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Abstract—In this paper, we study the stability problem of a
stochastic, nonlinear, discrete-time system. We introduce a linear
transfer operator-based Lyapunov measure as a new tool for
stability verification of stochastic systems. Weaker set-theoretic
notion of almost everywhere stochastic stability is introduced
and verified, using Lyapunov measure-based stochastic stability
theorems. Furthermore, connection between Lyapunov functions,
a popular tool for stochastic stability verification, and Lyapunov
measures is established. Using the duality property between the
linear transfer Perron-Frobenius and Koopman operators, we
show the Lyapunov measure and Lyapunov function used for
the verification of stochastic stability are dual to each other.
Set-oriented numerical methods are proposed for the finite
dimensional approximation of the Perron-Frobenius operator;
hence, Lyapunov measure is proposed. Stability results in finite
dimensional approximation space are also presented. Finite
dimensional approximation is shown to introduce further weaker
notion of stability referred to as coarse stochastic stability. The
results in this paper extend our earlier work on the use of
Lyapunov measures for almost everywhere stability verification of
deterministic dynamical systems (“Lyapunov Measure for Almost
Everywhere Stability”, IEEE Trans. on Automatic Control, Vol. 53,
No. 1, Feb. 2008).

Index Terms—Stochastic stability, almost everywhere, compu-
tational methods.

I. INTRODUCTION

Stability analysis and control of stochastic systems are a
problem of theoretical and applied interests. For stochastic
systems, there are various notions of stabilities. Among the
most popular notions of stabilities are almost sure and moment
stability [1], [2]. Almost sure notion of stability implies
stability of sample-path trajectories of stochastic systems and
is a weaker notion of stability compared to the moment
stability definition. Moment stability definition deals with the
steady state probability density function of a stochastic system,
in particular, the integrability of it with respect to various
powers of state. There is extensive literature on stochastic
stability and stabilization in control and dynamical system
literature. Some of the classic results on stability analysis and
control of stochastic dynamical system are found in [1]–[3].
Mao [4] presents a systematic summary of results on various
stochastic stability definitions and Lyapunov function-based
verification techniques for a stochastic system. The topic of
stochastic stability of switched system and the Markov jump
system has also attracted lots of attention with applications in
network controlled dynamical systems [5]–[11]. The results in
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these papers address not only the stochastic stability problem,
but also robust control synthesis and fundamental limitations
issues that arise in stabilization and estimation of dynamical
systems in the presence of stochasticity in a feedback loop.
More generally, stochastic stability and stabilization problems
for a nonlinear system with a multiplicative noise process are
addressed in [12]–[14].

As in a deterministic system, most of the existing methods
for stochastic stability verification are based directly or indi-
rectly on the Lyapunov function. The Lyapunov function is
used for both almost sure and moment stability verification.
The Lyapunov function and Lyapunov function-based methods
are also applied for stochastic stabilization [15]–[20]. While
there is extensive literature on the numerical procedure for the
construction of a Lyapunov function for stability verification
and stabilization of a deterministic dynamical system [21]–
[30], the literature on numerical methods for stochastic stabil-
ity verification is very scant [31], [32]. The contributions of
this paper are two-fold. We provide a novel operator theoretical
framework for stability verification of a stochastic dynamical
system. We also show the proposed operator theoretic frame-
work is amicable to computations thereby providing systematic
numerical procedures for stochastic stability verification.

The operator theoretic framework that we introduce in this
paper is used to verify a weaker set-theoretic notion of almost
everywhere stability of a stochastic system. The notion of
almost everywhere stability was introduced for the first time
in the work of Rantzer for continuous time deterministic
dynamical systems [33]. This notion of stability was later
extended to continuous time stochastic systems in [34]. The
notion of a.e. stability essentially implies the set of points in
the state space starting from which system trajectories are not
attracted to the attractor set is a measure zero set. The almost
everywhere notion of stability was also used for the design
of stabilizing feedback controller and for solving verification
problems for a nonlinear system [22]. The input-output version
of almost everywhere stability was developed in [35]. In [36],
linear transfer operator-based framework was introduced to
verify this weaker set-theoretic notion of a.e. stability for
discrete-time dynamical system. Transfer Perron-Frobenius
operator-based Lyapunov measure was introduced as a new
tool to verify a.e stability of a nonlinear system. Duality
between the Lyapunov function and Lyapunov measure was
established using the duality in the transfer Perron-Frobenius
and Koopman operators. Application of the Lyapunov measure
for the design of stabilizing and optimal feedback controller
was proposed in [37], [38]. Operator theoretical framework
involving spectral analysis of Koopman operator was proposed

ar
X

iv
:1

50
3.

04
43

8v
2 

 [
m

at
h.

D
S]

  8
 M

ar
 2

01
6



2

in [39] for stability analysis of deterministic nonlinear systems.
The results in this paper can be viewed as a natural extension
of the results from [36] towards a.e. stability verification of
discrete time stochastic dynamical system.

Associated with the stochastic dynamical system are two
linear transfer operators, the Perron-Frobenius (P-F) and
Koopman operators. These operators are used to study the
evolution of ensembles of points in the form of measures or
density supported on state space. These operators are dual to
each other and are used in the dynamical system literature
for the analysis of deterministic and stochastic dynamical
systems [40]–[47]. One of the main contributions of this
paper is the introduction of a linear transfer P-F operator
based Lyapunov measure for a.e. stochastic stability veri-
fication of stochastic dynamical system. We introduce a.e.
almost sure notion of stability and provide Lyapunov measure-
based stability theorems to verify this stability. The Lyapunov
function for stochastic stability verification is shown intimately
connected with Koopman operator formalism. In particular,
analytical formulas for the computation of Lyapunov measure
and the Lyapunov function are obtained in terms of resolvent
of the Perron-Frobenius and Koopman operator respectively.
By exploiting the duality relationship between Koopman and
Perron-Frobenius operators, we show the Lyapunov function
and Lyapunov measure are dual to each other in a stochastic
setting as well. The results presented in this paper are extended
version of results appeared in [48], [49].

While results exist for the application of operator theoretical
methods for the stability verification of a stochastic system in
more general Markov chain settings [50], the main motivation
of this work is to provide computational methods for the
construction of stability certificate in the form of a Lyapunov
measure. Towards this goal, set-oriented methods are used for
the finite dimensional approximation of the linear transfer P-F
operator and for computation of the Lyapunov measure [51],
[52]. The finite dimension approximation introduces a further
weaker notion of a.e. stability by allowing stable dynamics
in the complement of the attractor set, but their domain of
attraction is smaller than the size of discretization cells used in
the finite dimensional approximation. This notion of stability is
referred to as coarse stochastic stability. The finite dimensional
approximation of the P-F operator arises as a Markov matrix
and provides for various alternate formulas for the computation
of the Lyapunov measure.

Organization of this paper is as follows. In section II,
we discuss the preliminaries of the transfer operators and
introduce various set-theoretic stochastic stability definitions.
The main results of this paper on Lyapunov measure-based,
stochastic stability theorems are proven in section III. The
formula for obtaining the Lyapunov function for a stochastic
system in terms of the resolvent of the Koopman operator is
presented in section IV. The connection between the Lyapunov
measure and the Lyapunov function is discussed in section V.
The set-oriented numerical method for the finite dimensional
approximation of P-F operator and stability results using the
finite dimensional approximation are discussed in VI and VII
respectively. Simulation examples and discussed in Section
VIII followed by conclusions in section IX.

II. PRELIMINARIES

The set-up and preliminaries for this section are adopted
from [40]. Consider the discrete-time stochastic dynamical
system,

xn+1 = T (xn, ξn), (1)

where xn ∈ X ⊂ Rd is a compact set. We denote B(X) as
the σ-algebra of Borel subsets of X . The random vectors,
ξ0, ξ1, . . ., are assumed independent identically distributed
(i.i.d) and takes values in W with the following probability
distribution,

Prob(ξn ∈ B) = v(B), ∀n, B ⊂W,

and is the same for all n and v is the probability measure.
The system mapping T (x, ξ) is assumed continuous in x and
for every fixed x ∈ X , it is measurable in ξ. The initial
condition, x0, and the sequence of random vectors, ξ0, ξ1, . . .,
are assumed independent. Let W ×W = W 2. Then, the two
times composition of the stochastic dynamical system, denoted
by T 2 : X ×W 2 → X , is given by

xn+2 = T (T (xn, ξn), ξn+1) =: T 2(xn, ξ
n+1
n ),

where ξn+1
n ∈W 2. Since the sequence of random vectors {ξn}

is assumed i.i.d, the probability measure on W 2 will simply
be the product measure, v × v := v2. Similarly, the n-times
composition of a stochastic system (1), Tn : X ×Wn → X ,
is denoted by xn+1 = Tn(x0, ξ

n
0 ), where ξn0 ∈ Wn with

probability measure vn.
The basic object of study in our proposed approach to

stochastic stability is a linear transfer, the Perron-Frobenius
operator, defined as follows:

Definition 1 (Perron-Frobenius (P-F) operator): Let
M(X) be the space of finite measures on X . The Perron-
Frobenius operator, P : M(X) → M(X), corresponding to
the stochastic dynamical system (1) is given by

[PTµ](A) =
∫
X

∫
W
χA(T (x, y))dv(y)dµ(x)

= Eξ

[
µ(T−1

ξ (A))
]
, (2)

for µ ∈M(X), and A ∈ B(X), where χA(x) is an indicator
function of set A.
The expectations on ξ are taken with respect to the probability
measure, v, and T−1

ξ (A) is the inverse image of set A under
the mapping T (x, ξ) for a fixed value of ξ, i.e.,

T−1
ξ (A) = {x : T (x, ξ) ∈ A}.

Furthermore, if we denote the P-F operator corresponding to
the dynamical system, Tξ : X → X , for a fixed value of ξ as

[PTξµ](A) =

∫
X

χA(T (x, ξ))dµ(x) = µ(T−1
ξ (A)),

then, the P-F operator (2) can be written as

[PTµ](A) = Eξ[PTξµ](A).

The Koopman operator is dual to the P-F operator and defined
as follows:

Definition 2 (Koopman operator): Let h ∈ C0(X) be the
space of continuous function. The Koopman operator, UT :



3

C0(X) → C0(X), corresponding to the stochastic system (1)
is defined as follows:

[UTh](x) =

∫
W

h(T (x, y))dv(y) = Eξ[h(T (x, ξ))], (3)

where the expectations are taken with respect to probability
measure, v.
Let h be a measurable function and µ ∈ M(X), define the
inner product as 〈h, µ〉 =

∫
X
hdµ(x). With respect to this

inner product, the Koopman and P-F operators are dual to
each other. Using the inner product definition, we can write
(2) as follows:

〈χA,PTµ〉 = 〈UTχA, µ〉 .

Due to the linearity of the scalar product, this implies
〈gn,PTµ〉 = 〈UT gn, µ〉, where gn =

∑n
i=1 αiχAi is the sum

of a simple function. Since, every measurable function, h, can
be approximated by a sequence {gn} of simple functions, we
obtain in the limit, 〈h,PTµ〉 = 〈UTh, µ〉 .

Assumption 3: We assume x = 0 is an equilibrium point of
system (1), i.e., T (0, ξn) = 0, ∀n, for any given sequence
of random vectors {ξn} taking values in set W .

Assumption 4 (Local Stability): We assume the trivial so-
lution, x = 0, is locally stochastic, asymptotically stable. In
particular, we assume there exists a neighborhood O of x = 0,
such that for all x0 ∈ O,

Prob{Tn(x0, ξ
n
0 ) ∈ O} = 1, ∀n ≥ 0,

and
Prob{ lim

n→∞
Tn(x0, ξ

n
0 ) = 0} = 1.

Assumption 3 is used in the decomposition of the P-F operator
in section (II-A) and Assumption 4 is used in the proof of
Theorem (10). In the following, we will use the notation U(ε)
to denote the ε neighborhood of the origin for any positive
value of ε > 0. We have 0 ∈ U(ε) ⊂ O.

We introduce the following definitions for stability of
stochastic dynamical systems (1).

Definition 5 (Almost everywhere (a.e.) almost sure stability):
The equilibrium point, x = 0, is said to be almost everywhere,
almost sure stable with respect to finite measure, m ∈M(X),
if for every δ(ε) > 0, we have

m{x ∈ X : Prob{ lim
n→∞

Tn(x, ξn0 ) 6= 0} ≥ δ} = 0.

Definition 6 (a.e. stochastic stable with geometric decay):
For any given ε > 0, let U(ε) be the ε neighborhood of the
equilibrium point, x = 0. The equilibrium point, x = 0,
is said to be almost everywhere, almost sure stable with
geometric decay with respect to finite measure, m ∈ M(X),
if there exists 0 < α(ε) < 1, 0 < β < 1, and K(ε) < ∞,
such that

m{x ∈ X : Prob{Tn(x, ξn0 ) ∈ B} ≥ αn} ≤ Kβn,

for all sets B ∈ B(X \ U(ε)), such that m(B) > 0.
We introduce the following definition of absolutely contin-

uous and equivalent measures.
Definition 7 (Absolutely continuous measure): A measure

µ is absolutely continuous with respect to another measure,

ϑ denoted as µ ≺ ϑ, if µ(B) = 0 for all B ∈ B(X) with
ϑ(B) = 0.

Definition 8 (Equivalent measure): The two measures, µ
and ϑ, are equivalent (µ ≈ ϑ) provided µ(B) = 0, if and
only if ϑ(B) = 0 for B ∈ B(X).

A. Decomposition of the P-F operator

Let E = {0}. Hence, Ec = X \E. We write T : E ∪Ec×
W → X . For any set B ∈ B(Ec), we can write

[PTµ](B) =
∫
X

∫
W
χB(T (x, y))dv(y)dµ(x)

=
∫
Ec

∫
W
χB(T (x, y))dv(y)dµ(x). (4)

This is because T (x, ξ) ∈ B implies x /∈ E. Since set E is
invariant, we define the restriction of the P-F operator on the
complement set Ec. Thus, we can define the restriction of the
P-F operator on the measure space M(Ec) as follows:

[P1µ](B) =

∫
Ec

∫
W

χB(T (x, y))dv(y)dµ(x),

for any set B ∈ B(Ec) and µ ∈M(Ec).
Next, the restriction T : E ×W → E can also be used to

define a P-F operator denoted by

[P0µ](B) =

∫
B

χB(T (x, y))dv(y)dµ(x),

where µ ∈M(E) and B ⊂ B(E).
The above considerations suggest a representation of the P-

F operator, P, in terms of P0 and P1. Indeed, this is the case,
if one considers a splitting of the measured space,

M(X) =M0 ⊕M1, (5)

where M0 := M(E), M1 := M(Ec), and ⊕ stands for
direct sum.

Then it follows the splitting defined by Eq. (5), the P-F
operator has a lower-triangular matrix representation given by

P =

[
P0 0
× P1

]
. (6)

III. LYAPUNOV MEASURE AND STOCHASTIC STABILITY

We begin the main results section with the following
Lemma.

Lemma 9: Let

ξn0 = {ξ0, . . . , ξn} ∈W × . . .×W︸ ︷︷ ︸
n

=: Wn

and F (x, ξn0 ) := Tn(x, ξn0 ) : X ×Wn → X be the notation
for the n times composition of the map T : X ×W → X .
Then, the Perron-Frobenius operator, PF :M(X)→M(X),
corresponding to system mapping F is given by

PF = PTPT . . .PT︸ ︷︷ ︸
n

=: PnT .

Proof: Let ϑ(A) = [PTµ](A), it then follows from
Definition 1 for the P-F operator that

[PTµ](A) = ϑ(A) = Eξ0

[
µ(T−1

ξ0
(A))

]
, (7)
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where expectation is taken with respect to probability measure
v and T−1

ξ0
(A) is the inverse image of set A under the mapping

T (x, ξ0) for fixed values of ξ0, i.e.,

T−1
ξ0

(A) = {x ∈ X : T (x, ξ0) ∈ A}.

Hence,

[P2
Tµ](B) = [PTPTµ](B) = [PTϑ](A) = Eξ1 [ϑ(T−1

ξ1
(B))].

Following (7) and defining T−1
ξ1

(B) = A, we obtain

[P2
Tµ](B) = Eξ1

[
Eξ0

[
µ(T−1

ξ0
(T−1
ξ1

(B)))
]]
.

Since ξ0 and ξ1 are independent with the same probability
distribution v, we obtain

[P2
Tµ](B) = Eξ10

[
µ(T−1

ξ0
(T−1
ξ1

(B)))
]

=
∫
W 2

∫
X
χB(T (T (x, y0), y1))dv(y0)dv(y1)dµ(x)

= [PT 2(x,ξ10)µ](B). (8)

The main results of this lemma then follow from induction.

Using the lower triangular structure of the P-F operator in
Eq. (6), one can write the PnT as follows:

PnT =

[
Pn0 0
× Pn1

]
. (9)

We now state the first main results of the paper on the
stochastic stability expressed in terms of asymptotic behavior
of Pn1 .

Theorem 10: The equilibrium point, x = 0, for system (1)
is almost everywhere, almost sure stable with respect to finite
measure, m ∈M(X), if

lim
n→∞

[Pn1m](B) = 0,

for every set B ∈ B(X \U(ε)), such that m(B) > 0. U(ε) is
the ε neighborhood of the equilibrium point, x = 0, for any
given ε > 0.

Proof: For any given δ(ε) > 0, consider the following
sets,

Sn = {x ∈ X : Prob(T k(x, ξk0 ) ∈ X\U(ε)) ≥ δ, for some k > n}

and
S = ∩∞n=1Sn.

So, set S consists of points with probability larger than δ to
end up in set X \ U(ε). Now, since ε is arbitrary small and
from the local stability property of equilibrium point, we have
0 ∈ U(ε) ⊂ O. The proof of this theorem follows, if we show
m(S) = 0. Let S̃ = S∩(X\O). Then, from the property of the
local neighborhood, m(S) = m(S̃). From the construction of
set S, it follows x ∈ S, if and only if Prob(T (x, ξ) ∈ S) = 1.
Hence,

[PTm](S) =

∫
X

Prob(χS(T (x, ξ)))dm(x) = m(S). (10)

Now, S̃ ⊂ S with m(S̃) = m(S). Since T is continuous in x
and measurable in ξ, we have [P1m](S̃) = [P1m](S). Using
(10), we obtain [P1m](S̃) = m(S̃). S̃ ⊂ X lies outside some

local neighborhood of x = 0. However, limn→∞[Pn1m](B) =
0 for any set B ∈ B(X \U(ε)) and, in particular, for B = S̃.
Hence, we have m(S̃) = m(S) = 0.

Theorem 11: The x = 0 solution for system (1) is a.e.
stochastic stable with geometric decay with respect to finite
measure, m ∈ M(X), if and only if there exists a positive
constant, K(ε), and 0 < β < 1, such that

[Pn1m](B) ≤ Kβn, ∀n ≥ 0

for every set B ∈ B(X \ U(ε)), such that m(B) > 0.
Proof: We first prove the sufficient part.

[Pn1m](B) =

∫
X

∫
Wn

χB(Tn(x, ξn0 ))dvn0 (ξn0 )dm(x) ≤ Kβn.

[Pn1m](B) =
∫
X

∫
Wn χB(Tn(x, ξn0 ))dvn0 (ξn0 )dm(x)

=
∫
X
Prob{Tn(x, ξn0 ) ∈ B}dm(x). (11)

Choose 0 < α < 1, such that β
α < 1. Let

Sn = {x ∈ X : Prob{Tn(x, ξn0 ) ∈ B} ≤ αn}

and

S̄n = {x ∈ X : Prob{Tn(x, ξn0 ) ∈ B} ≥ αn}.

Then,

[Pn1m](B) =

∫
Sn

Prob{Tn(x, ξn0 ) ∈ B}dm(x)

+

∫
S̄n

Prob{Tn(x, ξn0 ) ∈ B}dm(x).

Since integrals over both sets are positive, we have

[Pn1m](B) ≥
∫
S̄n

Prob{Tn(x, ξn0 ) ∈ B}dm(x) ≥ αnm(S̄n).

Hence, we have,

m(S̄n) ≤ Kβn

αn
,

which is equivalent to

m{x ∈ X : Prob{Tn(x, ξn0 ) ∈ B} ≥ αn} ≤ Kβ̄n.

For the necessary part, we assume the system is a.e. stochastic
stable with geometric decay (Definition 6). Construct the
sets, Sn and S̄n, from the sufficiency part of the proof.
The parameter, α, for this construction now comes from the
stability definition (Definition 6). We have

[Pn1m](B) =

∫
Sn

Prob{Tn(x, ξn0 ) ∈ B}dm(x)

+

∫
S̄n

Prob{Tn(x, ξn0 ) ∈ B}dm(x).

Hence,

[Pn1m](B) ≤ αnm(Sn) +m(S̄n) ≤ αnm(Sn) +Kβn.

Now, since X is assumed compact, we have m(Sn) < M for
some M <∞. Hence, we have

[Pn1m](B) ≤ K̄β̄n,

where K̄ = max(M,K) and β̄ = max(β, α) < 1.
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Following is the definition of Lyapunov measure introduced
for stability verification of a stochastic system.

Definition 12 (Lyapunov measure): A Lyapunov measure,
µ̄ ∈ M(X \ U(ε)), is defined as any positive measure finite
outside the ε neighborhood of equilibrium point and satisfies

[P1µ̄](B) < γµ̄(B) (12)

for 0 < γ ≤ 1 and for all sets B ∈ B(X \ U(ε)).
Theorem 13: Consider the stochastic dynamical system (1)

with x = 0 as a locally stable, equilibrium point. Assume
there exists a Lyapunov measure, µ̄, satisfying Eq. (12) with
γ < 1. Then,

1) x = 0 is almost everywhere almost sure stable with
respect to finite measure, m, which is absolutely contin-
uous with respect to the Lyapunov measure µ̄.

2) x = 0 is almost everywhere stochastic stable with
geometric decay with respect to measure any finite
measure, m ≺ κµ̄, for some constant, κ > 0.

Proof: 1) Using the definition of Lyapunov measure with
γ < 1, we obtain

[PnT µ̄](B) ≤ γnµ̄(B) =⇒ lim
n→∞

[PnT µ̄](B) = 0.

Now, since m ≺ µ̄, we have limn→∞[PnTm](B) = 0. The
proof then follows by applying the results from Theorem 10.
2) We have

[PnTm](B) ≤ κ[PnT µ̄](B) ≤ κγnµ̄(B) ≤ K(ε)γn,

where K(ε) = κµ̄(X \U(ε)), which, by definition of the Lya-
punov measure, is finite. The proof then follows by applying
the results from Theorem 11.

The following theorem provides for the construction of
the Lyapunov measure as an infinite series involving the P-
F operator.

Theorem 14: Let the equilibrium point, x = 0, be almost
everywhere, stochastic stable with geometric decay with re-
spect to measure, m. Then, there exists a Lyapunov measure
(Definition 12) µ̄ with γ < 1. Furthermore, the Lyapunov
measure is equivalent to measure m (i.e., µ̄ ≈ m) and the Lya-
punov measure dominates measure m (i.e., µ̄(B) ≥ m(B)).

Proof: Following the results of Theorem 11, we know
there exists a positive constant, K, and β < 1, such that

[Pn1m](B) ≤ Kβn.

Let β = β1β2, such that β1 < 1 and β2 < 1. Hence, we have

αn[Pn1m](B) ≤ Kβn1
with α = 1

β2
> 1. Now, construct the Lyapunov measure as

follows:

µ̄(B) =
(
m+ α[P1m] + α2 + . . .

)
(B)

=
∑∞
k=0 α

k[Pk1m](B). (13)

The above infinite series is well-defined and converges because
αn[Pn1m](B) ≤ Kβn1 . Multiplying both sides of (13) with
I − αP1, we obtain

α[P1µ̄](B) ≤ µ̄(B) =⇒ [P1µ̄](B) ≤ β2µ̄(B).

Allowing γ = β2, we satisfy the requirements for the Lya-
punov measure. The equivalence of measure, m, the Lyapunov
measure, µ̄, and the dominance of the Lyapunov measure
follows from the construction of the Lyapunov measure as
a infinite series formula Eq. (13).

IV. KOOPMAN OPERATOR AND LYAPUNOV FUNCTION

In this section, we describe the connection between the
Koopman operator and Lyapunov function for a stochastic
dynamical system.

Definition 15 (pth Moment Stability): The equilibrium so-
lution x = 0 is said pth moment exponentially stable with
p ∈ Z+, if there exist a positive constants, K < ∞, and
β < 1, such that

Eξn0 [‖ xn+1 ‖p] ≤ Kβn ‖ x0 ‖p, ∀n ≥ 0

for all initial conditions x0 ∈ X .
The results of the following theorem are not new [1], [4].
However, the proposed construction of the Lyapunov function
in terms of the Koopman operator is new. Furthermore, the
connection between the Koopman operator and Lyapunov
function also brings out clearly the dual nature of the Lya-
punov function and the Lyapunov measure for stochastic
stability verification.

Theorem 16: The equilibrium solution, x = 0, is pth

moment exponentially stable, if and only if there exists a
nonnegative function V : X → R+ satisfying

a ‖ x ‖p≤ V (x) ≤ b ‖ x ‖p, [UTV ](x) ≤ cV (x),

where a, b, c are positive constants with c < 1. Furthermore,
V can be expressed in terms of resolvent of the Koopman
operator as follows:

V (x) = (I − UT )−1f(x),

where f(x) =‖ x ‖p.
Proof: We first prove the sufficient part. We have

Eξn0 [‖ xn+1 ‖p] ≤ 1
aEξn0 [V (xn+1)] = 1

aEξn−1
0

[[UTV ](xn)]

≤ c
aEξn−1

0
[V (xn)] ≤ cn

a V (x0) ≤ b
ac
n ‖ x0 ‖p . (14)

Let, K = b
a and c = β. Thus, we obtain the desired condition

for the pth moment exponential stability. For the necessary
part, let

VN (x0) =
∑N
k=0Eξk0 [f(xk+1)] =

∑N
k=0Eξk−1

0
[[UT f ](xk)]

=
∑N
k=0[UkT f ](x0). (15)

The uniform bound on VN (x) follows from pth moment
exponential stability. Hence, V (x) = limN→∞ VN (x) is well
defined. Furthermore,

V (x) = lim
N→∞

N∑
k=0

[UkT f ](x0) = (I − UT )−1f. (16)

The bounds on the function, V , and the inequality,
[UTV ](x) ≤ cV (x), follow from the construction of the
function, V.

The P-F operator and Koopman operator are shown dual to
each other. In Eqs. (13) and (16), the Lyapunov measure and
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the Lyapunov function are expressed in terms of an infinite
series involving the P-F and Koopman operators, respectively.
Using the duality relationship between the P-F and Koopman
operators, it then follows the Lyapunov function and the
Lyapunov measure used for verifying stochastic stability are
dual to each other. In the following section, we establish
a precise connection between the two stochastic, stability
verification tools.

V. RELATION BETWEEN LYAPUNOV MEASURE AND
FUNCTION

In this section, we relate Lyapunov measure and Lyapunov
function. We impose additional assumptions, the system map-
ping (1), i.e., T : X × W → X . We assume the system
mapping T is C1 invertible diffeomorphism with respect to
state variable, x, for any fixed value of noise parameter, ξ.
For the diffeomorphism, we define

J−1
ξ (x) =

∣∣∣∣∣dT
−1
ξ

dx
(x)

∣∣∣∣∣ ,
where | · | stands for the determinant.

Lemma 17: Let PT be the P-F operator for the system
mapping T : X ×W → X . Then,

d[PTm](x) = Eξ[J
−1
ξ (x)]dm(x).

If ρ(x) is the density of an absolutely continuous measure,
µ, with respect to the Lebesgue measure, m, i.e., dµ(x) =
ρ(x)dm(x), then

d[PTµ](x) = Eξ[J
−1
ξ (x)ρ(T−1

ξ (x))]dm(x).

Proof:

[PTm](B) =

∫
W

∫
X

χB(Ty(x))dm(x)dv(y)

=

∫
W

∫
X

χB(x)dm(T−1
y (x))dv(y).∫

X

χB(x)

∫
W

J−1
y (x)dm(x)dv(y) =

∫
X

χB(x)E[J−1
ξ (x)]dm(x).

d[PTm] = Eξ[J
−1
ξ (x)]dm(x).

dµ̄(x) = ρ(x)dm(x).

[PT µ̄](B) =

∫
X

∫
W

χB(Ty(x))dv(y)ρ(x)dm(x)

=

∫
X

∫
W

χB(x)dv(y)ρ(T−1
y (x))J−1

y (x)dm(x).

d[PT µ̄] = E[ρ(T−1
ξ (x))J−1

ξ (x)]dm(x).

We have the following theorem connecting the Lyapunov
measure and the Lyapunov function for a stochastic system.

Theorem 18: Let Jξ(x) < ∆ < 1 for all ξ ∈W and x ∈ X .
1) Let the equilibrium point, x = 0, be almost everywhere,
stochastic stable with geometric decay with respect to the
Lebesgue measure, m. Assume the Lyapunov measure is
absolutely continuous with respect to the Lebesgue measure,
m, with density function ρ(x), i.e., dµ̄(x) = ρ(x)dm(x).

Hence, (following Theorem 14), there exists a Lyapunov
measure satisfying

dµ̄(x)− αd[P1µ](x) = g(x)dm(x).

Furthermore, the density function corresponding to ρ(x) sat-
isfies

a1 ‖ x ‖−p≤ ρ(x) ≤ a2 ‖ x ‖−p . (17)

Then, the x = 0 solution is pth exponentially stable with
Lyapunov function V obtained as V (x) = ρ(x)−1.
2) Let x = 0 be the pth moment exponentially sta-
ble with the Lyapunov function V (x) satisfying V (x) <
βEξ[Jξ(x)V (T−1

ξ (x))] for some β < 1. Then, the measure,

µ̄(B) =

∫
B

1

V γ(x)
dm(x), (18)

is a Lyapunov measure satisfying Eξ[µ̄(T−1
ξ (B))] < κµ̄(B)

for some κ < 1 and for all B ∈M(X\U(ε)) with m(B) > 0.
γ ≥ 1 is a suitable constant chosen, such that 1

V γ is integrable.
Proof: 1)

dµ̄(x)− αd[P1µ](x) = g(x)dm(x)

= V −1(x)dm(x)− αEξ[J−1
ξ (x)V −1(T−1

ξ (x))]dm(x).(19)

Hence, we have V −1(x) − αEξ[J
−1
ξ (x)V −1(T−1

ξ (x))] =

g(x) ≥ 0. Now, since Jξ(x) < 1 or J−1
ξ (x) > 1 for all

values of ξ ∈W , we have

1

V (x)
≥ αEξ

[
1

V (T−1
ξ (x))

]
. (20)

Now, using Holder’s inequality, we have

1 = Eξ

[
V (T−1

ξ (x))

V (T−1
ξ (x))

]
≤ Eξ

[
1

V (T−1
ξ (x))

]
Eξ[V (T−1

ξ (x))].

Eξ

[
1

V (T−1
ξ (x))

]
≥ 1

Eξ[V (T−1
ξ (x))]

. (21)

Combining (20) and (21), we obtain

V (x) ≤ ᾱEξ[V (T−1
ξ (x))], ᾱ =

1

α
< 1. (22)

Since V (x) = ρ−1(x) is assumed radially unbounded (Eq.
(17)), then using the results from Theorem (16) and inequality
(22), we achieve the desired results, the x = 0 solution is the
pth moment exponentially stable.
2) We have V (x)γ < βγEξ[Jξ(x)V (T−1

ξ (x))]γ . Using the
Holder inequality, we obtain

V (x)γ < β̄Eξ[J
γ
ξ (x)V γ(T−1

ξ (x))],

where β̄ = βγ < 1.

β̄

V (x)γ
>

1

Eξ[J
γ
ξ (x)V γ(T−1

ξ (x))]
.
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Now, since Jξ < ∆ < 1 is uniformly bounded, there exists
a γ > 1, sufficiently large, such that

β̄

V (x)γ
>

1

Eξ[J
γ
ξ (x)V γ(T−1

ξ (x))]
≥ Eξ

[
1

Jξ(x)V γ(T−1
ξ (x))

]
.

Integrating over set B ∈ B(X \ U(ε)), we obtain

β̄

∫
B

V −γ(x)dm(x) ≥
∫
B

J−1
ξ (x)V −γ(T−1

ξ (x))dm(x).

Using the results from Lemma (17) and (18), we obtain the
desired results by letting κ = β̄, i.e.,

[P1µ̄](B) ≤ κµ̄(B).

VI. DISCRETIZATION OF THE P-F OPERATOR

In this section, we will discuss the set-oriented numerical
methods proposed for the finite dimensional approximation of
the P-F operator. For the finite dimensional approximation of
the P-F operator, we will make the following assumption on
the stochastic process.

Assumption 19: We assume the random vector ξn takes
finitely many vector values w1, . . . , wQ with the following
probabilities

Prob{ξn = w`} = p` ∀n, ` = 1, . . . , Q.

For the finite dimension approximation of the P-F operator,
we consider the finite partition of the state space, X , as
follows:

X = {D1, . . . , DL},

where ∪jDj = X . The infinite dimensional measure, µ, is
approximated by ascribing a real number µj to each cell of
the partition, X . In this way, the infinite dimensional measure,
µ, is approximated by a finite dimensional vector, µ ∈ RL.
The finite dimensional approximation of the P-F operator
will arise as a Markov matrix of size L × L on the finite
dimensional vector space. Using Assumption 19, the stochastic
dynamical system, T (x, ξ) : X ×W → X , is parameterized
by finitely many values that the random variable takes. In
particular, for each fixed value of a random variable, i.e.,
ξn = wk, we have T (x,wk) for k = 1, . . . , Q. For notational
convenience, we will also write the mapping for each fixed
value of random variable as T (x,wk) =: Twk(x). Hence,
we have Twk : X → X for k = 1, . . . , Q. With the finite
parameterizations in the noise space, the finite dimensional
approximation of the P-F operator follows exactly along the
lines of a deterministic setting. In particular, corresponding to
a vector, µ = (µ1, · · · , µL) ∈ RL, define a measure on X as

dµ(x) =

L∑
i=1

µiκi(x)
dm(x)

m(Di)
,

where m is the Lebesgue measure and κj denotes the indicator
function with support on Dj . The approximation, denoted by

P , is now obtained as

νj = [Pµ](Dj)

=

Q∑
`=1

p`

L∑
i=1

∫
Di

δTw` (x)(Dj)µi
dm(x)

m(Di)

=

Q∑
`=1

p`

L∑
i=1

µiP
w`
ij =

L∑
i=1

µi

Q∑
`=1

p`P
w`
ij ,

where

Pw`ij =
m(T−1

w`
(Dj) ∩Di)

m(Di)
, (23)

m the Lebesgue measure. The resulting matrix is non-negative
and because Tw` : Di → X for ` = 1, . . . , Q,

L∑
j=1

Pw`ij = 1, ` = 1, . . . , Q,

i.e., P is a Markov or a row-stochastic matrix.
Computationally, several short-term trajectories are used

to compute the individual entries Pw`ij . The mapping Tw`
is used to transport M “initial conditions” chosen to be
uniformly distributed within a set Di. The entry Pw`ij is then
approximated by the fraction of initial conditions in box, Dj ,
after one iterate of the mapping. In the remainder of the paper,
the notation of this section is used, whereby P represents
the finite-dimensional Markov matrix corresponding to the
infinite dimensional P-F operator P. The finite dimensional
approximation of the P-F operator can be used to study the
approximated dynamics of the stochastic dynamical system. In
particular, the eigenvector with eigenvalue one of the matrix
P , i.e.,

µP = µ, µi ≥ 0,

L∑
i=1

µi = 1,

captures the steady state dynamics of the system.

VII. STABILITY IN FINITE DIMENSION

The finite dimensional approximation of the P-F operator
presented in the previous section can be decomposed into
the lower triangular form similar to the decomposition of the
infinite dimensional P-F operator in Eq. (6). With no loss of
generality, we assume the equilibrium point at the origin is
contained inside the cell, D1, and the partition is sufficiently
fine so D1 ⊂ O, where O is the local neighborhood of
the stable equilibrium point. We decompose X into two
complimentary partition as follows,

X0 = {D1}, X1 = {D2, ..., DL}, (24)

with domains X0 = D1 and X1 = ∪Lk=2Dk. Since the local
stable equilibrium point at the origin is contained in the cell,
D1, there exists a left eigenvector with eigenvalue one to
the Markov matrix, P , of the form µ0 = (1, 0 . . . , 0), i.e.,
µ0 = µ0P . The existence of the eigenvector can be used
to decompose the Markov matrix, P , in the following upper
triangular structure. Let M ∼= RL,M0

∼= R, and M1
∼= RL−1

denote the finite dimensional measure space associated with
the partition X ,X0, and X1, respectively and as defined in
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(24). Then, for the splitting M = M0⊕M1, the P matrix has
the following lower triangular representation.

P =

(
P0 0
× P1

)
,

where P0 = 1 and maps P0 : M0 →M0 and P1 : M1 →M1

is the sub-Markov matrix with row sum less than or equal to
one. We refer the readers to [36] for details on the decompo-
sition in finite dimension. Our goal is to study stability with
respect to initial condition starting from partition X1 using the
sub-Markov matrix, P1. In a discrete finite dimensional setting,
stability is expressed in terms of the transient property of the
stochastic matrix P1.

Definition 20 (Transient states): A sub-Markov matrix P1

has only transient states, if Pn1 → 0, element-wise, as n→∞.
Transience of P1 is shown to imply a weaker notion of stability
referred to as coarse stochastic stability and defined as follows.

Definition 21 (Stochastic Coarse Stability): Consider the
finite partition, X1, of the complement set, X1 = X \ X0.
The equilibrium point, x = 0, is said to be stochastic coarse
stable with respect to the initial condition in X1, if for an
attractor set, B ⊂ U ⊂ X1 there exists no subpartition
S = {Ds1 , . . . , Dsl} in X1 with domain S = ∪lk=1Dsk such
that B ⊂ S ⊂ U and for all x ∈ S Prob{T (x, ξ) ∈ S} = 1 .

For typical partitions, coarse stability means stability mod-
ulo attractor sets, B, with domain of attraction, U , smaller
than the size of cells within the partition. In the infinite-
dimensional limit, where the cell size (measure) goes to zero,
one obtains stability modulo attractor sets with measure 0
domain of attraction.

Theorem 22: Let the equilibrium point, x = 0 ∈ X0 ⊂ X ,
with local domain of attraction contained inside X0, P1 is the
sub-Markov operator on M(Ec). P1 be its finite dimensional
approximation obtained with respect to the partition X1 of the
complement set X1 = X \X0. For this, we have the following

1) Suppose a Lyapunov measure, µ̄, exists such that

[P1µ̄](B) < µ̄(B) (25)

for all B ⊂ B(X1), and additionally, µ̄ ≡ m, the
Lebesgue measure. Then, the finite-dimensional approx-
imation, P1, is transient.

2) Suppose P1 is transient, then the equilibrium point, x =
0, is coarse stable with respect to the initial conditions
in X1.

Proof: Before stating the proof, we claim for any two
sets, S1 and S, such that S1 ⊂ S, if µ ≈ m, then

µ(S1) = µ(S) ⇐⇒ m(S1) = m(S). (26)

Denote Sc1 := S\S1 as the complement set. We have, µ(S1) =
µ(S) implies µ(Sc1) = 0 which, in turn, implies m(Sc1) = 0
and, thus, m(S1) = m(S).

1. We first present a proof for the simplest case where the
partition, X1, consists of precisely one cell, i.e., X1 = {DL}.
In this case, P1 ∈ [0, 1] is a scalar given by

P1 =

Q∑
k=1

pk
m(T−1

wk
(DL) ∩DL)

m(DL)
, (27)

where m is the Lebesgue measure. We need to show P1 < 1.
Denote,

Sk = {x ∈ DL : Twk(x) ∈ DL}, k = 1, . . . , Q. (28)

Clearly, Sk ⊂ DL and the existence of Lyapunov measure µ̄
satisfying Eq. (25) implies

µ̄(Sk) = [Pwk1 µ̄](DL) < µ̄(DL), k = 1, . . . , Q.

Now,
Q∑
k=1

pkµ̄(Sk) =

Q∑
k=1

pk[Pwk1 µ̄](DL)] < µ̄(DL).

Using (26), m(Sk) 6= m(DL) and since Sk ⊂ DL, we have
m(Sk) < m(DL) for k = 1, . . . , Q. Hence,

P1 =

Q∑
k=1

pk
m(Sk)

m(DL)
< 1

is transient.
We prove the result for the general case, where X1 is a finite

partition, by contradiction. Suppose P1 is not transient. Then,
using the general result from the theory of finite Markov chains
[53], there exists at least one non-negative invariant probability
vector, ν, such that

ν · P1 = ν. (29)

Let,

S = {x ∈ Di : νi > 0}, S` = {x ∈ S : Tw`(x) ∈ S},

for ` = 1, . . . , Q. It is claimed

m(S`) = m(S), ` = 1, . . . , Q. (30)

We first assume the claim to be true and show the desired
contradiction. Clearly, S` ⊂ S and if the claim were true, (26)
shows

µ̄(S`) = µ̄(S), ` = 1, . . . , Q. (31)

Next, because S ⊂ X1,

P1µ̄(S) =
∑Q
`=1 p`µ̄(T−1

w`
(S) ∩X1)

≥
∑Q
`=1 p`µ̄(T−1

w`
(S) ∩ S) =

∑Q
`=1 p`µ̄(S`).

This, together with Eq. (31), gives

P1µ̄(S) ≥ µ̄(S)

for a set S with positive Lebesgue measure. This contradicts
Eq. (25) and proves the theorem.

It remains to show the claim. Let {ik}lk=1 be the indices
with νik > 0. Equation . (29) gives

l∑
k=1

νik

Q∑
`=1

p`[P
w`
1 ]ikjr = νjr for r = 1, . . . , l.

Taking a summation,
∑l
r=1, on either side gives

l∑
k=1

νik

l∑
r=1

Q∑
`=1

p`[P
w`
1 ]ikjr = 1.
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Since individual entries are non-negative and ν is a probability
vector, this implies

l∑
r=1

Q∑
`=1

p`[P
w`
1 ]ikjr = 1 k = 1, . . . , l.

Using formula (23) for the individual matrix entries, this gives
l∑

r=1

Q∑
`=1

p`m(T−1
w`

(Djr ) ∩Dik) = m(Dik),

Q∑
`=1

p`

l∑
r=1

m(T−1
w`

(Djr ) ∩Dik) = m(Dik).

Since Djr are disjoint for any fixed w`,

∪r{x : Tw`(x) ∈ Djr} = {x : Tw`(x) ∈ ∪rDjr},

i.e., ∪T−1
w`

(Djr ) = T−1
w`

(∪Djr ). Furthermore, since Tw` is
one-to-one, we have (T−1

w`
(Djr1

) ∩ Dik) ∩ (T−1
w`

(Djr2
) ∩

Dik) = ∅ as

{x ∈ Dik : Tw`(x) ∈ Djr1
}∩{x ∈ Dik : Tw`(x) ∈ Djr2

} = ∅

for r1 6= r2. Hence,
∑Q
`=1 p`m(T−1

w`
(∪`r=1Djr ) ∩ Dik) =

m(Dik). Therefore,
Q∑
`=1

p`m(T−1
w`

(∪`r=1Djr ) ∩Dik) = m(Dik).

However, by construction, S = ∪lr=1Djr and, thus,
Q∑
`=1

p`m(T−1
w`

(S) ∩Dik) = m(Dik).

Taking a summation on both sides
∑l
k=1, we obtain

Q∑
`=1

p`m(S`) = m(S) =

Q∑
`=1

p`m(S). (32)

Since S` ⊂ S, we have m(S`) ≤ m(S). From (32), we obtain
Q∑
`=1

p`(m(S`)−m(S)) = 0.

Since p` > 0 and m(S`) ≤ m(S), we conclude m(S`) =
m(S).

2. Suppose P1 is transient. To show the equilibrium point
is coarse stable, we proceed by contradiction. Using defini-
tion 21, if the equilibrium point is not coarse stable, then
there exists an attractor set B ⊂ U ⊂ X1 with a sub-partition
S = {Ds1 , ..., Dsl}, S = ∪lk=1Dsk such that B ⊂ S ⊂ U and
Prob{T (x, ξ) ∈ S} = 1 for all x ∈ S.

Prob{T (x, ξ) ∈ S} = 1 =

Q∑
`=1

pkχS(Tw`(x))

for x ∈ S. This implies S is left invariant by each Tw` for
` = 1, . . . , Q. Hence,

Pw`skj =
m(T−1

w`
(Dj) ∩Dsk)

m(Dsk)
= 0,

whenever Dj /∈ S. Since, Tw` : S → S,

Q∑
`=1

p`

l∑
j=1

[Pw`1 ]sisj = 1 i = 1, ..., l,

i.e., P1 is a Markov matrix with respect to the finite partition,
S. From the general theory of the Markov matrix [53], there
exists an invariant probability vector, ν, such that ν · Pn1 = ν
for all n > 0 and P1 is not transient.

There are various different equivalent ways of computing
the finite dimensional approximation of Lyapunov measure
using the finite dimensional approximation of the P-F operator.
In particular, if P1 is transient, then the Lyapunov measure µ̄
can be computed using the following formulas.

1) Compute the Lyapunov measure using an infinite series
formula,

µ̄ = m · (I − P1)−1 = m+m · P 2
1 +m · P 2

1 + . . . ,

for row vector m > 0 (element wise). For example m
could be taken as row vector of all ones corresponding
to the finite dimensional approximation of Lebesgue
measure.

2) Compute the Lyapunov measure as a solution of the
linear program

µ̄(αI − P1) > 0, α < 1.

VIII. EXAMPLES AND SIMULATION

Example 23: We consider an inverted pendulum example
with a stochastic damping parameter, ξ.

ẋ1 = x2.

ẋ2 = − sinx1 − (ξ + 0.7)x2. (33)

For the purpose of simulation, the continuous system is
discretized with the time step of discretization, ∆t = 0.1.
The phase space, X , for simulation is taken to be equal to
X = [−π, π] × [−π, π]. For the purpose of compacting the
state space, we identify −π and π along the x and y axis.
The damping parameter,, ξ is assumed stochastic with zero
mean and uniform distribution; hence, of the form [−α, α]. In
the following, we present simulation results by changing the
variance, i.e., α, of the random variable, ξ, while keeping the
mean zero and verifying the stochastic stability of the origin.

In Figs. 1 and 2, we show the plot for the Lyapunov measure
with random variable, ξ, supported on interval [−0.5, 0.5]
and [−0.75, 0.75], respectively. The existence of Lyapunov
measure implies the origin is almost everywhere almost sure
stable. When support of the random parameter, ξ, is increased
to [−1, 1], the system fails to have Lyapunov measure and
is confirmed from the invariant measure plot shown in Fig.
3. From Fig. 3, we notice the invariant measure has support
around the origin. This is in contrast to the invariant measure
plots when ξ is supported on [−0.5, 0.5] and [−0.75, 0.75] and
shown in Figs. 1 and 2. The invariant measure in these cases
is supported at the origin and is denoted by a blue dot at the
origin in Figs. 1 and 2.
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Fig. 1. Lyapunov measure plot with support of ξ ∈ [−0.5, 0.5].

Fig. 2. Lyapunov measure plot with support of ξ ∈ [−0.75, 0.75].

Fig. 3. Invariant measure plot with support of ξ ∈ [−1, 1].

Example 24: The second example is the stochastic coun-
terpart of the deterministic almost everywhere stable system
example from [33].

ẋ = −2x+ x2 − y2,

ẏ = −6y(1 + ξ) + 2xy, (34)

where ξ is a random variable with zero mean and uniformly

distributed between [−α, α]. The deterministic system has four
equilibrium points (0, 0), (2, 0) and (3,±

√
3) of which the

origin is stable equilibrium and the remaining are unstable. For
the stochastic system, two of the equilibrium points - one at
the origin and equilibrium point at (2, 0) are preserved. For the
purpose of simulation, the system is discretized in time with
the time step for discretization chosen to be equal to ∆t = 0.1.
The state space X is taken to be X = [−4, 4] × [−4, 4]. For
the purpose of compactness, −4 and 4 are identified along the
x−axis.

For better visualization, we plot the logarithm of the Lya-
punov measure plot for varying variance of the random vari-
able, ξ, by changing α, while retaining its zero mean. In Figs.
4 and 5, we show the log plot for the Lyapunov measure with ξ
supported between [−0.25, 0.25] and [−0.5, 0.5], respectively.
The existence of a Lyapunov measure in these plots implies
the origin is almost everywhere almost sure stable for these
statistics of random variable. When the support of the random
variable is changed to [−0.1, 0.1], the origin is no longer
almost everywhere almost sure stable. In Fig. 6, we show the
plot for the invariant measure supported in the neighborhood
of the origin. This is in contrast to the invariant measure plot
for the cases when ξ ∈ [0.25, 0.25] and ξ ∈ [0.5, 0.5]. For both
cases, the invariant measure is supported only at the single cell
containing the origin.

Fig. 4. Log plot of Lyapunov measure with noise support ξ ∈ [−0.25, 0.25].

IX. CONCLUSIONS

Weaker set-theoretic notion of almost everywhere stability
for stochastic dynamical system is introduced. Linear P-F
operator-based Lyapunov measure as a new tool for stochas-
tic stability verification is introduced. Duality between the
Lyapunov function and the Lyapunov measure is established
in a stochastic setting. Set-oriented numerical methods are
proposed for the finite dimensional approximation of the
Lyapunov measure. The finite dimensional approximation in-
troduce further weaker notion of stability refereed to as coarse
stochastic stability. The framework developed in this paper
can be easily extended to the case where the noise, ξn, forms
a Markov processes. This can be done by employing the P-
F operator defined for systems with Markov noise processes
[47].
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Fig. 5. Log plot of Lyapunov measure with noise support ξ ∈ [−0.5, 0.5].

Fig. 6. Invariant measure plot for ξ ∈ [−1, 1].
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[1] R. Z. Has’minskiĭ, Stochastic Stability of differential equations. Ger-
mantown ,MD: Sijthoff & Noordhoff, 1980.

[2] L. Arnold, Random Dynamical Systems. Berlin, Heidenberg: Springer
Verlag, 1998.

[3] H. J. Kushner, Stocahstic Stability and Control. New York: Academic
Press, 1967.

[4] X. Mao, Exponential Stability of Stochastic Differential Equations.
Monographs and Textbooks in Pure and Applied Mathematics Series,
Marcel Dekker, Inc., 1994.

[5] O. Imer, S. Yuksel, and T. Basar, “Optimal control of LTI systems over
communication networks,” Automatica, vol. 42, no. 9, pp. 1429–1440,
2006.

[6] L. Schenato and B. Sinopoli and M. Franceschitti and K. Poolla and S.
Sastry, “Foundations of control and estimation over Lossy networks,”
Proceedings of IEEE, vol. 95, no. 1, pp. 163–187, 2007.

[7] N.Elia, “Remote stabilization over fading channels,” Systems and Con-
trol Letters, vol. 54, pp. 237–249, 2005.

[8] A. Diwadkar and U. Vaidya, “Limitation on nonlinear observation over
erasure channel,” IEEE Transactions on Automatic Control, vol. 58,
no. 2, pp. 454–459, 2013.

[9] A. Diwadkar and U. Vaidya, “Stabilization of linear time varying
systems over uncertain channels,” International Journal of Robust and
Nonlinear Control, vol. 24, no. 7, pp. 1205–1220, 2014.

[10] A. Diwadkar, S. Dasgupta, and U. Vaidya, “Control of systems in Lure
form over erasure channels,” Accepted for publication in International
Journal of Robust and Nonlinear Control, 2014. [Online]. Available:
http://dx.doi.org/10.1002/rnc.3231

[11] S. Pushpak, A. Diwadkar, and U. Vaidya, “Stochastic stability analysis
and controller systhesis for continuous time linear systems,” in Proceed-
ings of IEEE Control and Decision Conference, Osaka, Japan, 2015.
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