> 0 is a given constant and u(t) is a boundary control.
It is well known that the uncontrolled version of system
(1) is unstable when the constant c is sufficiently large [5].
According to the LQ control [11] and backstepping synthesis
approaches [5], the optimal stabilizing control law takes the
following feedback form:

u(t) =
∫ 1

0
K (1,ξ )y(ξ , t)dξ , (2)

where the feedback kernel K (1,ξ ) is obtained by solving
either a Riccati-type or a Klein-Gorden-type PDE. By intro-
ducing the new notation k(ξ ) = K (1,ξ ), we can write the
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Fig. 1. The feedback kernel (4) for various values of c.

feedback control policy (2) in the following form:

u(t) =
∫ 1

0
k(ξ )y(ξ , t)dξ .

The corresponding closed-loop system is

yt(x, t) = yxx(x, t)+ cy(x, t), (3a)
y(x,0) = y0(x), (3b)
y(0, t) = 0, (3c)

y(1, t) =
∫ 1

0
k(ξ )y(ξ , t)dξ . (3d)

In reference [5], the backstepping method is used to express
the optimal feedback kernel as follows:

K (1,ξ ) =−cξ
I1(

√
c(1−ξ 2))√

c(1−ξ 2)
, (4)

where I1 is the first-order modified Bessel function given by

I1(ω) =
∞

∑
n=0

ω2n+1

22n+1n!(n+1)!
.

The feedback kernel (4) is plotted in Figure 1 for different
values of c. Note that its shape is similar to a quadratic
function. Note also that K (1,ξ )= 0 when ξ = 0. Accordingly,
motivated by the quadratic behavior exhibited in Fig. 1, we
express k(ξ ) in the following parameterized form:

k(ξ ;Θ) = θ1ξ +θ2ξ 2, (5)

where Θ = (θ1,θ2)
⊤ is a parameter vector to be optimized.

Moreover, we assume that the parameters must satisfy the
following bound constraints:

a1 ≤ θ1 ≤ b1, a2 ≤ θ2 ≤ b2, (6)

where a1, a2, b1 and b2 are given bounds.
Let y(x, t;Θ) denote the solution of the closed-loop system

(3) with the parameterized kernel (5). The results in [15]
ensure that such a solution exists and is unique. Our goal is
to stabilize the closed-loop system with minimal energy input.
Accordingly, we consider the following cost functional:

g0(Θ) =
1
2

∫ T

0

∫ 1

0
y2(x, t;Θ)dxdt +

1
2

∫ 1

0
k2(x;Θ)dx. (7)

We now state our kernel optimization problem formally as
follows.

Problem 2.1: Given the PDE system (3) with the param-
eterized kernel (5), find an optimal parameter vector Θ =
(θ1,θ2)

⊤ such that the cost functional (7) is minimized subject
to the bound constraints (6).

B. Closed-Loop Stability

Since (7) is a finite-time cost functional, there is no guar-
antee that the optimized kernel (5) generated by the solution
of Problem 2.1 stabilizes the closed-loop system (3) as t → ∞.
Nevertheless, we now show that, by analyzing the solution
structure of (3), additional constraints can be added to Problem
2.1 to ensure closed-loop stability.

Using the separation of variables approach, we decompose
y(x, t) as follows:

y(x, t) = X (x)T (t). (8)

Substituting (8) into (3a), we obtain

X (x)Ṫ (t) = X ′′(x)T (t)+ cX (x)T (t), (9)

where

Ṫ (t) =
dT (t)

dt
, X ′′(x) =

d2X (x)
dx2 .

Furthermore, from the boundary conditions (3c) and (3d),

X (0)T (t) = 0,

X (1)T (t) =
∫ 1

0
k(ξ ;Θ)X (ξ )T (t)dξ .

Thus, we immediately obtain

X (0) = 0, (10)

X (1) =
∫ 1

0
k(ξ ;Θ)X (ξ )dξ . (11)

Rearranging (9) gives

X ′′(x)+ cX (x)
X (x)

=
Ṫ (t)
T (t)

= σ , (12)

where σ is a constant called the eigenvalue. Clearly,

T (t) = T0eσt , (13)

where T0 = T (0) is a constant to be determined.
To solve for X (x), we must consider three cases: (i) c < σ ;

(ii) c=σ ; (iii) c>σ . In cases (i) and (ii), the general solutions
of (12) are, respectively,

X (x) = X0e
√

σ−cx +X1e−
√

σ−cx,

and
X (x) = X0 +X1x,

where X0 and X1 are constants to be determined from the
boundary conditions (10) and (11). Then the corresponding
solutions of (3) are

y(x, t) = X0T0e
√

σ−cx+σt +X1T0e−
√

σ−cx+σt ,



and
y(x, t) = X0T0eσt +X1T0xeσt .

These solutions are clearly unstable because 0 < c ≤ σ . Thus,
the parameters θ1 and θ2 should be chosen so that the unique
solution of (3) satisfies case (iii) instead of cases (i) and (ii).

In case (iii), the general solution of (12) is

X (x) = X0 cos(
√

c−σx)+X1 sin(
√

c−σx), (14)

where X0 and X1 are constants to be determined from the
boundary conditions (10) and (11). Substituting (14) into (10),
we obtain

X (0) = X0 = 0.

Hence,
X (x) = X1 sin(

√
c−σx). (15)

To simplify the notation, we introduce a new variable α =√
c−σ . Substituting (15) into condition (11), we have

X1 sinα = X1

∫ 1

0
θ1ξ sin(αξ )dξ +X1

∫ 1

0
θ2ξ 2 sin(αξ )dξ ,

and thus

sinα =
∫ 1

0
θ1ξ sin(αξ )dξ +

∫ 1

0
θ2ξ 2 sin(αξ )dξ . (16)

By evaluating the integrals on the right-hand side, equation
(16) can be simplified to obtain

(θ1α2 +θ2α2 −2θ2)cosα
+(α3 −θ1α −2θ2α)sinα +2θ2 = 0.

(17)

For any α satisfying (17), there exists a corresponding solution
of (12) in the form (15). It can be shown that (17) has
an infinite number of positive solutions when Θ = (θ1,θ2)

⊤

satisfies the following inequality:

θ 2
1 +θ 2

2 +2θ1θ2 −2θ1 −4θ2 ≥ 0.

This is demonstrated numerically in Section IV. A formal
proof will be given in a forthcoming journal article [12]. Let
{αn}∞

n=1 be a sequence of positive solutions of (17). Then the
general solution of (12) is

X (x) =
∞

∑
n=1

An sin(αnx),

where An are constants to be determined. The corresponding
eigenvalues are

σn = c−α2
n , n = 1,2,3, . . .

Hence, using (13),

y(x, t) = X (x)T (t) =
∞

∑
n=1

T0Ane(c−α2
n )t sin(αnx). (18)

By virtue of (10) and (11), this solution satisfies the boundary
conditions (3c) and (3d). The constants T0 and An must be
selected appropriately so that the initial condition (3b) is also
satisfied. To ensure stability as t → ∞, each eigenvalue σn =

c−α2
n in (18) must be negative. Thus, we impose the following

constraints on Θ = (θ1,θ2)
⊤:

θ 2
1 +θ 2

2 +2θ1θ2 −2θ1 −4θ2 ≥ 0, (19a)

c−α2 ≤−ε, (19b)

(θ1α2 +θ2α2 −2θ2)cosα
+(α3 −θ1α −2θ2α)sinα +2θ2 = 0, (19c)

where ε is a given positive parameter and α is the smallest
positive solution of (17). Note that α here is treated as
an additional optimization variable. Constraint (19a) ensures
that there are an infinite number of eigenvalues and thus
the solution form (18) is valid. Constraints (19b) and (19c)
ensure that the largest eigenvalue is negative, thus guaranteeing
solution stability. Adding constraints (19) to Problem 2.1
yields the following modified problem.

Problem 2.2: Given the PDE system (3) with the parameter-
ized kernel (5), choose Θ = (θ1,θ2)

⊤ and α such that the cost
functional (7) is minimized subject to the bound constraints
(6) and the nonlinear constraints (19).

The next result is concerned with the stability of the closed-
loop system corresponding to the optimized kernel from
Problem 2.2.

Theorem 2.1: Let (Θ∗,α∗) be an optimal solution of Prob-
lem 2.2, where α∗ is the smallest positive solution of e-
quation (19c) corresponding to Θ∗. Suppose that there exists
a sequence {α∗

n}∞
n=1 of positive solutions to equation (19c)

corresponding to Θ∗ such that y0(x) ∈ span{sin(α∗
n x)}. Then

the closed-loop system (3) corresponding to Θ∗ is stable.
Proof: Because of constraint (19a), the solution form

(18) with αn = α∗
n is guaranteed to satisfy (3a), (3c) and

(3d). If y0(x) ∈ span{sin(α∗
n x)}, then there exists constants

Yn,n ≥ 1, such that

y0(x) =
∞

∑
n=1

Yn sin(α∗
n x).

Taking Yn = T0An ensures that (18) with αn = α∗
n also satisfies

the initial conditions (3b), and is therefore the unique solution
of (3). Since α∗ is the first positive solution of equation (17),
it follows from constraints (19b) and (19c) that for each n ≥ 1,

c− (α∗
n )

2 ≤ c− (α∗)2 ≤−ε < 0.

This shows that all eigenvalues are negative.
Theorem 2.1 requires that the initial function y0(x) be con-
tained within the linear span of sinusoidal functions sin(α∗

n x),
where each α∗

n is a solution of equation (17) corresponding
to Θ∗. The good thing about this condition is that it can
be verified numerically by solving the following optimization
problem: choose span coefficients Yn,1 ≤ n ≤ N, to minimize

J =
∫ 1

0

∣∣∣∣y0(x)−
N

∑
n=1

Yn sin(α∗
n x)

∣∣∣∣2dx, (20)

where N is a sufficiently large integer and each α∗
n is a solution

of equation (17) corresponding to the optimal solution of
Problem 2.2. If the optimal cost value for this optimization



problem is sufficiently small, then the span condition in
Theorem 2.1 is likely to be satisfied, and therefore closed-loop
stability is expected. Based on our computational experience,
the span condition in Theorem 2.1 is usually satisfied. In fact,
as we show in [12], the solutions α∗

n of (17) converge to the
integer multiples of π . Thus, it is reasonable to expect that the
linear span of {sin(α∗

n x)} is “approximately” the same as the
linear span of {sin(nπx)}, which is known to be a basis for
the space of continuous functions defined on [0,1].

III. NUMERICAL COMPUTATION

Problem 2.2 is an optimal parameter selection problem
with decision parameters θ1, θ2 and α . In principle, such
problems can be solved as nonlinear optimization problems
using sequential quadratic programming or other nonlinear
optimization methods. However, to do this, we need the
gradients of the cost functional (7) and the constraint functions
(19) with respect to the decision parameters.

Since the constraint functions in (19) are explicit functions
of the decision variables, their gradients are easily derived
using elementary differentiation. The cost functional (7), on
the other hand, is an implicit function of Θ because it depends
on the state trajectory y(x, t). Thus, computing the gradient
of (7) is a non-trivial task. We now develop a computational
method, analogous to the costate method in the optimal control
of ordinary differential equations [7], [8], [14], for computing
this gradient.

We define the following costate PDE system:
vt(x, t)+ vxx(x, t)+ cv(x, t)

+ y(x, t;Θ)− k(x;Θ)vx(1, t) = 0, (21a)
v(0, t) = v(1, t) = 0, (21b)
v(x,T ) = 0. (21c)

Let v(x, t;Θ) denote the solution of the costate PDE system
(21) corresponding to the parameter vector Θ. Then we have
the following theorem.

Theorem 3.1: The gradient of the cost functional (7) is
given by

∇θ1 g0(Θ) =−
∫ T

0

∫ 1

0
xvx(1, t)y(x, t)dxdt +

1
3

θ1 +
1
4

θ2,

∇θ2 g0(Θ) =−
∫ T

0

∫ 1

0
x2vx(1, t)y(x, t)dxdt +

1
4

θ1 +
1
5

θ2,

where y(x, t) = y(x, t;Θ) and vx(x, t) = vx(x, t;Θ).
Proof: For simplicity, we write y(x, t;Θ) as y(x, t) and

k(x;Θ) as k(x). Let ψ(x, t) be an arbitrary function satisfying

ψ(x,T ) = 0, ψ(0, t) = ψ(1, t) = 0. (22)

Then we can rewrite the cost functional (7) in augmented form
as follows:

g0(Θ) =
1
2

∫ T

0

∫ 1

0
y2(x, t)dxdt +

1
2

∫ 1

0
k2(x)dx

+
∫ T

0

∫ 1

0
ψ(x, t)

{
− yt(x, t)+ yxx(x, t)+ cy(x, t)

}
dxdt. (23)

Using integration by parts and applying conditions (3b), (3c)
and (22), we can simplify the augmented cost functional (23)
to obtain

g0(Θ) =
1
2

∫ T

0

∫ 1

0
y2(x, t)dxdt +

1
2

∫ 1

0
k2(x)dx

+
∫ T

0

∫ 1

0

{
ψt(x, t)+ψxx(x, t)+ cψ(x, t)

}
y(x, t)dxdt

+
∫ 1

0
ψ(x,0)y0(x)dx−

∫ T

0
ψx(1, t)y(1, t)dt.

Now, consider a perturbation δρ in the parameter vector Θ,
where δ is a constant of sufficiently small magnitude and ρ
is an arbitrary vector. The corresponding perturbation in the
state is,

yδ (x, t) = y(x, t)+δ ⟨∇Θy(x, t),ρ⟩+O(δ 2), (24)

and the perturbation in the feedback kernel is,

kδ (x) = k(x)+δ ⟨∇Θk(x),ρ⟩+O(δ 2), (25)

where O(δ 2) denotes omitted second-order terms such that
δ−1O(δ 2)→ 0 as δ → 0. For notational simplicity, we define
η(x, t) = ⟨∇Θy(x, t),ρ⟩. Obviously, η(x,0) = 0, because the
initial profile y0(x) is independent of the parameter vector
Θ. Based on (24) and (25), the perturbed augmented cost
functional takes the following form:

g0(Θ+δρ) =
1
2

∫ T

0

∫ 1

0

{
y(x, t)+δη(x, t)

}2dxdt

+
∫ T

0

∫ 1

0

{
ψt(x, t)+ψxx(x, t)

}{
y(x, t)+δη(x, t)

}
dxdt

+
∫ T

0

∫ 1

0
cψ(x, t)

{
y(x, t)+δη(x, t)

}
dxdt

−
∫ T

0
ψx(1, t)

[∫ 1

0
k(x)

{
y(x, t)+δη(x, t)

}
dx
]

dt

−
∫ T

0
ψx(1, t)

[∫ 1

0
δ ⟨∇Θk(x),ρ⟩y(x, t)dx

]
dt

+
1
2

∫ 1

0

{
k(x)+δ ⟨∇Θk(x),ρ⟩

}2dx

+
∫ 1

0
ψ(x,0)y0(x)dx+O(δ 2). (26)

Taking the derivative of (26) with respect to δ and setting
δ = 0 gives

⟨∇Θg0(Θ),ρ⟩= dg0(Θ+δρ)
dδ

∣∣∣∣
δ=0

=
∫ T

0

∫ 1

0

{
y(x, t)+ψt(x, t)+ψxx(x, t)+ cψ(x, t)

}
η(x, t)dxdt

−
∫ T

0

∫ 1

0
ψx(1, t)k(x)η(x, t)dxdt

−
∫ T

0

∫ 1

0
ψx(1, t)⟨∇Θk(x),ρ⟩y(x, t)dxdt

+
∫ 1

0
k(x)⟨∇Θk(x),ρ⟩dx.

Since the perturbation ρ was selected arbitrarily, the theorem
follows immediately by setting ψ(x, t) = v(x, t;Θ) and taking
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Fig. 2. Uncontrolled open-loop response.

Fig. 3. Optimal closed-loop response.

ρ to be the standard unit basis vectors in R2. This completes
the proof.

By combining the gradient formulas in Theorem 3.1 with
a standard gradient-based optimization method (such as se-
quential quadratic programming), Problem 2.2 can be solved
efficiently.
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Fig. 4. Optimal boundary control.
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Fig. 6. Equation (17) has an infinite number of positive solutions.

IV. NUMERICAL EXAMPLE

We consider Problem 2.2 over a time horizon of [0,T ] =
[0,4]. To solve the problem, we wrote a MATLAB program
that combines the FMINCON optimization function with the
gradient formulas in Theorem 3.1. The state system (3) and
the costate system (21) are solved numerically using the finite
difference method (with 14 spatial intervals and 5000 temporal
intervals). All numerical simulations were performed on a
desktop computer with the following configuration: Intel Core
i7-2600 3.40GHz CPU, 4.00GB RAM, 64-bit Windows 7
Operating System.

Consider the uncontrolled version of (3) in which u(t) = 0.
In this case, the exact solution is [5]

y(x, t) = 2
∞

∑
n=1

Cne(c−n2π2)t sin(nπx)dx, (27)

where Cn are the Fourier coefficients defined by

Cn =
∫ 1

0
y0(x)sin(nπx)dx.

The eigenvalues of (27) are c−n2π2, n = 1,2, . . . The largest
eigenvalue is therefore c−π2, which indicates that system (3)
with u(t) = 0 is unstable for c > π2 ≈ 9.8696.

We choose c = 12 and y0(x) = (2+ x)sin(πx). The corre-
sponding uncontrolled open-loop response (see equation (27))
is shown in Fig. 2. As we can see from Fig. 2, the state



TABLE I
SOLUTIONS OF EQUATION (17) AND CORRESPONDING SPAN

COEFFICIENTS.

n α∗
n α∗

n/π Yn

1 3.6934 1.0801 −0.4211
2 6.4961 2.0678 1.5226
3 9.5794 3.0492 1.4629
4 12.6751 4.0346 −0.7636
5 15.7975 5.0285 0.4483
6 18.9223 6.0231 −0.3458
7 22.0544 7.0201 0.2681
8 25.1874 8.0173 0.9085
9 28.3233 9.0155 1.0726

10 31.4597 10.0139 0.9415
11 34.5975 11.0127 1.0418
12 37.7356 12.0116 0.9709
13 40.8745 13.0107 1.0156
14 44.0136 14.0099 0.9968
15 47.1532 15.0093 0.9908

of the uncontrolled system grows as time increases. For the
feedback kernel optimization, we suppose that the lower and
upper bounds for the optimization parameters are ai = −10
and bi = 10, respectively. We also choose ε = 1 in (19b).
Starting from the initial guess (θ1,θ2,α) = (−1,2,0), our
program terminates after 29 iterations and 21.0904 seconds.
The optimal cost value is g0 = 1.2092 and the optimal solution
of Problem 2.2 is (θ ∗

1 ,θ ∗
2 ,α∗) = (−3.6977,2.3220,3.6934).

The spatial-temporal response of the controlled plant cor-
responding to (θ ∗

1 ,θ ∗
2 ) is shown in Fig. 3. The figure clearly

shows that the controlled system (3) with optimized param-
eters (θ ∗

1 ,θ ∗
2 ) is stable. The corresponding optimal boundary

control and kernel function are shown in Fig. 4 and Fig. 5,
respectively.

Recall from Theorem 2.1 that closed-loop stability is guar-
anteed if α∗ = 3.6934 is the first positive solution of equation
(17) and the initial function y0(x) is contained within the
linear span of {sin(α∗

n x)}, where each α∗
n is a solution of

equation (17) corresponding to (θ ∗
1 ,θ ∗

2 ). By viewing a plot of
the left-hand side of equation (17), it can be easily verified that
α∗ is indeed the first positive solution; see Fig. 6. To verify
the linear span condition, we use FMINCON in MATLAB to
minimize (20) for N = 20. The first 15 positive solutions of
(17) corresponding to the optimal parameters θ ∗

1 = −3.6977
and θ ∗

2 = 2.3220 are given in Table I. The optimal span
coefficients that minimize (20) are also given. The optimal
value of J in (20) is 7.7387 × 10−14, which indicates that
the span condition holds. Note also from Table I that α∗

n/π
converges to an integer as n → ∞.

V. CONCLUSIONS

In this paper, we have introduced a new gradient-based
optimization approach for boundary stabilization of parabolic
PDE systems. Our new approach involves expressing the
boundary controller as an integral state feedback in which
a kernel function needs to be designed judiciously. We do
not determine the feedback kernel by solving Riccati-type
or Klein-Gorden-type PDEs; instead, we approximate the

feedback kernel by a quadratic function and then optimize
the quadratic’s coefficients using dynamic optimization tech-
niques. This preliminary work has also raised several issues
that require further investigation: (i) Can the proposed kernel
optimization approach be applied to other classes of PDE plant
models (i.e., 2D or 3D domains)? (ii) Is it possible to develop
methods for minimizing cost functional (7) over an infinite
time horizon? These issues will be explored in future work.
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