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Abstract— In this paper we investigate how the equilibrium
characteristics of conventional power systems may change with
an increase in wind penetration. We first derive a differential-
algebraic model of a power system network consisting of
synchronous generators, loads and a wind power plant modeled
by a wind turbine and a doubly-fed induction generator (DFIG).
The models of these three components are coupled via nonlinear
power flow equations. In contrast to the traditional approach
for solving the power flows via iterative methods that often
lead to only local solutions, we apply a recently developed
parameter-homotopy based numerical continuation algorithm
to compute all possible solutions. The method solves the power
flow equations over multiple values of the wind penetration
level with far less computational effort instead of solving them
at each value individually. We observe that depending on the
penetration limit and the setpoint value for the magnitude of
the wind bus voltage, the system may exhibit several undesired
or even unstable equilibria. We illustrate these results through
a detailed simulation of a 5-machine power system model with
wind injection, and highlight how the solutions may be helpful
for small-signal stability assessment.

Index Terms— wind power system, power flow solutions,
nonlinear equations, homotopy, small-signal stability

I. INTRODUCTION

With the increase in renewable generation such as wind
and solar power as well as the intrusion of smart loads
such as plug-in hybrid vehicles and smart buildings, the
operational characteristics of power systems are gradually
becoming more complex [1]. Since the dynamic models of
these renewable sources and loads are inherently nonlinear,
and very often stochastic, it is extremely important for system
operators to employ algorithms by which all possible feasible
equilibria of an overall complex power system model can be
computed, and their stability properties can be evaluated so
that power dispatches and control decisions can be planned
accordingly. The resulting operating point as a solution of
a highly nonlinear system of equations is known as the
load flow problem [2]. Computing equilibria by solving load
flow equations for a conventional power system model has
been a standard practice in the power industry for decades,
with several advanced numerical algorithms being proposed
in the literature [3]–[5]. However, there is still a lack of
insight on how these equilibria characteristics may change
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as operators move towards more renewable penetration,
especially the penetration of wind power which is scheduled
to reach a 20% penetration by 2030 [6]. Conventional load
flow algorithms that generally estimate local solutions of
nonlinear equations may not be sufficient to compute all
possible feasible solutions in such cases, and more advanced
algorithms are needed.

In this paper, we address this problem and employ a
homotopy based numerical continuation method to solve
for power system equilibria with increasing levels of wind
penetration. We first derive the end-to-end dynamic model
of the wind-integrated system considering synchronous gen-
erators, loads and a wind plant consisting of a doubly-fed
induction generator coupled to a wind turbine. The models
of each of these subcomponents are coupled to each other via
power flow, thereby leading to a differential-algebraic (DAE)
model for the overall system. On applying the homotopy-
based algorithm we find that even for fixed levels of power
consumption and generation multiple solutions of the load
flow equations can coexist, especially due to the strong
influence of the voltage control setpoints in the DFIGs on
the active and reactive power flows in the grid. This is, of
course, in sharp contrast to the conventional load flow results
where generally only one feasible or normal solution exists,
characterized by high voltage level and correspondingly low
currents [7]. The method, therefore, brings out the explicit
possibilities where increasing the level of wind penetration,
and that too at specific buses in a system, may lead to very
different, new stable solutions for load flow.

In this paper, we introduce a parameter homotopy algo-
rithm which can be viewed as an extension of the recently
developed Numerical Polynomial Homotopy Continuation
(NPHC) method [18]. The homotopy-based algorithm starts
by observing that the power flow equations of the wind-
integrated model are given by multivariate nonlinear polyno-
mials by expanding the voltage phasor at any bus to its real
and imaginary parts. Solving nonlinear algebraic equations,
in general, is a highly nontrivial task. Using recently devel-
oped methods in computational algebraic geometry, however,
deriving all solutions of a system of polynomial equations
is now possible. One approach that is known to have only
isolated solutions is to compute a Grobner basis (GB) that
converts the original system of equations to a triangular form,
similar to the row-echelon form for linear equations. The new
system is referred to as a GB, and the algorithm to compute
it as the Buchberger algorithm [8]–[11]. Since complex
solutions also include real solutions, by this approach one can
find all real solutions. So far the approach has been rather
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underutilized for load flow calculations in power systems
except for a few attempts that are mostly based on small toy
models [12]–[16]. The proposed method in this work can
solve a set of nonlinear algebraic equations over a number
of parameter values with greater computational efficiency as
compared to the existing methods. Instead of solving the
equations for each parameter value, the proposed method
can solve the equations at generic complex values of the
parameter. The solutions of the generic system can be used to
obtain the solutions for the physical values of the parameter
which drastically reduces the computational effort and time.
Applying this method to a 7-bus 5-machine wind power
system model we show that with increasing wind penetration
the system may exhibit undesired or poorly damped poles,
and in some instances even unstable poles.

The rest of the paper is organized as follows. In Section
II we provide the dynamic model equations for synchronous
generators, wind turbines and DFIG, and derive the coupled
DAE model via power flow. In Section III we formulate the
problem of equilibrium analysis. Section IV introduces the
homotopy based approach to solve the nonlinear load flow
model. Section V presents a case study on a representative
power system model with considerable wind injection fol-
lowed by the conclusions.

II. A WIND-INTEGRATED POWER SYSTEM MODEL

We consider a power system with N buses and n genera-
tors. These generators consist of a set G =: {1, . . . , n−1} of
synchronous generators and one wind power plant. Without
loss of generality we can reorder the buses and classify them
into 3 sets namely the set of synchronous generator bus
Ns =: {1, . . . , n − 1}, the wind injection bus Nw =: {n}
and the load buses Nl =: {n + 1, . . . , N}. To obtain the
equilibrium for this system, our first task is to derive its
dynamic model considering both nonlinear swing dynamics
and wind power dynamics. This is presented as follows.

A. Synchronous generator model

We model each generator i ∈ G using the swing equations,

δ̇i = ωi (1a)
miω̇i = Pmi − Psi. (1b)

Here δi, ωi, mi, Pmi and Psi are respectively the phase
angle, rotor speed, inertia, the mechanical power input and
the active power output of synchronous generator i ∈ G.
The active and reactive power output of the synchronous
generator i ∈ G can be respectively shown as,

Psi =
Ei

x
′
di

(VsiRe sin δi − VsiIm cos δi) (2a)

Qsi =
E2

i

x
′
di

− Ei

x
′
di

(VsiRe cos δi − VsiIm sin δi) , (2b)

where, Ei is the internal voltage and x
′

di is the direct-axis
salient reactance of the machine i ∈ G. Vsi = VsiRe+jVsiIm
is the voltage at bus i ∈ Ns. Also VsiRe = |Vsi| cos θsi and
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Fig. 1: Wind turbine interfaced to the grid via a DFIG

VsiIm = |Vsi| sin θsi, θsi being the angle of the voltage at
bus i ∈ Ns. The states of the synchronous generator i ∈ G
are coupled with the states of other generators and of the
wind power plant via power flow, with the bus voltage Vsi
being the coupling variable as shown in the next subsections.

B. Wind power plant model

For convenience of analysis, we model the wind power
plant by a single representative wind turbine coupled to a
DFIG. This turbine serves as an aggregate model of a group
of turbines injecting power to the grid at a point of common
coupling, as shown in Figure 1. This common bus is indexed
as Nw. We adjust the power output level of the resulting
‘wind injection’ through a parameter γ which represent the
number of wind turbines connected to the bus Nw. Usually
wind generators are of various types, each of which comes
with its own set of controls. In this study we consider Type
III wind turbines. The turbine and the DFIG are connected
by a shaft and a gear box as shown in Figure 1. The details
of the model are derived as follows.

1) Wind turbine model: The drive train for the wind
turbine is modeled as two connected shafts operating at
high and low speeds. The aerodynamic torque Ta(t) of
the wind turbine rotor is transferred via the shaft as the
electromagnetic torque Tg(t) driving the DFIG, as shown
in Figure 1. The expression for Ta(t) due to wind speed
vr(t) is given as

Ta(t) =
ρAs(vr(t))

3
Cp(λ(t), β)

2ωr(t)
(3)

where, As is the swept area of the turbine blades, Cp is the
power coefficient of the turbines, λ(t) is the blade tip speed
ratio, β is the pitch angle, ωr(t) is the speed of the turbine
rotor, ρ is the air density. The power coefficient Cp is defined
as,

Cp(λ(t), β) = 0.22

(
116

λi(t)
− 0.4β − 5

)
e
− 12.5
λi(t) (4)

where, λi(t) = 1/
[
1/ (λ(t) + 0.08β)− 0.035/

(
β3 + 1

)]
,

λ(t) = ωr(t)R/vr(t), R being the length of the wind turbine
blade. We assume that the turbine is operating above the
rated wind speed and the pitch angle β = 0 at all times.



Considering the frictional losses on the shaft to be negligible,
the electromagnetic torque of the DFIG is given by,

Tg(t) = Ta(t). (5)

The mechanical speed of the DFIG, ωg(t) is related to the
turbine rotor speed ωr(t) via a gear ratio Ng as,

ωg(t) = Ngωr(t) (6)

2) DFIG model: The DFIG is modeled through the
dynamics of its stator and rotor variables, expressed in a
rotating d− q reference frame as [17],

vqs(t) = (Rs + DLs) iqs(t) + ωeLsids(t)

+ DLmiqr(t) + ωeLmidr(t)
(7a)

vds(t) = −ωeLsiqs(t) + (Rs + DLs) ids(t)

− ωeLmiqr(t) + DLmidr(t)
(7b)

vqr(t) = DLmiqs(t) + (ωe − ωge)Lmids(t)

+ (Rr + DLr) iqr(t) + (ωe − ωge)Lridr(t)
(7c)

vdr(t) = −(ωe − ωge)Lmiqs(t) + DLmids(t)

−(ωe − ωge)Lriqr(t) + (Rr + DLr) idr(t),
(7d)

where ωge :=
p
2 ωg is the electrical speed, p is the number of

electrical poles of the DFIG, and D is the differential opera-
tor. The subscripts d and q refer to the direct and quadrature
axes of the reference frame rotating at constant speed ωe.
Subscripts s and r respectively indicate quantities associated
with the stator and rotor circuits. The symbols v, i, and R
respectively denote voltage, current, and resistance. Lls, Llr,
Lm are respectively the stator and rotor leakage inductances,
and the magnetizing inductance. The electromagnetic torque
of the DFIG, shown in (5) is given by

Tg(t) = −
3p

4
Lm [iqs(t)idr(t)− ids(t)iqr(t)] . (8)

The active and reactive power output of the DFIG are,

Pw = vqsiqs + vdsids + vdridr + vqriqr (9a)
Qw = vdsiqs − vqsids + vdriqr − vqridr. (9b)

The stator of the DFIG is directly connected to the wind
injection bus. The q and d directions in our analysis are so
chosen that vqs and vds align with VwiRe and VwiIm , the
real and imaginary parts of the voltage Vwi of bus i ∈ Nw,
respectively. Vwi, therefore, serves as the coupling variable
for the DFIG states to the rest of the system. We next derive
the power flow equations for this wind integrated system.

C. Power flow model

The dynamics of the synchronous machines, the wind
power plant and the loads in the power system are connected
by the power flow equations between the different buses. The
active and reactive power flows for each bus are respectively

given by

0 =Pj − Re


N∑

k=1,k 6=j

Vjk

(
Vj
Zjk

)∗− |Vj |2Gj (10a)

0 =Qj − Im


N∑

k=1,k 6=j

Vjk

(
Vj
Zjk

)∗− |Vj |2Bj . (10b)

Here Pj and Qj respectively denote the active and reactive
power flow from the generators connected to bus j, Gj and
Bj are respectively the load conductance and load suceptance
with line charging of bus j. Zjk is the impedance of the
lines connecting buses j and k, and Vjk = (VjRe − VjRe) +
j (VkRe − VkIm) . For any bus j ∈ Ns, Pj and Qj are
respectively equal to Psj and Qsj shown in (2). For any
bus j ∈ Nw, Pj and Qj are respectively equal to Pwj and
Qwj shown in (9). If j ∈ Nl, Pj and Qj are both equal to 0.
The overall model of the wind integrated power system is,
thus, comprised of the differential-algebraic equations (1)-
(10). Next we analyze the equilibria for this model.

III. EQUILIBRIUM ANALYSIS

In this section we derive the equilibrium or the steady-state
values of all the dynamic variables in the wind integrated
power system (1)-(10).. The superscript e for any variable
from now onwards will be used to indicates its equilibrium
value(s). First, a steady-state power flow problem is solved
for each bus in the power system. One of the synchronous
generator bus i ∈ Ns is assumed to be the slack bus, for
which |V e

si| and θesi are respectively equal to 1 and 0. The
active and reactive power flow, P e

si and Qe
si at the slack bus

at steady-state can be obtained by solving,

P e
si =Re


N∑

k=1,k 6=i

(1− V e
k )

(
1

Zik

)∗+Gi (11a)

Qe
si =Im


N∑

k=1,k 6=i

(1− V e
k )

(
1

Zik

)∗+Bi. (11b)

For all other synchronous generator bus j ∈ Ns such that
j 6= i,

∣∣V e
sj

∣∣ and P e
sj are known from the power system

specifications. The variables θesj and Qe
sj are obtained by

solving

P e
sj =Re


N∑

k=1,k 6=j

V e
jk

(
V e
sj

Zjk

)∗+ |V e
sj |

2
Gj (12a)

Qe
sj =Im


N∑

k=1,k 6=j

V e
jk

(
V e
sj

Zjk

)∗+ |V e
sj |

2
Bj . (12b)

For the wind bus j ∈ Nw, the connected wind generators are
of Type III in which the steady state power output P e

wj and
the turbine speed ωe

r are specified via maximum power point
tracking algorithm from the turbine characteristics curve, for
a given wind speed ver and coefficient Ce

p . We assume that
the magnitude of the voltage at the wind injection bus Nw,



denoted as
∣∣V e

wj

]
is controlled internally to a given value.

The variables θewj and Qe
wj are obtained by solving

P e
wj =Re


N∑

k=1,k 6=j

V e
jk

(
V e
wj

Zjk

)∗+ |V e
wj |

2
Gj (13a)

Qe
wj =Im


N∑

k=1,k 6=j

V e
jk

(
V e
wj

Zjk

)∗+ |V e
wj |

2
Bj . (13b)

However, the stator voltages of the DFIG veqs and veds are
respectively equal to VwjRe and VwjIm . So the steady-state
equations of the wind generators also need to be solved
simultaneously with those for the synchronous generators.
These are given as

Tg
e = − (3p/4)Lm

[
ieqsi

e
dr − iedsi

e
qr

]
(14a)

veqs = Rsi
e
qs + ωeLsi

e
ds + ωeLmi

e
dr (14b)

veds = −ωeLsi
e
qs +Rsi

e
ds − ωeLmi

e
qr (14c)

veqr = (ωe − ωge)Lmi
e
ds +Rri

e
qr + (ωe − ωge)Lri

e
dr (14d)

vedr = −(ωe − ωge)Lmi
e
qs +Rri

e
dr−(ωe − ωge)Lri

e
qr (14e)

P e
wj = γ

(
veqsi

e
qs + vedsi

e
ds + vedridr + veqri

e
qr

)
(14f)

Qe
wj = γ

(
vedsi

e
qs − veqsi

e
ds + vedri

e
qr − veqri

e
dr

)
. (14g)

For each load bus j ∈ Nl, the bus voltage magnitude |Vlje ]
and angle θelj are obtained by solving

0 =Re


N∑

k=1,k 6=j

V e
jk

(
V e
lj

Zjk

)∗+ |V e
lj |

2
Gj (15a)

0 =Im


N∑

k=1,k 6=j

V e
jk

(
V e
lj

Zjk

)∗+ |V e
lj |

2
Bj . (15b)

The complete equilibria of the wind-integrated power system
can be obtained by solving the set of nonlinear algebraic
equations shown in (11)-(15). These equations depend upon
the the amount of the wind penetration specified by γ, and
the set point

∣∣V e
wj

∣∣ for controlling the voltage level of the
wind bus. In other words, the equilibrium points of the sys-
tem are parameterized by γ and

∣∣V e
wj

∣∣. In the next section we
introduce a homotopy-based numerical continuation method
by which we can solve for all such feasible equilibria.

IV. SOLVING DAE EQUILIBRIUM VIA HOMOTOPY
CONTINUATION METHOD

In this section we solve the equilibrium of the wind
integrated power system shown in (11)-(15) using the ho-
motopy based continuation method. First we express these
equations in polynomial form by replacing the complex
bus voltages V e

sj , V e
wj and V e

lj in terms of their real and
imaginary components. Also the corresponsding angles of
the bus voltages θesj , θewj and θelj are expressed in terms
of their sine and cosine components. Additional equations
are required to pose the problem in a polynomial form as
additional variables are introduced in the process. Equations
of the form, sin2 θ+ cos2 θ = 1, where θ is any bus voltage
angle, are used together with the power system equations for
this purpose. In (11)-(15), there exist two main parameters,

Fig. 2: The 7-bus, 5 machine Brazilian system with wind
injection

namely the level of wind penetration denoted as γ and the
setpoint for the voltage controller in the DFIG, denoted as∣∣V e

wj

∣∣, with respect to which their solutions can be tested.
One way to achieve that will be to solve the equations for
every feasible combinations of the parameter values, which is
highly inefficient and computationally expensive. One can in
principle resort to the so-called comprehensive GB technique
in which one can leave the parameters in the symbolic form.
This idea was used in [8] with an attempt to use the CGB
technique to solve parametric power flow for conventional
grid models. More recently, a numerical method called
the numerical polynomial homotopy continuation (NPHC)
method [18] has successfully been applied to solve up to
14 bus power flow systems in [7]. The method, like the
GB method, is based on complex algebraic geometry and
guarantees to find all the complex, and hence, real solutions
of the system. We recall that for a system of polynomial
equations without parameters

P (x) = (p1(x), . . . , pm(x))T = 0, x = (x1, . . . , xm)T

(16)
with only isolated solutions, the classical Bézout Theorem

asserts that for generic values of coefficients, the maximum
number of isolated solutions in Cm is

∏m
i=1 di, where di is

the degree of the ith polynomial. Based on this bound, a
homotopy H(x, t) can be constructed as

H(x, t) = γh(1− t)Q(x) + t P (x), (17)

where Q(x) = (q1(x), . . . , qm(x))T is another system of
polynomial equations, called the start system, which is
created so that:

1) the solutions of Q(x) = H(x, 0) = 0 are known or
can be easily obtained

2) the number of solutions of Q(x) = H(x, 0) = 0 is
equal to the CBB;

3) the solution set of H(x, t) = 0 for 0 ≤ t ≤ 1 consists
of a finite number of smooth paths parameterized by
t ∈ [0, 1);



γ = 0.5 γ = 1.0 γ = 1.5 γ = 2.0∣∣V e
w6

∣∣ = 0.96 2 stable equilibria 2 stable equilibria
1 stable equilibrium,
1 unstable equilibrium

2 unstable equilibria∣∣V e
w6

∣∣ = 0.98 2 stable equilibria 2 stable equilibria 2 stable equilibria 2 unstable equilibria∣∣V e
w6

∣∣ = 1.00 2 stable equilibria 2 stable equilibria 2 stable equilibria
1 stable equilibrium,
1 unstable equilibrium

TABLE I: Types of feasible equilibrium for varying wind penetration (γ) and wind bus voltage level |V e
w6|

4) every isolated solution of H(x, 1) = P (x) = 0 can
be obtained by some path originating at a solution of
H(x, 0) = Q(x) = 0.

Hence, one then needs to track each solution of H(x, 0) =
Q(x) = 0 from t = 0 to t = 1 using an efficient predictor-
corrector method. Some paths may diverge to infinity along
the way, but some paths which reach P (x) = 0 = H(x, 1)
are all the complex solutions of P (x) = 0 as long as γh is
chosen to be a generic complex number initially.

For a parametric system of polynomial equations,
P (x, λ) = 0 where now λ = (λ1, . . . , λm) ∈ Cm are
parameters of the system, it can be shown that the maximum
number of solutions over all the parameter-points is the
one at a generic parameter-point [19], [20]. Algorithmically
even though the parameters λ in the systems coming from
the power flow equations may be real, in the first step we
need to solve P (x, λ) at a generic complex parameter-point
λ∗ ∈ Cm, using the NPHC method with the CB bound.
Then, in the second step, the system P (x, λ∗) = 0 becomes
the start system for all other parameter-points λ ∈ Cm−{λ∗}
including the real ones, i.e., each solution of this start system
needs to be tracked with the following homotopy:

H(x, λ, t) = (1− t)P (x, λ∗) + t P (x, λ). (18)

Here, the γh trick is implicit for the generic λ∗. Usually,
the number of start solutions is significantly smaller than
the CBB of the system reducing the number of paths to be
tracked. More importantly, one has to obtain the start system
for a generic parametric system once for all, which can be
done ‘offline’. Then using this start system and solutions, one
can obtain all the complex and real isolated solutions of the
power flow model (10) at as many values of γ and

∣∣V e
wj

∣∣in
the parameter-space as required with a much faster ‘online’
run. The method, therefore, converges very fast due to its
inherent parallelization. We next apply the above method to
solve for all equilibria of (11)-(15) for different combinations
of γ and

∣∣V e
wj

∣∣, and test their stability properties.

V. SIMULATION RESULTS

In this section we obtain all the equilibria of the wind-
integrated model by solving (11)-(15) by the homotopy based
algorithm mentioned in Section IV. For the simulation we
use the 7-bus, 5-machine equivalent model of the South-
eastern Brazilian power system [21], as shown in Figure 2.
The parameters for the synchronous generators, the loads,
the various line impedances of the power system, used in
the simulation are taken from [21]. Bus 7 is assumed to
be the slack bus with |V e

s7| and θes7 respectively equal to 1

and 0. The bus voltage magnitudes of the other synchronous
generator buses, i.e.

∣∣V e
sj

∣∣ for j ∈ {1, 2, 3, 4} in ascending
order of j are given as 1.066, 1.066, 1.065 and 1.076.

A wind power plant is considered to be connected to the
power system at bus 6. The plant is considered to be an
aggregation of several wind turbines with their respective
DFIGs connected to a single wind bus. The amount of
wind power injected to the power system is controlled by
the parameter γ which when equals to 1 implies that 1000
turbines are connected to the wind bus. The parameters of
the representative wind turbine are given as: As = 2827.43
m2, ρ = 1.225 kg/m3, ver = 10m/s, Cp = 0.41, Ng =
78, we

g = 207 rad/s. The DFIG parameters are given as
Rs = 0.0111 p.u., Rr = 0.0108 p.u., Lls = 0.1487p.u.,
Llr = 0.1366p.u., Lm = 4.6978 p.u., p = 4, we = 188.5
rad/s. The active power output of the DFIG, P e

w6 is assumed
to be controlled by a Proportional-Integral (PI) controller to
a fixed setpoint in steady-state following from the maximum
power-point tracking curve. For γ = 1.0, the active power
output, P e

w6 = 0.71 p.u., when wind speed ver = 10m/s
. The reactive power output, namely Qe

w6, is assumed to
be controlled by a different PI controller to a fixed value
in steady-state so that the wind bus voltage magnitude
|V e

w6| is maintained at a constant level. We formulate our
equilibrium analysis problem by constructing (11)-(15) using
these parameter values. The solution of the equilibrium is
parameterized by γ and |V e

w6|. The factor γ is assumed to
have values of 0.5, 1, 1.5 and 2, while |V e

w6| can vary among
0.96, 0.98 and 1. We solve for all possible numerical roots of
(11)-(15) for different combinations of γ and

∣∣V e
wj

∣∣. Solution
for each case specified by a certain γ and

∣∣V e
wj

∣∣ yields 48
different equilibria. Among these only 2 solutions have the
rotor voltage veqr and vedr, and the reactive power output
Qe

w6 of the wind system within practical limits. In Figure 3
we show all the equilibria by means of scatter plot between
the rotor current ieqr and Qe

w6 under different scenarios. The
feasible equilibrium points are plotted in red to differentiate
them from the other numerical solutions. We next compute
the small-signal model for (11)-(15) about the two feasible
equilibria for different combinations of γ and |V e

w6| . The
eigenvalues of the Jacobian matrix are determined to check
the stability of these equilibria. Table I shows the stability
property of the two feasible equilibria in different scenarios.
In certain cases, one or both of the feasible equilibria are
found to be unstable, justifying the use of our approach
for computing all equilibria. Even when both the equilibria
are stable the damping factors of the dominant eigenvalues
change between the different equilibrium indicating that
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Fig. 3: Equilibria for different wind penetration (γ) and wind bus voltage |V e
w6|

some equilibrium to be more robust to the fluctuations in the
wind penetration than others. Table II shows the variation of
the dominant eigenvalues for the different scenarios with two
stable equilibria. The damping decreases with increasing γ
while the damping improves with higher |V e

w6|. In summary,
the results show that with increasing wind penetration -
(1) there may be multiple feasible operating points for a
wind integrated power system, (2) the small-signal stability

of the overall model around these equilibria varies based
on the amount of wind penetration; (3) increasing wind
penetration may lead to undesired equilibria or loss of
dynamic performance with considerably reduced damping
under certain scenarios. These observations can be very
useful for power system operators in planning for control and
dispatch mechanisms so that undesired power flow equilibria
can be avoided under high wind penetration.



γ = 0.5 γ = 1.0∣∣V e
w6

∣∣ = 0.96
− 0.07± 0.71i

− 0.04± 0.69i

− 0.03± 0.69i

− 0.02± 0.68i∣∣V e
w6

∣∣ = 0.98
− 0.09± 0.71i

− 0.06± 0.70i

− 0.03± 0.69i

− 0.02± 0.68i∣∣V e
w6

∣∣ = 1.00
− 0.11± 0.71i

− 0.06± 0.70i

− 0.06± 0.70i

− 0.05± 0.69i

TABLE II: Dominant Eigen values for scenarios having 2 stable equilibria

VI. CONCLUSIONS

In this work we have shown that the complex nonlin-
ear model of a wind-integrated power system may exhibit
multiple feasible equilibria depending on the level of wind
penetration. Conventional load flow solution methods which
generally estimate local solutions of nonlinear equations may
fail to identify all such feasible operating points. In our
work we used a novel homotopy based continuation method
to evaluate these equilibria in a computationally efficient
manner. The simulation results show that with increasing
wind penetration, the system may exhibit undesired or poorly
damped poles, and in some instances even unstable poles. In
view of the increasing renewable penetration in conventional
power grid in recent times, this type of study is of immense
importance as it provides system operators with all the
feasible solutions of power flow equations, thereby helping
them with dispatch and control. Our future work will include
the application of this method to higher dimensional wind
power system models with more complex dynamics such as
those with nonlinear dynamic loads.
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