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Abstract— In this paper, we seek to establish formal guar-
antees for whether or not a given human-swarm interaction
(HSI) is appropriate for achieving multi-robot tasks. Examples
of such tasks include guiding a swarm of robots into a particular
geometric configuration. In doing so, we define what it means
to impose a HSI control structure on a multi-robot system.
Control Lyapunov functions (CLFs) are used to prove that
it is feasible for a user to achieve a particular geometric
configuration with a multi-robot system under some selected
HSI control structure. Several examples of multi-robot systems
with unique HSI control structures are provided to illustrated
the use of CLFs to establish feasibility.

I. INTRODUCTION

Many applications require human intervention to guide
autonomous robots through complicated tasks. For example,
we often rely on and benefit from a human operator’s
ability to decide where robots should focus their efforts
[1]. And even if autonomous robots do not require human
guidance, humans and robots will continue to coexist in most
environments (e.g., manufacturing floors [2], disaster areas
[3]) and to interact with each other. Existing interfaces have
focused on supporting human interactions with one or a few
robots (for example, [4]); however, as the number of robots
involved in the task grows large, such interfaces can become
less effective or even unusable due to a lack of scalability in
the corresponding interaction [5]. Therefore, there has been
a growing effort to understand human-swarm interactions
(HSI) and devise interactions that are amenable to having
humans interact with swarms of robots easily and effectively
(for example, see [6], [7], and other types of interactions
cited below).

We are interested in establishing if a provided HSI is ap-
propriate for a given task, because selecting an inappropriate
HSI could frustrate and discourage users from working with
robotic swarms. In particular, we investigate if the provided
HSI allows a user to guide a swarm of robots into some
geometric configuration. Human-swarm interactions come
in a variety of flavors, such as gesture-based methods [8],
[9], mode selection [10], music instrument interfaces [11],
broadcast control [12], [13], deformable media [14], and
biologically inspired interactions [15], just to cite and name a
few. The commonalities amongst these interactions are two-
fold: the user’s interaction with the swarm happens alongside
the interactions amongst the robots in the swarm, and each
HSI imposes a specialized structure on the possible inputs
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to limit the complexity of the interaction. Some of these
HSI control structures are tailored to make it possible to
achieve particular types of geometric configurations with
swarms of robots, such as rendezvous, flocking, coverage,
and formations, which beckons the question, if we are given
a particular HSI control structure for a multi-robot system,
is it feasible to use the corresponding interaction to achieve
a desired geometric configuration with a swarm of robots?

In this paper, we will show that control Lyapunov func-
tions can be used to answer this question. While providing
proofs of convergence of a HSI-enabled multi-agent systems
to a geometric configuration is standard (see, for example,
[16]), the novelty in our work is that we provide a formal
definition of what it means to impose a HSI control structure
on the dynamics of the multi-robot system that represents
a swarm of robots. And then, we use a CLF approach to
show convergence of the HSI control structured multi-robot
system to some geometric configuration to demonstrate that
it is feasible for the user to achieve the desired geometric
configuration with such a swarm of robots.

II. DEFINITIONS

Our objective is to determine whether it is possible for a
human operator to use a particular human-swarm interaction
(HSI) to achieve some geometric configuration with a swarm
of mobile robots. To establish feasibility, we first need to
know what a HSI represents in terms of the structure it
imposes on a multi-robot system, and what it means for a hu-
man operator to achieve a particular geometric configuration
with the robotic swarm.

A. Human-Swarm Interaction Structure

In general, we consider continuous-time, time-invariant
systems with inputs, which represent robotic swarms that
can be externally controlled (or interacted with) by a user.
The dynamics of such multi-robot systems can be defined
as ẋ(t) = f(x(t), u(t)), where x(t) ∈ X is the state of the
system at time t and u(t) ∈ U is the input to the system
at time t. In fact, x(t) will represent the stacked vector of
the states belonging to all robots at time t, while xi(t) will
refer to the state of robot i at time t. For example, x(t) will
typically represent the position or pose of all robots together
at time t.

More importantly, the differentiable function f : X ×U →
TX , where TX is a tangent space, is structured according to
the network topology of the multi-robot system. The network
topology is given by a graph G = (V,E), where V is the
set of vertices representing the agents, and E is the set
of edges representing information exchange between agents



via communication links or due to sensor footprints (see,
for example, [17]). Specifically, f ∈ sparseX (G) conveys
that state information in the multi-robot system can only
flow between agents that are linked in the network topology.
Consequently,

f ∈ sparseX (G)⇔
(
j /∈ N(i)⇒ ∂fi(x, u)

∂xj
= 0, ∀x, u

)
,

(1)
where N(i) is the so-called neighborhood of robot i, i.e.,
j ∈ N(i) if (i, j) ∈ E, i, j ∈ V , and N(i) = N(i) ∪ {i}.

By picking a particular HSI control structure, we are being
specific about the structure of U , i.e., how the user can
interact with the robotic swarm. Our definition is as follows:

Definition 1: A HSI control structure is a map

H : X × V → U , (2)

where V is some set of admissible inputs to make the cor-
responding robotic swarm more amenable to human control.
Additionally,

f(x,H(x, v)) = fH(x, v) ∈ sparseX (G), (3)

which means that the dynamics f under this map H needs
to observe the sparsity structure imposed by the network
topology.

This definition of a HSI control structure implies that the
control input to the system is really a combination of state
feedback and a restricted set of inputs from the user, which
respects the constraints imposed by the network topology.
Consequently, the dynamics of a multi-robot system under
such a HSI control structure are

ẋ(t) = f(x(t), u(t))

= f(x(t), H(x(t), v(t))

= fH(x(t), v(t)).

(4)

Therefore, a HSI control structure is a very specific way in
which the user controls the multi-robot system, i.e., interacts
with the robotic swarm.

For example, suppose that a robotic swarm consists of n
mobile robots positioned on a rail (xi(t) ∈ R) with single-
integrator dynamics,

ẋi(t) = ui(t), i = {1, . . . , n}, (5)

where the control input for the first n− 1 robots is

ui(t) =
∑

j∈N(i)

(xj(t)− xi(t)). (6)

N(i) denotes the neighborhood of robot i, which is the set of
all its immediate neighbors in the network topology derived
from communication links or sensor footprints.

The control input for the n-th robot is

un(t) = v(t), v(t) ∈ V, (7)

which corresponds to the user directly controlling the po-
sition of the n-th robot. This HSI control structure is
commonly referred to as a single-leader network (see, for
example, [18]), because the user interacts with the swarm of

robots by guiding a “leader” robot, while the other robots
follow the leader and each other according to the consensus
dynamics in (6) (see [19] for more on consensus).

If we stack all xi(t)’s into a state vector x(t) ∈ Rn and
all ui(t)’s into an input vector u(t) ∈ Rn, then the ensemble
dynamics of our example system are

ẋ(t) = u(t) = −Lfx(t) + lv(t), l =


0
...
0
1

 ∈ Rn (8)

where Lf is a version of the graph Laplacian L as defined
in [17] (and commonly used in multi-robot control) with all
entries in the n-th row of L equal to zero. Consequently, the
single-leader network HSI control structure is a particular
structuring of the control input u(t) in (8) given by the
function H , such that

u(t) = H(x(t), v(t)) = −Lfx(t) + lv(t), (9)

where v(t) ∈ R is the user input.

B. Achieving Geometric Configurations

Definition 2: When a multi-robot system under some HSI
control structure can asymptotically converge to a state, a
subset of states, or all states in a specification set S and stay
in this set, then

lim sup
t→∞

d(x(t),S) = 0, (10)

where,
d(x(t),S) = inf

s∈S
‖x(t)− s‖. (11)

If this is true, then we say that the user can achieve some or
all of the geometric configurations described by S with the
robotic swarm.

The specification set is the set of geometric configurations
that we want the user to achieve with the robotic swarm, in
the sense that the user should be able to form a geometric
configuration with the swarm and keep it in this configura-
tion. For example, a specification set could be defined as

S = {x ∈ Rn | xi = xj , i, j = 1, . . . , n} , (12)

which merely states that all components of the state should
be equal, or S = span {1}. For example, the specification set
for consensus problems with multi-robot teams is typically
defined in this way. Or, we may want the user to guide
a single-leader network, such that all robots in the swarm
rendezvous at a specific location, i.e., α ∈ R,S = α1.

III. FEASIBILITY

We have shown that the function H : X ×V → U encodes
a particular HSI control structure into the dynamics of a
multi-robot system, and that if this combination of multi-
robot system and HSI control structure, (X ,V, fH , x0), can
asymptotically converge to a specification set S (or a subset
thereof), then we say that it is feasible for a user to use this
HSI control structures to achieve some desired geometric



configuration from an initial geometric configuration, x0,
with a robotic swarm. More formally,

Definition 3: It is feasible to achieve a specification set S
under a HSI control structures defined by H if there exists
v(t) such that, v(t) ∈ V, ∀t ≥ t0, and

lim sup
t→∞

d(x(t),S) = 0,

when ẋ(t) = fH(x(t), v(t)), x(t0) = x0.
We will use control Lyapunov functions (CLFs) [20] to

determine this feasibility.

A. Control Lyapunov Functions

Let us denote D ⊂ X as a domain of the state space
containing the quasi-static equilibrium point z for some w ∈
V , such that ẋ(t) = fH(z, w) = 0.

Definition 4: A continuously differentiable V : D → R
with

V (z) = 0 and V (x) > 0 in D − {z}

is a control Lyapunov function (CLF), if there exists a v ∈ V
for each x ∈ D, such that

V̇ (x, v) = ∇V (x) · fH(x, v) < 0 in D − {z} (13)

and V̇ (z, w) = 0.
If such a control Lyapunov function exists, then

any trajectory starting in some compact subset Ωc =
{x ∈ X | V (x) ≤ c, c > 0} ⊂ D will approach z as t →
∞.

Theorem 1: If there exists a CLF as defined in Definition
4 for the system (X ,V, fH , x0) and the specification set S is
some quasi-static equilibrium point z ∈ D, then it is feasible
to converge to z as t→∞.

Proof: By Definition 4, the existence of a CLF guar-
antees that if x0 ∈ Ωc, then there exists v(t) ∈ V , such
that the multi-robot system converges to z asymptotically,
i.e. limt→∞ x(t) = z. Since z = S, it is true that(

lim sup
t→∞

d(x(t), z) = 0

)
⇒
(

lim sup
t→∞

d(x(t),S) = 0

)
,

which by Definition 3 confirms that for this particular multi-
robot system and HSI control structure, the user can achieve
the geometric configuration in the specification set S with
the corresponding robotic swarm.

Using this formulation of CLFs allows us to test the
feasibility of achieving, for example, rendezvous at a specific
location or a formation at a specific location with a specific
rotation and assignment to positions. However, we would
also like to capture formations that can translate and rotate,
like cyclic pursuit, or rendezvous at any arbitrary location.
Therefore, our definition of CLFs needs to include sets of
quasi-static equilibrium points and limit cycles.

Suppose that D ⊂ X is a domain of the state space that
all or part of the specification set S .

Definition 5: A continuously differentiable V : D → R
(and locally positive definite as before) is a control Lyapunov
function, if there exists v ∈ V such that

V̇ (x, v) = ∇V (x) · fH(x, v) ≤ 0 (14)

for each x in some compact set Ω ⊂ D, for example, Ωc.
By LaSalle’s invariance principle [21], if M is the largest
invariant set in

{
x ∈ Ω

∣∣∣ V̇ (x, v) = 0, v ∈ V
}

, then any
trajectory starting in Ω will approach M as t→∞.

Consequently, we must ensure that our choice of CFL
satisfies M ⊆ S , otherwise we cannot show that it is
feasible to achieve any of the geometric configurations in
the specification set S.

Theorem 2: If there exists a CLF as defined in Definition
5 for the system defined by (X ,V, fH , x0) and M ⊆ S,
then it is feasible to asymptotically converge to M from any
x(t0) ∈ Ω.

Proof: The proof is similar to what was shown in
the first theorem. By Definition 5, the existence of a CLF
guarantees that if x0 ∈ Ω, then there exists v(t) ∈ V , such
that the multi-robot system converges to the invariant set M
asymptotically. Therefore,

lim sup
t→∞

d(x(t),M) = 0

lim sup
t→∞

inf
m∈M

‖x(t)−m‖ = 0.

If M ⊆ S, then any m ∈M is also in S, which means that

lim sup
t→∞

inf
m∈S
‖x(t)−m‖ = 0

lim sup
t→∞

d(x(t),S) = 0,

which satisfies our definition of feasibility.

IV. EXAMPLES

In this section, we will provide several examples of HSI
control structures imposed on multi-robot systems for which
we can find CLFs and show that a user can achieve a
particular geometric configuration with a swarm of robots.
First, we will revisit our previous example of a single-
leader network, where the user guides the swarm of robots
to a common rendezvous location. Then, we will revisit
a broadcast control HSI control structure proposed in a
previous paper [13] in the context of the approach established
in this paper.

A. Rendezvous with Single-Leader Networks

Rendezvous is similar to consensus in that all robots
meet up at the same location; however, let us sup-
pose rendezvous captures the additional constraint that
all robots should meet up at a particular location.
The specification set that encodes this objective is
S = {x ∈ Rn | xi = α, α ∈ R, i = {1, 2, . . . , n}}, or
more concisely, S = α1, where α is the rendezvous location.

We chose a candidate CLF [18] given by

V (x) =
1

2
‖x− α1‖2, (15)

which captures the disagreement between the current state
of the robotic swarm and the rendezvous location. V (x) is
positive definite everywhere except at the desired equilibrium
point x = α1 and is radially unbounded (‖x‖ → ∞ ⇒
V (x)→∞).



Next, we need to compute V̇ (x, v), which is defined by

V̇ (x, v) = ∇V (x) · fH(x, v)

= (x− α1)T (−Lfx+ lv)

= −(x− α1)TLfx− (α− xn)v.

(16)

If V (x) is a CLF, then it must be true that for each x ∈ Rn,
there exists v ∈ V,V = R such that V̇ (x, v) < 0 when
x 6= α1 and V̇ (x, v) = 0 when x = α1. In Equation (16),
we can see that even if −(x−α1)TLfx is positive, we can
always chose v ∈ R, such that V̇ (x, v) < 0. Therefore, V (x)
is a CLF that guarantees that there exists v(t) ∈ V , such that
the user can guide the swarm of robots from x(t0) ∈ Rn to
x = α1 as t→∞.

Figure 1 is a demonstration of rendezvous with a single-
leader network. To aid in the visualization, the above can-
didate CLF and the single-leader network system have been
extended to R2. Since the robots are single integrators, the
dynamics along each dimension, x and y, are decoupled.
The user applies a constant control input v ∈ R2 to guide
the leader robot to the origin.

Figure 1a shows the trajectories of ten robots that are or-
ganized over an arbitrary connected, static network topology.
The solid, red trajectory belongs to the leader robot that is
controlled by the user, while the dashed, blue trajectories
belong to all other robots in the swarm. × denotes their
starting location, while ◦ denotes the rendezvous location if
v(t) = 0,∀t, and • illustrates the robots’ actual final position.

We see in Figure 1a that by guiding the leader robot
to the origin, the user can change the rendezvous location
of the swarm of robots to the origin. Figure 1b shows
that the CLF V (x, y) is positive, but “energy” dissipates as
robots converge on the rendezvous location, while Figure 1c
shows that V̇ (x, y, v) remains negative during the interaction.
Consequently, it is feasible for the user to use this HSI
control structure to chose the rendezvous location of a swarm
of robots. Similarly, this combination of multi-robot system
and HSI control structure would be effective in setting the
flocking direction if the state x were the orientation θ of each
robot, rather than its position.

B. Separation with a Broadcast Signal

In a previous paper [13], we showed that it is possible to
use a broadcast signal to separate a swarm of heterogeneous
robots, but let us revisit this problem in the context of this
paper. Suppose that broadcasting an input signal is a HSI for
a swarm of two types of robots, and we would like to know if
it is feasible to separate the two types of robots by a distance
of ∆ by broadcasting an input signal. Each robot i ∈ N ,
where N = {1, . . . , n} is the set of all robots, belongs to
one of two classes in C = {C1, C2}. A class membership
function π : N → C maps each robot i into one of the two
classes. The dynamics of each robot are

ẋi(t) = ui(t)

= γπ(i)

(∑
j∈N(i)

(xj(t)− xi(t)) + v(t)

)
,

(17)
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Fig. 1: A user is guiding a swarm of 10 robots to rendezvous
at the origin by interacting with the leader robot.



where γπ(i) is the “weight” of robot i as a function of its
class, j ∈ N(i) if robot i and robot j are separated by a
distance less than ∆ and v(t) ∈ R+ ∪ {0} is the broadcast
input signal. If we use the initial conditions xi(t0) =
xj(t0), ∀i, j ∈ C1 and xi(t0) = xj(t0), ∀i, j ∈ C2, which
corresponds all robots of same type starting together, then
we can simplify the dynamics (as shown in the paper) to

χ̇1 = −γ1(N2(χ1 − χ2)− v) = fH,1(χ, v)

χ̇2 = γ2(N1(χ1 − χ2) + v) = fH,2(χ, v),
(18)

where χi ∈ R represents the shared position of all robots of
type Ci, and χ = [χ1, χ2]T .

A specification set that encodes a separation dis-
tance of ∆ between the two types of robots is
S = {x ∈ R | ‖xi − xj‖ = ∆, ∀i, j, i ∈ C1, j ∈ C2}. Con-
sequently, we pick a candidate CLF [22]

V (χ) =
1

4

(
‖χ1 − χ2‖2 −∆2

)2
, (19)

which is positive definite everywhere except at the quasi-
static equilibrium points, where ‖χ1 − χ2‖ = ∆. Next, we
need to show that

V̇ (χ, v) =

 ∂V
∂χ1

∂V
∂χ2

T [fH,1(χ, v)
fH,2(χ, v)

]
< 0 (20)

Suppose that in this example the domain is
D =

{
χ ∈ R2

∣∣ 0 ≤ ‖χ1 − χ2‖ ≤ ∆, χ1 ≤ χ2

}
, that

all robots of the same type start at the same location
[χ1(t0), χ2(t0)]T ∈ D, that the “weights” of the the two
types of robots are ordered 0 < γ1 < γ2, and that

V̇ (χ, v) = −(γ1N2 + γ2N1)(χ1 − χ2)2(‖χ1 − χ2‖2 −∆2)

− (γ2 − γ1)(χ1 − χ2)(‖χ1 − χ2‖2 −∆2)v,
(21)

then for every χ ∈ D,

v ≥ γ1N2 + γ2N1

γ2 − γ1
(χ2 − χ1) (22)

will ensure that V̇ (χ, v) ≤ 0, where V̇ (χ, v) = 0 only
whenever ‖χ1 − χ2‖ = ∆ or χ1 = χ2. By LaSalle’s
invariance principle, this system will converge to the largest
invariant set M in

{
χ ∈ Ω

∣∣∣ V̇ (χ, v) = 0
}

as t→∞, where
Ω is the compact subset{

χ ∈ R2

∣∣∣∣ V (χ) ≤ 1

4
∆4 − ε, ε > 0

}
⊂ D. (23)

The largest invariant set M is{
χ ∈ Ω

∣∣∣ V̇ (χ, v) = 0, ‖χ1 − χ2‖ = ∆,

v =
γ1N2 + γ2N1

γ2 − γ1
∆

}
,

(24)

because for this particular v ∈ V , χ̇2 − χ̇1 = 0, such that
‖χ1 − χ2‖ = ∆ will always hold and thus V̇ (χ, v) = 0 and
V (χ) = 0. M ⊆ S; therefore, it is feasible for the user to

use this broadcast control HSI control structure to separate
the two types of robots by a distance ∆ if the system starts
at χ(t0) in Ω.

Figure 2 illustrates separation of a swarm of ten robots of
C1 and five robots of C2 by a distance ∆ = 0.4. The user is
applying a constant, positive broadcast signal

v =
(γ1N2 + γ1N1)

γ2 − γ1
∆,

analogous to using a wind tunnel to move robots (on a rail)
with mass inversely proportional to γi. Figure 2a indicates
the starting location of the C1 (blue) robots and C2 (red)
robots by × and their final positions by •. Initially, the
separation between the two types of robots is less than
∆, but eventually, their separation equals ∆. This plot is
confirmed by Figure 2b which shows that the CLF V (χ)
is positive, but “energy” dissipates as the desired separation
distance is achieved, while Figure 2c shows that V̇ (χ, v)
remains negative during the interaction. Consequently, it is
feasible for the user to use a strong enough broadcast signal
to separate the two types of robots in the example by a
distance of ∆.

C. Remarks

The two examples in the section show that a CLF ap-
proach is useful to show convergence of the HSI control
structured multi-robot system to a specification set. In fact,
our definition of a HSI control structure allows us to use
CLFs directly, and the CLFs themselves can typically be
constructed by inspecting the specification set.

V. CONCLUSION

In this paper, we have provided a precise definition for
what it means to impose a human-swarm interaction (HSI)
structure on a multi-robot system and to achieve a geo-
metric configuration with a swarm of robots. With these
two definitions in hand, we defined that feasibility in this
context implies that a user can successfully guide a swarm
of robots into some desired geometric configuration. We have
also shown that finding a control Lyapunov function (CLF)
implies feasibility, such that CLFs can be used to show that a
particular combination of multi-robot system and HSI control
structure is appropriate for achieving a particular geometric
configuration or set of configurations as demonstrated by the
included examples.
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