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Abstract— The optimal control of a “blind” pursuer search-
ing for an evader moving on a road network and heading at
a known speed toward a set of goal vertices is considered. To
aid the “blind” pursuer, certain roads in the network have
been instrumented with Unattended Ground Sensors (UGSs)
that detect the evader’s passage. When the pursuer arrives at
an instrumented node, the UGS therein informs the pursuer if
and when the evader visited the node. The pursuer’s motion
is not restricted to the road network. In addition, the pursuer
can choose to wait/loiter for an arbitrary time at any UGS
location/node. At time 0, the evader passes by an entry node on
his way towards one of the exit nodes. The pursuer also arrives
at this entry node after some delay and is thus informed about
the presence of the intruder/evader in the network, whereupon
the chase is on - the pursuer is tasked with capturing the evader.
Because the pursuer is “blind”, capture entails the pursuer and
evader being collocated at an UGS location. If this happens, the
UGS is triggered and this information is instantaneously relayed
to the pursuer, thereby enabling capture. On the other hand, if
the evader reaches one of the exit nodes without being captured,
he is deemed to have escaped. We provide an algorithm that
computes the maximum initial delay at the entry node for
which capture is guaranteed. The algorithm also returns the
corresponding optimal pursuit policy.

I. INTRODUCTION

We are concerned with capturing a ground target moving
on a road network. The operational scenario is as follows.
The access road network to a restricted (protected) zone
is instrumented with Unattended Ground Sensors (UGSs),
placed at critical locations. As the target, referred to as
the “evader”, passes by an UGS, the UGS is triggered. A
triggered UGS turns, say, from green to red and records the
evader’s time of passage. The UGSs are placed on certain
edges of the graph. We assume that the speed of the evader,
the layout of the road network and the placement of the UGSs
is known to the pursuer. When the pursuer arrives at an UGS
location, the information stored by the UGS is uploaded to
the pursuer, namely, the green/red status of the UGS and, if
the UGS is red, the time elapsed (delay) since the evader’s
passage. The evader can be captured in one of two ways:
either the evader and pursuer synchronously arrive at an UGS
location, or the pursuer is already loitering/waiting at an UGS
location when the evader arrives there. In both cases, the
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UGS is triggered, instantaneously informs the pursuer, and
the evader is captured. The decision problem for the pursuer
is to select which UGS to visit next, including possibly
staying at the current UGS location (and if so, for how
long?) awaiting the arrival of the evader. The decisions are
made by the pursuer at discrete time instants, immediately
after arriving at and interrogating an UGS. Without loss of
generality, we assume the evader is traveling on the road
network at unit speed. The pursuer, on the other hand, is not
restricted to be on the road network, although only upon
visiting an UGS can he update the information state. In
addition, the pursuer can also wait/loiter at an UGS location
for an arbitrary amount of time.
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Fig. 1: Road Network, UGSs Graph, and Four Possible
Evader Paths

In Fig. 1 an illustrative road network is shown. The roads
are shown in red (arrows indicate direction of travel) and the
numbered UGSs are blue circles. Let there be m UGSs on the
network, indexed by j = 1, . . . ,m. Since information is only
available (and capture only possible) at the UGS locations,
we focus on the embedded graph, G(U , E), that has the
UGS locations as vertices, i.e., U = {1, . . . ,m}. We make
the critical assumption that G is a directed acyclic graph.
To visualize the setup, see Fig. 1, where the corresponding
graph, G, is shown in the top right. Here, node 1 is the entry
node into the network. A directed edge, e ∈ E between two
nodes on the graph has a weight that equals the distance
along the road network between the nodes. For each j ∈ U ,
let C(j) ⊂ U indicate the set of child nodes that the evader
can get to from j. Let G = {j : j ∈ U and C(j) = ∅}
indicate the set of exit/goal nodes that the evader is heading
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towards. In Fig. 1, nodes 5, 6 and 7 are the exit nodes.
Furthermore, for each c ∈ C(j), let the distance along the
road network between the parent and child node be indicated
by T (j, c). Since the evader travels at unit speed, this is also
the time taken by the evader to go from node j to its child
node c. The pursuer’s travel time from node i to node j is
given by a scaled distance metric, dV (i, j). For example, it
could represent the Euclidean distance between the nodes
divided by the pursuer’s speed. Here, we allow the metric to
be more general, so long as it satisfies the triangle inequality,
i.e.,

dV (i, j) ≤ dV (i, s) + dV (s, j), (1)

for any i, j, s ∈ U and dV (j, j) = 0, ∀j ∈ U . The above
generalization allows us to model different scenarios, e.g.,
the pursuer could be an Unmanned Air Vehicle (UAV). We
assume that the pursuer is faster than the evader, that is, the
pursuer’s travel time between any UGS and its child node
is strictly less than the evader’s travel time between the two
nodes, i.e.,

dV (j, c) < T (j, c), ∀c ∈ C(j), ∀j ∈ U . (2)

Without loss of generality, we assume that the evader (upon
entering the network ) first visits node 1 at time 0 and 1 /∈
G. Let there be n (≥ 1) possible evader paths denoted by
P1, . . . , Pn emanating from node 1 and terminating at an
exit node. For the example problem, see the enumeration of
the 4 possible evader paths shown on the bottom right of
Fig. 1. We represent an evader path Pk, 1 ≤ k ≤ n, by the
following notation: Pk = (1 → s2k → . . . → s`kk ), where
sik is the ith UGS along path k and s`kk ∈ G. Here, `k is
the number of UGSs along path k. For example, in Fig. 1
P1 = (1→ 3→ 5), so s21 = 3, s31 = 5 and `1 = 3.

A. Properties of the Evader’s Path

Let Tk(j) be the time of arrival of the evader to the jth

UGS along path k.

Tk(j) = T (1, s2k) +

j−1∑
r=2

T (srk, s
r+1
k ), j = 2, . . . , `k. (3)

So, the length of each path is given by |Pk| = Tk(`k). If
the evader were to pick the shortest path to an exit node,
then he would choose, k̄ = arg minn

k=1 |Pk|. Since G is a
directed acyclic graph, the evader cannot visit any particular
UGS more than once. However, it is possible that the evader
can reach an UGS, U ∈ U via different paths. So, for
UGS/node Uj in the graph, j = 1, . . . ,m, we associate the
set, Lj = {Lj(1), . . . ,Lj(n)}, where Lj(k) is the time at
which the evader would visit node j while traveling along
path k. Here, time is measured relative to time 0, when the
evader visits node 1. If node j does not appear in some
path k ∈ {1, . . . , n}, then we set the corresponding time,
Lj(k) = ∞. We assume without loss of generality, that
∀j,∃k such that Lj(k) < ∞. This condition implies that
every UGS appears, at least, in one of the paths. Clearly,
if this were not the case, such an UGS can be removed
from consideration. By definition, we have L1 = {0, . . . , 0},

since node 1 is visited by the evader at time 0 and along
every possible evader path emanating from UGS 1. We also
define the set, Pj , j = 1, . . . ,m, to be the set of paths
that contain node j. By definition, Pj = {k : Lj(k) <
∞, k = 1, . . . , n} and Pj 6= ∅, ∀j. We define the initial
uncertainty in evader path information available to the purser
to be I0. Since the evader could have taken any one of n
paths, I0 = {1, . . . , n}. Note that this definition of evader
position uncertainty appears to be unusual in that for small
initial delays, the pursuer will know where the evader is on
the road that contains node 1 (e.g., see left plot in Fig. 1) and
so, there is no uncertainty in his position/state; but we still
say his path is uncertain in that I0 = {1, 2, 3, 4} - see bottom
right plot in Fig. 1. This is an important point: because the
tacitly assumed information pattern is s.t. the evader has no
situational awareness, one could argue that the evader might
as well decide on his “strategy”, namely, what path he will
take, at t = 0 - in other words, the evader operates in open-
loop. So we stipulate that at each point in time, and based on
the evidence collected so far, the information of the pursuer
is the currently feasible set of possible paths, one of which
the evader, having made his choice at time 0, is currently
traveling on. This definition of path uncertainty, meaning,
the uncertainty about which of the n paths the evader is
actually traveling on, results in a significant simplification
of the underlying coupled estimation and control problem.
Hereafter, we shall use the words uncertainty and information
interchangeably with reference to the set of complete paths
that the evader is possibly traveling on.

B. Evolution of System State

Even though the pursuer and evader motion evolve in
continuous time, decisions are made (by the pursuer only)
at discrete time steps. The pursuer makes these decisions
immediately after reaching an UGS location at time t and
obtaining the measurement y therein: y = −1 for “green”,
or y = d for “red” + delay d. Let the pursuer position
at decision time t be specified by the UGS index, p ∈
{1, . . . ,m}. The decision variable, u indicates the UGS
location u ∈ {1, . . . ,m} that the pursuer should visit next.

The control action u is dependent on the current time,
pursuer position and most recent information state: u =
F(t, I, p), where the mapping F is to be determined by an
optimality principle - see (10) in the sequel. So, the pursuer’s
position and pursuer decision time evolve according to:

p+ = u,

t+ =

{
t+ dV (p, u), u 6= p
mink∈I Lp(k), u = p

(4)

So, if the pursuer decides to stay put at the current location,
the next decision epoch is the earliest possible time at which
new information becomes available at the current UGS p. We
denote by y the measurement the pursuer made at node p.
The observation could either be a red UGS p with delay d ≥
0 i.e., y = d, or a green UGS p; whereupon the observation is
denoted by y = −1. Note that the pursuer may choose u = p
only if the observation y = −1. If the pursuer observes a red



UGS, it confirms that the evader did pass through UGS p
and there is no value in the pursuer staying at p any longer.
Indeed, it would be detrimental to the search effort (in terms
of time to capture).

Suppose the evader path uncertainty information available
to the pursuer at p is I. We calculate the information/path
uncertainty set at time t+ for the two possible observations
at u as follows:
Red (y+ = d ≥ 0): The pursuer will observe a red UGS with
delay d ≥ 0 where d ∈ {s|s = t+ − Lu(k), s ≥ 0, k ∈
Pu ∩ I}. This implies that the evader was at the location of
UGS u at time t+−d. Therefore, the information at time t+

will be:

I+(u, d) = {k : k ∈ I,Lu(k) = t+ − d}. (5)

So we only retain those paths from I that are consistent with
the evader passing through u at time t+ − d.
Green (y+ = −1): The pursuer will observe a green UGS at
time t+. This implies that the evader has not visited u thus
far. Therefore, the information update is given by:

I+(u,−1) = {k : k ∈ I,Lu(k) > t+}. (6)

So we only retain those paths from I that are consistent with
the evader passing through u at a time greater than t+.

The game will terminate at UGS p+ if at time t+ the new
observation is y = 0. It is also possible that having period-
ically updated the path uncertainty set I and reapplied (4),
the pursuer stayed put at UGS p until time maxk∈I Lp(k)
whereupon if the last observation y = 0 the evader is
captured. If this observation is y = −1 instead, implying that
the evader did not take any of the paths that pass through p,
the control u 6= p is applied and the pursuer finally moves
on. The crucial point here is that although “to wait or not” is
a decision to be made by the pursuer, the waiting time itself
is purely determined by the evader arrival times and pursuer
observations. This comes about because of the assumptions:
1) constant evader speed and 2) acyclic graph.

II. OPTIMIZATION PROBLEM STATEMENT

The evader passes by node 1 at time 0. The pursuer
arrives for the 1st time at node 1 at time t0 > 0 and is
tasked with capturing the evader. Obviously, (see Fig. 1)
when t0 is small capture is possible, given the pursuer’s
speed advantage (2). On the other hand, if t0 is large, the
evader will likely escape, no matter what the pursuer does.
We are interested in computing the maximum initial delay
t0 for which a capture guarantee exists. This is valuable
information in an operational scenario, for the following
reason. The road network could lead to a protected area,
that is being guarded against (ground) intrusions by security
forces and the pursuer could be an UAV. In this case, it would
be advantageous to know what is the maximum delay for
which a capture guarantee exists. If the actual initial delay
measured by the UAV exceeds the maximum, a security alert
“close the gates!” could be issued and additional resources
allocated to intercept the threat. On the other hand, if the
actual delay encountered is no greater than the maximum,

then the UAV can autonomously pursue the evader, isolate
it and transmit the captured image to a human operator for
further action.

To pose this as an optimization problem, we introduce
the following concept. Let D(1|I0) > 0 be the latest time
that the pursuer can arrive at/leave node 1 and still capture
the evader, knowing that the evader could have taken any
one of n paths, P1, . . . , Pn. Again, time is measured relative
to time 0 which is the time the evader passes node 1. The
evader path information available to the pursuer at node 1
is given by I0 = {1, . . . , n}. In a similar fashion, for any
UGS, j = 1, . . . ,m, we define D(j|I) to be the latest time
the pursuer can arrive at/leave node j and guarantee capture,
armed with the path information I. Note that the arrival time
to an UGS = the departure time, also in the case where the
UGS is “green” and the pursuer decides to stay put. If the
pursuer arrives at node j at time t > 0 and t ≤ D(j|I),
let µ(j|I) ∈ {1, . . . ,m} be the corresponding UGS index
to which the pursuer should head towards next, to enable
capture.

Recall that each path Pk, k = 1, ..., n, contains an exit
node and the exit node of path k is s`kk . For the exit node
s`kk , the latest time that the pursuer can arrive there and still
guarantee capture, knowing that the evader has taken path
Pk is clearly |Pk|, the time at which the evader reaches the
said node. Thus,

D(s`kk |{k}) = |Pk|. (7)

Concerning the pursuer’s strategy µ: if t < |Pk|,
µ(s`kk |{k}) = s`kk i.e., the pursuer stays put at the exit
node. In general, if the path information is the singleton
{k}, the corresponding latest pursuer arrival time for node
j, j = 1, . . . ,m, is given by:

D(j|{k}) =
`k

max
i=1

[
Tk(i)− dV (j, sik)

]
,

= |Pk| − dV (j, s`kk ), ∀k. (8)

The second equality above follows from the triangle inequal-
ity (1) and speed advantage (2) assumptions. In essence, the
pursuer reaches the exit node s`kk of path k from node j, just
in time to capture the evader. So, the corresponding “go to”
UGS is given by, u = µ(j|{k}) = s`kk .

Lemma 1: If the path uncertainty set I satisfies I ⊆ Pj

for some j ∈ {1, ...,m}, then:

D(j|I) ≥ min
k∈I
Lj(k). (9)

Proof: Since I ⊆ Pj , all the paths in the uncertainty set
I go through node j. So, the pursuer can guarantee capture
by arriving at node j at time t = mink∈I Lj(k), which is
the earliest time that the evader can pass through node j by
taking any path, k ∈ I.

A. Max-Min Optimization

Suppose the pursuer is at UGS index p with path in-
formation I and decides to visit u next. Upon reaching
u, the information will change to: I+(u, y), where y is
the observation that the pursuer will make at u. Recall



that I+(u, y) is updated according to (5) and (6) for the
red and green UGS observations respectively. By definition,
D(u|I+(u, y)) is the latest time at which, armed with the
new information I+(u, y), the pursuer can arrive at/leave
u and still guarantee capture of the evader. So, the latest
time that the pursuer can leave p and still capture the evader
should satisfy the Recursive Equation (RE):

D(p|I) = max
u∈U

[
min
y≥−1

D(u|I+(u, y))− dV (p, u)

]
. (10)

This is so, because before visiting u the pursuer cannot know
whether the observation will be a red or green UGS. Hence,
to guarantee capture, it has to assume the worst-case scenario
that will result in the smaller of two possible pursuer exit
times at u. To compute the latest pursuer exit time from p,
we subtract the travel time from p to u. Finally, we take the
max over all possible nodes to get the latest possible exit
time from p with a capture guarantee. Per our convention,
the corresponding optimal control, µ(p|I) = u∗, where u∗

is the maximizing control in (10). We will use RE (10) to
compute D(1|I0). Before doing so, we introduce a control
constraint, u ∈ B(I) ⊂ U in (10) that will enable us to
compute D(1|I0) in an orderly recursive fashion. In the next
section, we will show that this constraint does not result in
any loss in optimality.

III. ORDERED RECURSIVE SOLUTION

Consider the simplest possible scenario: n = 1 i.e., there
is only one path from the start node 1 to some exit node,
s`11 ∈ G. To guarantee capture, it is sufficient for the pursuer
to get to s`11 no later than the time that the evader gets there.
So, the maximum delay at node 1 with a capture guarantee
is given by,

D(1|{1}) = |P1| − dV (1, s`11 ) > 0, (11)

where the inequality follows from the pursuer speed advan-
tage assumption (2). The optimal policy dictates, µ(1) = s`11 .
For n = 1, there is no uncertainty in the evader’s path
and so, the pursuer heads straight to the exit node s`11 and
“captures” the evader. This scenario is also reflected in (8),
where the evader’s path k is known to the pursuer. Since we
are interested in the case where there is uncertainty in the
path, our only recourse is to the RE (10), as applied to node
1 under information, I0 = {1, . . . , n}, and so,

D(1|I0) = max
u

[
min
y≥−1

D(u|I+(u, y))− dV (1, u)

]
(12)

As mentioned earlier, the above equation is recursive in
nature. The only exception is the case where the uncertainty
set’s cardinality is 1, whereupon (8) provides us the values
of:

D(j|{k}), j = 1, . . . ,m, k = 1, . . . , n. (13)

A natural question that arises is the following: could we
compute the exit times corresponding to uncertainty sets
of cardinality 2 given (13)? The answer is yes and we
illustrate the simple case of the uncertainty set {2, 3} and
then generalize the method to sets of higher cardinality.

(a) Road Network on a Grid with Coordinates
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Fig. 2: Example Road Network: a) Grid and b) 4 Possible
Evader Paths

Towards this end, we re-draw the example road network
in Fig. 2a, with a grid in the background, to highlight the
(x, y) coordinates of nodes and the distances along edges.
In Fig. 2b, we show the four different evader paths (ordered
from left to right) along with the evader’s time of arrival
Lj(k) (in parentheses) at nodes along each path. Indeed,
P1 = (1 → 3 → 5), P2 = (1 → 3 → 4 → 6),
P3 = (1→ 3→ 4→ 7) and P4 = (1→ 2→ 7).

Suppose we wish to compute D(6|{2, 3}) having already
computed the values, D(6|{2}) = |P2| and D(6|{3}) =
|P3| − dV (6, 7) from (8). Here, |P2| < |P3| as shown in
Fig. 2b. To guarantee capture, the pursuer waits at node 6
until time |P2|. If the evader does not show up at 6, then the
pursuer knows that the evader has taken path 3 instead. So,
the pursuer proceeds to node 7 and intercepts the evader at
time |P3|. But this is possible only if the following condition
is met:

|P2|+ dV (6, 7) < |P3|. (14)

Let us suppose that condition (14) holds. So, D(6|{2, 3}) =
|P2|. For all nodes j ∈ {1, . . . ,m} and the uncertainty set



I = {2, 3}, we have from the RE (10):

D(j|I) = max
u∈B

[min {D(u|Ir(u)),D(u|Ig(u))} − dV (j, u)] ,

(15)
where Ir(u) = I ∩ Pu and Ig(u) = I\Ir(u) are the
updated uncertainty sets for the red and green observations
respectively at u. We define the restriction B ⊂ U as follows.
The node u ∈ B if the following conditions are met:
1) Ir(u) and Ig(u) are both singleton sets, and
2) D(u|Ig) ≥ mink∈Ir(u) Lu(k).
Condition 1) implies that u is a special UGS in that, by
going to it, the pursuer can reduce the uncertainty set {2, 3}
to either {2} or {3} depending on whether it observes a red
or green UGS (or vice-versa) at u. Condition 2) requires
that the latest exit time from u for the uncertainty set Ig(u)
(green observation) must be greater than the earliest possible
evader visit time at u. Note that this requirement is already
satisfied for the red observation (see Lemma 1). In other
words, the pursuer will visit u only if there is a possibility
that information will become available on whether or not
the evader took a path through u. Else, there is no value
in visiting u and one may as well ignore it. Furthermore,
capture is guaranteed from u for either observation, with the
corresponding pursuer exit times given by D(u|Ir(u)) and
D(u|Ig(u)). In the example (see Fig. 2), B = {6} ∀j ∈ U ,
since visiting node 6 at time |P2| can reduce the uncertainty
from {2, 3} to either {2} or {3} and capture is guaranteed
thereafter for either observation. Note that 7 /∈ B since it
fails condition 2) in that:

D(7|{2}) = |P2| − dV (7, 6) < |P2| < |P3|.

So, for the uncertainty set {2, 3}, it makes no sense for the
pursuer to go to 7; since it has to leave 7 (before time |P3|)
with the uncertainty unchanged. Given the triangle inequality
constraint (1), it is therefore sub-optimal for the pursuer to
visit node 7. So, we have justified the restriction B in (15),
which enables us to compute all the nodes’ exit times for the
uncertainty set {2, 3} of cardinality 2 from the exit times for
uncertainty sets of lower cardinality.

In general, a similar restriction allows us to compute
the pursuer exit times for uncertainty sets in an orderly
fashion (in the increasing order of cardinality). Let the set
of all possible uncertainty sets be Z = 2I0 \ ∅. We denote
the elements of Z of cardinality i by I1i , . . . , I

oi
i , where

oi =
(
n
i

)
. For instance, I1n = I0. At the other extreme, we

have Ik1 = {k}, k = 1, . . . , n. Suppose D(j|Iqi ) has been
computed for q = 1, . . . , oi, ∀j and i = 1, . . . , r for some
r ≥ 1. Then, ∀q ∈ {1, . . . , or+1},∀j ∈ U ,

D(j|Iqr+1) = max
u∈B(Iqr+1)

[
min
y≥−1

D(u|I+(u, y))− dV (j, u)

]
.

(16)
Let Ir(u) = Iqr+1∩Pu and Ig(u) = Iqr+1\Ir(u). The three
distinct possibilities at u are:

1) Ir(u) = Iqr+1 which implies that the evader must pass
through UGS u.

2) Ir(u) ⊂ Iqr+1 which implies that the uncertainty is
reduced at u for both red and green observations.

3) Ir(u) = ∅ which implies that a green UGS is the only
possible observation at u.

We define the restriction B(Iqr+1) ⊂ U as follows. A node
u ∈ B(Iqr+1) if Ir(u) ⊆ Iqr+1 and the following condition
is satisfied:

D(u|Ig(u)) ≥ min
k∈Ir(u)

Lu(k) if Ir(u) ⊂ Iqr+1. (17)

Note that the above result already holds, if the observation
is a red UGS (see Lemma 1).

The restriction above implies the following: the pursuer
will visit u only if one of two things happen. Either capture
if possible at u or the uncertainty is reduced at u with capture
guaranteed for either observation (red or green). The third
possibility 3) implies that the only possible observation at u
is a green UGS with no reduction in the uncertainty! Clearly,
in this case, there is no information to be gained by visiting
u and hence it can be removed from consideration.

Furthermore, from the triangle inequality constraint (1), it
follows that the only reason to visit u under possibility 1) is
to immediately capture the evader at u. As before, there is
no value in visiting u otherwise, since there is no additional
information available at u. So, we have the following result.

Lemma 2: If the optimal control u to (16) is such that
Ir(u) = Iqr+1, then capture occurs at u. So, we have
D(u|Ir(u)) = mink∈Ir(u) Lu(k).

In conclusion, we note that the uncertainty is either re-
duced or capture occurs in the next decision epoch. Since the
pursuer exit times are already available for uncertainty sets
of lower cardinality (former) and it is provided by Lemma 2
for the latter case, we can compute D(j|Iqr+1). Finally,
to compute D(1|I0), we employ the following Ordered
Recursive Algorithm (ORA).
Algorithm ORA
1. for j ← 1 to m
2. for k ← 1 to n
3. D(j|{k}) = |Pk| − dv(j, s`kk )
4. for i← 2 to n− 1
5. for q ← 1 to oi
6. for j ← 1 to m
7. Compute D(j|Iqi ) using (16)
8. Compute D(1|I0) using (16)
9. return D(1|I0)

Note that the optimal pursuit strategy is constrained to
enforce a reduction in entropy! Indeed the entropy i.e., the
cardinality of the uncertainty set will reduce, at least by 1,
for every move (including waiting) made by the pursuer.
As a result, the game will terminate in no more than n
steps/moves! The Algorithm ORA has a time complexity of
O(2nm logm). This is due to the number of all possible
uncertainty sets: 2n − 1, the number of nodes for which the
exit time is computed: m and the time complexity of the
max operation: logm.

A. Pursuer Decision Tree
To evaluate the iterative algorithm prescribed earlier, we

implement it on the example problem shown in Fig. 2. We



assume that the pursuer travels between any two nodes at
a constant speed, V . We choose the speed such that (14) is
satisfied, i.e.,

|P3| − |P2| > dV (6, 7) =
2

V

⇒ V >
2√

5− 1
≈ 1.618, (18)

where the distance between nodes 6 and 7 equals 2 (see
Fig. 2a). So, we choose V = 1.62 and implement Algo-
rithm ORA. Fig. 3 shows the decision tree for the pursuer
starting with a red UGS at node 1. The solution dictates that
D(1, {1, 2, 3, 4}) ≈ 4.84 and µ(1, {1, 2, 3, 4}) = 3. Fig. 3
also shows (color coded) the latest pursuer exit times at
future nodes visited by the pursuer, for both red and green
observations. Eventually, capture of the evader occurs at one
of the exit nodes, 5, 6 or 7. Interestingly, the optimal evader
path that contributes to the least pursuer exit time at node 1
is P1 = (1 → 3 → 5), which is also the shortest path, i.e.,
1 = arg mink |Pk|!

If we pick V = 1.61 instead, we get the decision tree
shown in Fig. 4. In this case, the maximum delay at node
1 with a capture guarantee reduces to ≈ 2.9. This is so
because the slower moving pursuer has to capture the evader
at node 3 itself, if the evader picks any path other than
P4. In other words, node 3 acts like an exit node under
the reduced speed. If one were to reduce the pursuer speed
even further, below some critical speed, V , the algorithm
will return D(1, {1, 2, 3, 4}) = 0, indicating that no initial
delay can be tolerated at node 1 for any speed V < V .
At the other extreme, one can easily confirm that if the
pursuer is able to travel at infinite speed, the corresponding
D(1, {1, 2, 3, 4}) = |P1|, the earliest evader exit time.

Fig. 3: Decision Tree and Latest Exit Times for V = 1.62

B. Reducing the Computational Burden

Since the algorithm scales exponentially with the number
of possible evader paths, we explore avenues that reduce the

D(1,{1,2,3,4}) = 2.9 

D(3,{1,2,3}) = 6.83 

D(3,{4}) = 8.93 

D(7,{4}) = 14.66 

Fig. 4: Decision Tree and Latest Exit Times for V = 1.61

computation time. We note that for a given graph, G(U , E),
certain uncertainty sets will never be encountered by the
pursuer if it employs a “guaranteed capture” policy. For
instance, in the example problem (see Fig. 2b), the pursuer
will never encounter the uncertainty set {1, 4}. The reasoning
behind this goes as follows. Initially the pursuer is at node
1 armed with the uncertainty set {1, 2, 3, 4}. Now the only
way the pursuer can reduce the uncertainty set to {1, 4} is by
investigating node 4 and confirming that paths 2 and 3 were
indeed not taken. To do so, the pursuer has to (possibly) wait
at node 4 until time T2(3) ≈ 12.06. But, T2(3) > |P1| and
so, by waiting, the pursuer will necessarily allow the evader
to escape via path 1! Indeed, it is possible to enumerate all
the realizable uncertainty sets, that the pursuer will encounter
in its search.

For the example problem, the realizable sets listed in
Table I, are computed in the following manner. At time 0,
the only information available at UGS 1 is {1, 2, 3, 4}. At
time T4(2) ≈ 4.83, information is available at UGS 2 that can
reduce the uncertainty to either {4} or {1, 2, 3} depending on
whether it is red or green. At time |P1| ≈ 11.83, information
is available at UGS 5 about whether or not the evader took
path 1. Hence the following additional uncertainty sets can
be realized: {1}, {2, 3, 4} and {2, 3}. Note that for any time
greater than |P1|, 1 can no longer appear in a uncertainty
set, since it would imply that the evader has escaped. This is
reflected in the table (see entries after row 4). We continue
the aforementioned procedure to enumerate the sets, until the
last UGS/time combination, i.e., (7, |P3|). Upon completing
the table, we collect all the sets that appear in column 2
of Table I. This gives us the set of all realizable sets: Y =
{{1}, {2}, {3}, {4}, {2, 3}, {1, 2, 3}, {2, 3, 4}, {1, 2, 3, 4}}.

TABLE I: Realizable Uncertainty Sets at different UGSs in
Chronological Order

(UGS, Time) Realizable Sets
(1, 0.00) {1, 2, 3, 4}
(2, 4.83) {1, 2, 3, 4}, {4}, {1, 2, 3}
(3, 6.83) {1, 2, 3, 4}, {4}, {1, 2, 3}
(5, 11.83) {1, 2, 3, 4}, {4}, {1, 2, 3}, {1}, {2, 3, 4}, {2, 3}
(4, 12.06) {4}, {2, 3, 4}, {2, 3}
(7, 14.66) {4}, {2, 3, 4}, {2, 3}
(6, 16.30) {2, 3}, {2}, {3}
(7, 17.54) {3}

So, we only deal with 8 sets, as opposed to the 24 −



1 = 15 possible combinations. We can now selectively apply
Algorithm ORA, so that only D(j|I), ∀I ∈ Y are computed.
Note that there is no loss in optimality, by skipping the non-
realizable sets. For a general graph, the reduction in number
of sets depends on the structure of the graph. Nonetheless, for
large n, any reduction from 2n− 1 could lead to substantial
savings in computation time.

C. Partial Information, Dynamic Game, and Dual Control

We are calculating the maximal allowable delay at UGS
1 s.t. a pursuit strategy exists which guarantees the evader’s
capture before the latter reaches one of the the goal nodes,
j ∈ G. This is a deterministic pursuit-evasion game on a
directed acyclic finite graph where the evader’s strategy is
open-loop control and the pursuer has partial information.
Such a game was previously considered in [1], [2], where the
highly structured graph considered therein, was a Manhattan
grid. Due to the pursuer’s information pattern, which is
restricted to partial observations of the physical state of
the dynamic game, we are running into the difficulties
brought about by the dual control effect [3], where the
current information state determines the pursuer’s optimal
control while at the same time the information that will
become available to the pursuer will be in part determined
by his current control. Things are not made easier by the
“minimum time” control flavor of the optimization problem
at hand and these difficulties are particularly exacerbated in
the context of our dynamic game setting. A solution exists
because the optimization problem is discrete and finite but
the computational complexity of the algorithm is high.

IV. CONCLUSIONS

The optimal control of a pursuer with limited sensing
capability tasked with intercepting a blind evader on a road
network instrumented with UGS is considered. The pursuer
is interrogating the UGS, some of which were triggered
by the passing evader, and as such has access to partial
observations only of the physical system’s state. Specifically,
the maximal allowable delay at an UGS s.t. a pursuit strategy
exists which guarantees the evader’s capture before the latter
reaches his goal G is calculated and the attendant pursuit
strategy is obtained. Thus, a deterministic pursuit-evasion
game on a directed acyclic finite graph where the blind
evader’s strategy is open-loop control and the pursuer has
partial information, is solved. Due to the pursuer’s infor-
mation pattern, which is restricted to partial observations
of the physical state of the deterministic game at hand, the
difficulties brought about by partial information in a dynamic
game setting and the attendant dual control effect, could
not be avoided; whence the computational complexity of the
solution algorithm. However, in the process of establishing
the maximal delay at UGS 1 s.t. capture of the evader is
possible, the maximal delays for guaranteed capture at all
the UGS that are on the n paths emanating from UGS 1 are
also calculated. Finally, the scenario where there are no goal
vertices but the directed acyclic graph is infinite is also of
interest.
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