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Dynamics and Control of Quadrotor UAVs Transporting a Rigid Body
Connected via Flexible Cables

Farhad A. Goodarzi and Taeyoung Lee*

Abstract— This paper is focused on the dynamics and control
of arbitrary number of quadrotor UAVs transporting a rigid
body payload. The rigid body payload is connected to quadro-
tors via flexible cables where each flexible cable is modeled
as a system of serially-connected links. It is shown that a
coordinate-free form of equations of motion can be derived
for arbitrary numbers of quadrotors and links according to
Lagrangian mechanics on a manifold. A geometric nonlinear
controller is presented to transport the rigid body to a fixed
desired position while aligning all of the links along the vertical
direction. Numerical results are provided to illustrate the
desirable features of the proposed control system.

I. INTRODUCTION

There are various applications for aerial load transporta-
tion such as usage in construction, military operations, emer-
gency response, or delivering packages. Load transportation
with the cable-suspended load has been studied traditionally
for a helicopter [1], [2] or for small unmanned aerial vehicles
such as quadrotor UAVs [3], [4], [5].

In most of the prior works, the dynamics of aerial trans-
portation has been simplified due to the inherent dynamic
complexities. For example, it is assumed that the dynamics
of the payload is considered completely decoupled from
quadrotors, and the effects of the payload and the cable are
regarded as arbitrary external forces and moments exerted to
the quadrotors [6], [7], [8], thereby making it challenging
to suppress the swinging motion of the payload actively,
particularly for agile aerial transportations.

Recently, the coupled dynamics of the payload or cable has
been explicitly incorporated into control system design [9].
In particular, a complete model of a quadrotor transport-
ing a payload modeled as a point mass, connected via a
flexible cable is presented, where the cable is modeled as
serially connected links to represent the deformation of the
cable [10]. In another distinct study, multiple quadrotors
transporting a rigid body payload has been studied [11],
but it is assume that the cables connecting the rigid body
payload and quadrotors are always taut. These assumptions
and simplifications in the dynamics of the system reduce the
stability of the controlled system, particularly in rapid and
aggressive load transportation where the motion of the cable
and payload is excited nontrivially.

The first distinct contribution of this paper is presenting
the complete dynamic model of an arbitrary number of
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Fig. 1. Quadrotor UAVs with a rigid body payload. Cables are modeled
as a serial connection of an arbitrary number of links (only 4 quadrotors
with 5 links in each cable are illustrated).

quadrotors transporting a rigid body where each quadrotor
is connected to the rigid body via a flexible cable. Each
flexible cable is modeled as an arbitrary number of serially
connected links, and it is valid for various masses and
lengths. A coordinate free form of equations of motion is
derived according to Lagrange mechanics on a nonlinear
manifold for the full dynamic model. These sets of equations
of motion are presented in a complete and organized manner
without any simplification.

Another contribution of this study is designing a con-
trol system to stabilize the rigid body at desired position.
Geometric nonlinear controllers presented in the author’s
previous study is utilized [12], [13], [14], and they are gen-
eralized for the presented model. More explicitly, we show
that the rigid body payload is asymptotically transported into
a desired location, while aligning all of the links along the
vertical direction corresponding to a hanging equilibrium.

The unique property of the proposed control system is
that the nontrivial coupling effects between the dynamics of
rigid payload, flexible cables, and multiple quadrotors are ex-
plicitly incorporated into control system design, without any
simplifying assumption. Another distinct feature is that the
equations of motion and the control systems are developed
directly on the nonlinear configuration manifold intrinsically.
Therefore, singularities of local parameterization are com-
pletely avoided to generate agile maneuvers of the payload
in a uniform way. In short, the proposed control system is



particularly useful for rapid and safe payload transportation
in complex terrain, where the position of the payload should
be controlled concurrently while suppressing the deformation
of the cables.

This paper is organized as follows. A dynamic model
is presented and the problem is formulated at Section II.
Control systems are constructed at Sections III and IV, which
are followed by numerical examples in Section V. Due to the
page limit, parts of proofs are relegated to [15].

II. PROBLEM FORMULATION

Consider a rigid body with mass my € R and moment
of inertia Jy € R3*3, being transported with arbitrary n
numbers of quadrotors. The location of the mass center of
the rigid body is denoted by z¢ € R?, and its attitude is given
by Ry € SO(3), where the special orthogonal group is given
by SO(3) = {R € R®*3 | RTR = I,det(R) = 1}. Figure
illustrates the system with an inertial frame. We choose an
inertial frame {€&, €5, €3} and body fixed frame {51, 527 53}
attached to the payload. We also consider a body fixed frame
attached to the i-th quadrotor {b1,,by,,bs,}. In the inertial
frame, the third axes €3 points downward with gravity and
the other axes are chosen to form an orthonormal frame.

The mass and the moment of inertia of the i-th quadrotor
are denoted by m; € R and J; € R3*3 respectively. The
cable connecting each quadrotor to the rigid body is modeled
as an arbitrary numbers of links for each quadrotor with
varying masses and lengths. The direction of the j-th link
of the ¢-th quadrotor, measured outward from the quadrotor
toward the payload is defined by the unit vector ¢;; € S,
where S? = {q € R3 | ||¢|| = 1}, where the mass and length
of that link is denoted with m;; and [;; respectively. The
number of links in the cable connected to the ¢-th quadrotor
is defined as n;.

The configuration manifold for this system is given by
SO(3) x R3 x (SO(3)") x (S§?)Xi=1". The i-th quadrotor
can generate a thrust force of — f; R;es € R3 with respect to
the inertial frame, where f; € R is the total thrust magnitude
of the i-th quadrotor. It also generates a moment M; € R?
with respect to its body-fixed frame. Throughout this paper,
the two norm of a matrix A is denoted by || A||. The standard
dot product is denoted by z -y = 2Ty for any z,y € R®.

A. Lagrangian

The kinematics equations for the links, payload, and
quadrotors are given by

Gij = Wi X Gij = Wi;Gij, (1)
Ry = RSy, (2)
R = R;Q;, 3)

where w;; € R? is the angular velocity of the j-th link in
the i-th cable satisfying ¢;; - wi; = 0. Also, Qy € R is the
angular velocity of the payload and €; € R? is the angular
velocity of the i-th quadrotor, expressed with respect to the
corresponding body fixed frame. The hat map * : R3 — s0(3)
is defined by the condition that #y = z x y for all z,y € R3,

and the inverse of the hat map is denoted by the vee map
Vis0(3) — R3.
The position of the i-th quadrotor is given by

i = 20+ Ropi = ) _ liatia; )

a=1

where p; € R3 is the vector from the center of mass of the
rigid body to the point that i-th quadrotor is connected to
rigid body via the cable. Similarly the position of the j-th
link in the cable connecting the i-th quadrotor to the rigid
body is given by

vij =0+ Ropi — Y liaGia- &)
a=j+1

We derive equations of motion according to Lagrangian
mechanics. Total kinetic energy of the system is given by

1 . n n; 1 . 1 n .
T :gmUH‘”OHQ DD §mij||$z‘j|\2 t3 > mall|?
i=1j=1 i=1
+ ! zn:Q JiQ% + 1Q Jo2 (6)
2 v 7 AN 2 0 0340-

The gravitational potential energy is given by

n noon;
V = —mgges - xo — g miges - & — E E mijges - Tij,
i=1

i=1 j=1
(7N

where it is assumed that the unit-vector e3 points downward
along the gravitational acceleration as shown at Figure [I]
The corresponding Lagrangian of the system is L =T — V.

B. Euler-Lagrange equations

Coordinate-free form of Lagrangian mechanics on the two-
sphere S? and the special orthogonal group SO(3) for various
multibody systems has been studied in [16], [17]. The key
idea is representing the infinitesimal variation of R; € SO(3)
in terms of the exponential map

d
6Ri= L] Riexpleis) = R, ®)
de | _,

for n; € R3. The corresponding variation of the angular
velocity is given by d$2; = 7; + €; X n;. Similarly, the
infinitesimal variation of ¢;; € S? is given by

0Gij = &ij X 4ijs ©)
for ¢;; € R? satisfying &;; - ¢;; = 0. This lies in the tangent

space as it is perpendicular to ¢;. Using these, we obtain the
following Euler-Lagrange equations.



Proposition 1: By using the above expressions, the equa-
tions of motion can be obtained from Hamilton’s principle:

n

n; n
Mrig — Z Z MoijlijGi; — Z MirRopiQ

i=1 j=1 i=1
= Mrges + Y —fiRies — > MirRoQ3pi,  (10)
i=1 i=1
JoQ0 + > MyrpiRgEo — Y Y Mojliy piRg i
=1 =1 j=1

= 5iR§ (—fiRies + Mirges) — QoJoQ, (1)
=1

n;

Z Moijlind3;Gix — Moizdsio + Moijdi; RopiSdo

k=1

= Moiji RoQ3pi — 63 (Moijges — fiRies),
JiQ 4+ Q; x J;Q; = M;.

(12)
(13)

Here the total mass My of the system and the mass of the
i-th quadrotor and its flexible cable M;r are defined as

My =mo+» Mir, Mip =Y mi;+mi,  (14)
i=1 j=1

and the constants related to the mass of links are given as

j—1
Moij = m; + E M,

a=1

15)

The equations of motion can be rearranged in a matrix form

as follow
NX =P (16)

where the state vector X € RPX with Dx =6+3Y""  n;
is given by

X = [mOa QOv qij, 425, ", QRj]Ta (17)
and matrix N € RPx*Px jg defined as
_MTI?) prﬂo N;Egl NwDQ Nwon_
Noyzo Jo Ng,1 Ngge2 Nagn
Nlmg NlQo qul 0 ce 0
N=1Ny, Ny 0 Nyp 0 |-

L Nnacg NnSZO 0 0 qun_

(18)

where the sub-matrices are defined as

n

E ~ T
NI(]Q() = - M’LTROPH NQUIQ = MIOQ()?

i=1

Nuoi = —[Moilins, MoialiaIs, -+, Moin,lin, 13,
Noyi = —[Moalinpi R, Moisliopi RS, -+, Moin,lin, pi RS ],
Nizy = —[MonGi, Moi2dia: -+ » Moin,Gin,]",
Nia, = [MoiG3 Ropi, MoinGiRopi, -+ MOiquiQniR(OlpAgilTa

and the sub-matrix N,; € R3"%3% s given by

—Movilals  Moioliag? Moip, lin, G2,
Mog1lin Gy, —Mogalinls Mozn, lin, G2,
quz’ = . . :
Mon1linGsy  Mon,2liaGls —Mon;n;lin, I3
(20
The P € RPX matrix is
P = [P,,, Po,, Pij, Poj, -+, Pojl", (2D

and sub-matrices of P matrix are also defined as

n n
Py = Mrges + Y _ —fiRies — Y  MirRoSps,

i=1 i=1

Pa, = —Q0JoQ0 + > piRG (Mirges — fiRies),

i=1
Py = — G2 (= fiRies + Moijges) + Moy;63 RoSpi
+ Moij14i; |1 ij -

Proof: See Appendix ]
These equations are derived directly on a nonlinear manifold
without any simplification. The dynamics of the payload,
flexible cables, and quadrotors are considered explicitly, and
they avoid singularities and complexities associated to local
coordinates.

III. CONTROL SYSTEM DESIGN FOR SIMPLIFIED
DYNAMIC MODEL

A. Control Problem Formulation

Let o, € R be the desired position of the payload. The
desired attitude of the payload is considered as Ry, = I3xs3,
and the desired direction of links is aligned along the vertical
direction. The corresponding location of the i-th quadrotor
at this desired configuration is given by

n;

Tiy = B0, + pi — P _ liaCs. (22)
a=1

We wish to design control forces f; and control moments M;

of quadrotors such that this desired configuration becomes

asymptotically stable.
B. Simplified Dynamic Model

Control forces for each quadrotor is given by — f; R;es for
the given equations of motion (I0), (IT)), (I2), (I3). As such,
the quadrotor dynamics is underactuated. The total thrust
magnitude of each quadrotor can be arbitrary chosen, but the
direction of the thrust vector is always along the third body
fixed axis, represented by R;es. But, the rotational attitude
dynamics of the quadrotors are fully actuated, and they are
not affected by the translational dynamics of the quadrotors
or the dynamics of links.

Based on these observations, in this section, we simplify
the model by replacing the —f;R;es term by a fictitious
control input u; € R3, and design an expression for u to
asymptotically stabilize the desired equilibrium. In another
words, we assume that the attitude of the quadrotor can be



instantaneously changed. The effects of the attitude dynamics
are studied at the next section.

C. Linear Control System

The control system for the simplified dynamic model is
developed based on the linearized equations of motion. At
the desired equilibrium, the position and the attitude of the
payload are given by z(, and R = I3, respectively, where
the superscript * denotes the value of a variable at the desired
equilibrium throughout this paper. Also, we have ¢;; = e3
and R = I3. In this equilibrium configuration, the control
input for the -th quadrotor is

u; = —f’Rles, (23)
where the total thrust is f" = (M7 + =)g.
The variation of xg is given by
5560 =T — l‘od, (24)

and the variation of the attitude of the payload is defined as
SRy = Rgilo = o,
for 19 € R3. The variation of g;; can be written as

0qi; = &5 X e3, (25)
where §;; € R? with &ij-e3 = 0. The variation of w;; is given
by dw;; € R? with dw;;-e3 = 0. Therefore, the third element
of each of &; and dw;; for any equilibrium configuration
is zero, and they are omitted in the following linearized
equations. The state vector of the linearized equation is
composed of CT¢;; € R?, where C' = [e1, eo] € R3*2
The variation of the control input du; € R3*!, is given as
du; = u; — uj.

Proposition 2: The linearized equations of the simplified
dynamic model are given by

Mzx + Gx = Béu, (26)

where the state vector x € RPx with Dy =6 +23""" | n;
is given by

X = [51‘07 7o, CTglj) OT§2j7 e 7CT§7Lj:| )

and du = [dul, 6ul, - 6ul]T € R3*1. The matrix
M € RP=*Px are defined as

[ MTIS MZILOQO MI(]I MZQZ MCE()’I’L
MQQZEO ‘]O Mﬂol MQ02 e MQon
Ml(Eg MIQD qul 0 tet 0
M= 1My, My, 0 Mg - 0 [
L anU MnQO 0 0 T qun_

where the sub-matrices are defined as

n
N o T
Mgy, = — g M;rpi; Mgz, = My q,

i1
M_yi = [MoirlinésC, MoolizésC, -+, Moin,lin, €3C],
Moy = [Moili1piC, MoialiopiC, -+, Moin,lin, piC],
Mz, = —[MoinC"és, MoinC és, -+, Moy, CTé3],

27

Mg, = [Moi1C"é3pi, MoinC"éspi, -+, MomiCTé3(p;g;

and the sub-matrix M,,; € R?"*2" is given by

Ml 1o
Mol 1o

Miiolinls
Mioalinlo

Miinlin, 12
Mion,lin, 12
M .

qqi —

Minini lini 12
(29)

Min1linds Mip,2linls

The matrix G € RP=*DPx ig defined as

0 0 0 0 0 0

0 Gogo, 0 0 0 0

0 0 G, 0 0 0
G= o 0 0 Gy, 0 0 |>

0 0 0 0 0 G,

where Goy0, = 1y 22gpiés and the sub-matrices G; €
Ran‘Xan‘ are

. m
G, = dlag[(—MiT — 70 =+ M()ij)geg,lg}.

The matrix B € RP=*3" is given by

[3 I3 e [3
[)1 /A)Q “e. pn
B 0 0 0
B=|0o Bg 0 0|

| 0 0 0 Bg]
where Bg = —[CTé3, CTés, -+, CTes)7.

Proof: See Appendix [B] [ |
We present the following PD-type control system for the
linearized dynamics

ou; = — Ky x — Ki, X, (30)

for controller gains K,,, K;, € R3*Px. Provided that
is controllable, we can choose the combined controller gains
K, = [K;’;, K;F"]T, K; = [K;fl, KIT}T € R3nxDx
such that the equilibrium is asymptotically stable for the
linearized equation (26).



IV. CONTROL SYSTEM DESIGN FOR THE FULL
DYNAMIC MODEL 05

The control system designed at the previous section is
based on a simplifying assumption that each quadrotor can
generates a thrust along any direction. In the full dynamic
model, the direction of the thrust for each quadrotor is
parallel to its third body-fixed axis always. In this section, 05
the attitude of each quadrotor is controlled such that the third 2 4 6 8 10
body-fixed axis becomes parallel to the direction of the ideal
control force designed in the previous section. The central
idea is that the attitude R; of the quadrotor is controlled
such that its total thrust direction —R;es, corresponding to
the third body-fixed axis, asymptotically follows the direction
of the fictitious control input u;. By choosing the total thrust
magnitude properly, we can guarantee asymptotical stability
for the full dynamic model.

Let A; € R3 be the ideal total thrust of the i-th quadrotor
that asymptotically stabilize the desired equilibrium. There- _
for, we have t

(c) Payload angular velocity Q29
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A =uf +u; = —Kp,x — K x + uj, (31

x10”

where f and v} are the total thrust and control input of
each quadrotor at its equilibrium respectively.
From the desired direction of the third body-fixed axis of

the i-th quadrotor, namely b3, € S?, is given by =3
A; :
bz, = — . (32)
[ A:| '
(JO 2 4 6 8 10

This provides a two-dimensional constraint on the three ‘
dimensional desired attitude of each quadrotor, such that
there remains one degree of freedom. To resolve it, the
desired direction of the first body-fixed axis b1,(t) € S? 10

is introduced as a smooth function of time. Due to the fact ™ g%\f\ 4
that the first body-fixed axis is normal to the third body-fixed _ )L/Q\ﬁ/_/—‘
axis, it is impossible to follow an arbitrary command by, (t) - ——
exactly. Instead, its projection onto the plane normal to bs, is _. 9‘;}\,\,— {
followed, and the desired direction of the second body-fixed ¢ > a 5 3 10
axis is chosen to constitute an orthonormal frame [13]. More .- 9.}\/\/‘/—‘
explicitly, the desired attitude of the i-th quadrotor is given % 2 e 8 10
by

(e) Payload attitude error W

(g) Quadrotors total thrust inputs f;
(bs; )by,
i i (33)

B3ib1i
[ (b3, )2b1, ||

Hl;3»; blq‘, H

Ri . = |: bdl] )
which is guaranteed to be an element of so(3). The desired
angular velocity is obtained from the attitude kinematics
equation, €;, = (RT'R; )V € R®. Define the tracking error
vectors for the attitude and the angular velocity of the i-th
quadrotor as

Fig. 2.

controller on SO(3):

fi=—A; - Rjes,
) M; = — kregr, — kqeq,
€R, = §(R£Ri —RIR;,)Y, eq, = — R R; Q;., (34)

and a configuration error function on SO(3) as follows
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(h) Direction error e4, and angular velocity
error ey, for the links

Stabilization of a rigid-body connected to multiple quadrotors

(36)

+ (RTR..Q.)"J;R'R.. Q., + J;RFR..Q.., (37)

where kr and kq are positive constants.

Stability of the corresponding controlled systems for the

1
Ui =5 trll - RTR;]. (35)
The thrust magnitude is chosen as the length of u;, projected

on to —IR;es, and the control moment is chosen as a tracking  a Lyapunov analysis.

full dynamic model can be studied by showing the the error
due to the discrepancy between the desired direction bs,
and the actual direction R;es. This stability is shown via



Proposition 3: Consider the full dynamic model de-
fined by (10), (II), (12), (13). For the command z,
and the desired direction of the first body-fixed axis by,
control inputs for quadrotors are designed as (36) and
(37). Then, the equilibrium of zero tracking errors for
€xos €zos CRy> €Qos €qi;s Cwijs CR;» €9, 1S €xponentially
stable.

Proof: See Appendix [C] [ |

V. NUMERICAL EXAMPLE

We demonstrate the desirable properties of the proposed
control system with numerical examples. Two cases are
presented. At the first case, a payload is transported to a
desired position from the ground. The second case considers
stabilization of a payload with large initial attitude errors.

A. Stabilization of the Rigid Body

Consider four quadrotors (n = 4) connected via flexible
cables to a rigid body payload. Initial conditions are chosen
as

z0(0) = [1.0, 4.8, 0.0/ m, v(0) = 031,
gi;(0) = e3, wi;(0) = 03x1, Ri(0) = I3x3, ©2;(0) = 03x1
Ry(0) = I3xs, 0 = 03x1.

The desired position of the payload is chosen as

xo,(t) = [0.44, 0.78, —0.5]7 m. (38)
The mass properties of quadrotors are chosen as
m; = 0.755kg,
J; = diag[0.557, 0.557, 1.05] x 10~ %kgm?. (39)

The payload is a box with mass mg = 0.5 kg, and its length,
width, and height are 0.6, 0.8, and 0.2 m, respectively. Each
cable connecting the rigid body to the i-th quadrotor is
considered to be n; = 5 rigid links. All the links have the
same mass of m;; = 0.01kg and length of [;; = 0.15m.
Each cable is attached to the following points of the payload

p1=1[0.3, —0.4, —0.1]Tm, p =[0.3, 0.4, —0.1]" m,
p3 =[—0.3, —0.4, —0.1]" m, ps = [-0.3, 0.4, —0.1]" m.

Numerical simulation results are presented at Figure [2]
which shows the position and velocity of the payload, and
its tracking errors. We have also presented the link direction
error defined as

m n;

eq=>_> llaij — esl.-

i=1 j=1

B. Payload Stabilization with Large Initial Attitude Errors

In the second case, we consider large initial errors for
the attitude of the payload and quadrotors. Initially, the rigid
body is tilted in its b; axis by 30 degrees, and the initial
direction of the links are chosen such that two cables are

(a) 3D perspective

r == =g
(b) Side view
®
(c) Top view
Fig. 3. Snapshots of controlled maneuver

curved along the horizontal direction. The initial conditions
are given by

20(0) = [24, 0.8, —1.0]7, vp(0) = Ogc1,
Wij(O) = 03><17 Q’L(O) = 03><1
Ro(0) = Ry(30°), Qo = O3x1,

where R, (30°) denotes the rotation about the first axis by
30°. The initial attitude of quadrotors are chosen as

Rl(o) = Ry(_35o)a RQ(O) = I3><3a
R3(0) = Ry(—35°), R4(0) = Iy

The properties of quadrotors and cables are identical to
the previous case. The payload mass is m = 1.0kg , and its
length, width, and height are 1.0, 1.2, and 0.2 m, respectively.

Figure [ illustrates the tracking errors, and the total thrust
of each quadrotor. Snapshots of the controlled maneuvers is
also illustrated at Figure [5 It is shown that the proposed
controller is able to stabilize the payload and cables at
their desired configuration even from the large initial attitude
errors.
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Fig. 4. Stabilization of a payload with multiple quadrotors connected with
flexible cables.

APPENDIX

A. Proof for Proposition []|

1) Kinetic Energy: The kinetic energy of the whole sys-
tem is composed of the kinetic energy of quadrotors, cables

e = gmolliol*+ 33 Sl + fop— 3 il
i=1j=1 amjt1
; ’ izl [k li A 1 "
T =gmolloll” + SMijllTig "+ 5 ) mall ! s 2o — S g |12

2 i=1 j=1 2 2 i=1 + 2 ;m’bnxo + RO,OZ ; zaqza”
1< 1 -
— . 1.0 _ . 1 1

+ 2 ;Qz Ji + 2Qo Jo2o. (40) + 3 291 ST+ 590 - Jo. @41

i=1


http://youtu.be/Mp4Riw6xBl4

We expand the above expression as follow

n
mollxoll +ZZmZJ||x0”2+Zmz||$O||
=1 5=1

n n;

+5 Z > mijl|Ropill* + mall Ropi|?)

i=1 j=1
n n;
+ Z(Z mi;&o - Ropi + mido - Rop;)
=1 j=1
1 n ng
5 Z Zm1]|| Z lzaqza”2 + mz” leaq1a||
i=1 j=1 _J+1

Z mmxo Z liaGia + Zo - Z lm‘]za

M

=1 _]Jrl
ZmUROPz Z llana +mzROpz lea%a
=1 j=1 a=j+1 a=1
+1§:Q T + 00 - Jo2 (42)
2 r [ ALY 2 0 0940,
and substituting (T4), (T3), it is rewritten as
1 .
T =§MT||9€0H2 ZMzTHROPzH +Z im0 - Rops)

Mg Uz

+ Z Z Moijlikgij - Gin — Z Zo - ZM()ijlijQij)

i=1 j,k=1 i=1 j=1
n Uz

- Z(Roﬂi . Z Moijlijgiz)
i=1 =1

IS 1
+ 502 S+ 5 Jo.

i=1

(43)

2) Potential Energy: We can derive the potential energy
expression by considering the gravitational forces on each
part of system as given

n n Uz
V = —moges - xo — E miges - Ty — E E mi;ges - Tij-

i=1 i=1 j=1
(44)

Using @) and (3), we obtain

nq

V = —moges - xo - Z miges - (zo + Ropi — Y _ liaGia)

i=1 a=1

-3 imijges “(zo + Ropi — Z liaGia), (45)

i=1j=1 a=j+1
and utilizing (I3)), we can simplify the potential energy as

n n;

V= _MTgeS Zo — Z MzTgeB ROPz + ZZ MOZ] ijqij - €3-

i=1 i=1 j=1

(46)

3) Derivatives of Lagrangian: We develop the equation
of motion for the Lagrangian . = T — V. The derivatives
of the Lagrangian are given by

D; L = Mrzo + Z M Ropi — Z Z Moizli;Gij,

i=1 i=1 j=1
(47
Dyo L = Mrges, (48)
n  n;
D(IUL ZZMOU 1kqﬂf _ZMOU z]($O+Ropl)
=1 j=1 =1
(49)
q” Z Moljll]e37 (50)

where D, denote the derivative with respect to ¢, and other
derivatives are defined similarly. We also have

Do, L =Jo8 + Z M7 pi RE %o,

i—1
n ng n
- Z Z MoijlijpiRE Gij — Z MrpiQ0, (51)
i=1 j—1 i=1

DQOL JOQO + ZPzRo M;rig — ZMOU zjng)

j=1
(52)
Do, L =Y Ji, (53)
=1
where J, is defined as
Jo=1Jo— Y Mup;. (54)

i=1

The derivation of the Lagrangian with respect to R is given
by

Dp,L-6Ry = Z M7 RoioQ0p; - o

i=1
n g
— > RoioQopi -+ Y Moijlijdis
i=1 j=1
+>  Mirges - Rofopi, (55)
i=1
which can be rewritten as
Dgr,L-6Ry = dg, - o, (56)
where
dRo = Z(((QOP'LRO 7.T=TO Z MO'L] qulj
i=1
+ Mirgpi R e3)). (57)



4) Lagrange-d’Alembert Principle: Consider & = fttuf L
be the action integral. Using the equations derived in previous
section, the infinitesimal variation of the action integral can
be written as

23
0B = DTUL . 51’0 + Dmo . 6$0

to

+ Do, L(7j0 + Q0 x 1m0) + dry L - 1m0

no ng
+ )0 Da L& % qij + &ij X i)

i=1 j=1

+ ZiquL (&g % qij)

i=1 j=1

+ ZDQiL. (1 + Qi X ni).
i=1

(58)

The total thrust at the ¢-th quadrotor with respect to the
inertial frame is denoted by w; = —f;R;es € R3 and the
total moment at the i-th quadrotor is defined as M; € R3.
The corresponding virtual work is given by

oW = Z U - {5330 + Rofjopi — Z lzygzj X Qz]}
to =1
+ M; -n; dt. 59)

According to Lagrange-d Alembert principle, we have 6& =
—&W for any variation of trajectories with fixes end points.
By using integration by parts and rearranging, we obtain the
following Euler-Lagrange equations

A L~ Dy = iu

dt . 60)
=1
d S
aﬁm+%X&M%m=Zm%m,(®
d .
Gij dth”L Gij Do, L = —lijqGijui, (62)
d
%DQ L+9Q; XDQL M;. (63)

Substituting the derivatives of Lagrangians into the above
expression and rearranging, the equations of motion are given

by (10), (™), (12). (13).
B. Proof for Proposition

The variations of = and ¢ are given by (24) and (25). From
the kinematics equation ¢;; = w;; X ¢;; and
(Sq” = 5” X e3 = 5wij X es + 0 x (f” X 63) = 50.}2-]- X es.
Since both sides of the above equation is perpendicular to
es, this is equivalent to eg x (&; X e3) = e3 X (dw;j X e3),
which yields

§ij — (e3 - &ij)es = dwij —

Since gij €3 = 0, we have 57,] s ez = 0. As €3 &uij =0
from the constraint, we obtain the linearized equation for the
kinematics equation of the link

§ij = dwij.

(63 . §wij)eg.

(64)

The infinitesimal variation of Ry € SO(3) in terms of the
exponential map
0Ry = (65)

Ry exp(eno) = Rofo,

d

de|._g

for no € R?. Substituting these into (10), (11), and (12}, and
ignoring the higher order terms, we obtain the following sets
of linearized equations of motion

n
Mrpoio — Z MirpidQ

i=1

- Z Z MoijlijésC(CTE)

=1 j=1

(66)

Z ou;

Z M7 pi6io + JodQ + Z Z MoijlijpiesC(CTE)

=1 =1 j=1
n m n
0 A A N
+ z; —gpicmo = z; pidu;
i= i=

—MoijCT e300 + Moi;CTéspid0 + Z Moi;lirI2(CTE)

(67)

k=1
A m
= —CTés0u; + (—M;r — 70 + Moij)gesl2(CT&5)
(68)

which can be written in a matrix form as presented in (26).
See [18] for detaied derivations for a similar dynamic system.
We used CTe3C = —1I, to simplify these derivations.

C. Proof for Proposition [3]

We first show stability of the rotational dynamics of each
quadrotor, and later it is combined with the stability analysis
for the remaining parts.

1) Attitude Error Dynamics: Here, attitude error dynam-
ics for ep,, eq, are derived and we find conditions on control
parameters to guarantee the boundedness of attitude tracking
errors. The time-derivative of J;eq, can be written as

JiéQi = {Jiegi + di}/\egi — k:ReRi — k‘Q@Qi, (70)

where d; = (2Jz — tr [JZ]I)R;FRHQM e R3 [14]. The
important property is that the first term of the right hand side
is normal to eq,, and it simplifies the subsequent Lyapunov
analysis.

2) Stability for Attitude Dynamics: Define a configuration
error function on SO(3) as follows

1

U, = 3 tr[l — RT Ry). (71)

We introduce the following Lyapunov function
V=) Va, (72)

i=1
where
1

Vo, = —eQ, - Jiégi + k‘R\IfZ-(Ri, Rdi) + Co,€eR, - eq,;- (73)

2



Consider a domain Dy given by

Dy = {(R;, ;) € SO(3) x R? | W,;(R;, Ry,) < g, < 2}.
(74)

In this domain we can show that Vs is bounded as fol-
lows [14]

Mlzle < VQ < 29, Ml2222m (75)
and zo, = | 0T € R2. Matrices M;,,, M;,, a
given by
_1 kr —C2, A
Mi21 _5 |:_02i>\Mi )‘mi 5
1

M

22 T

2kr
27¢2i ch )‘Ml ,
C2,; )‘Mz )‘Mz

The time derivative of V along the solution of the controlled

system is given by

Vo = ; 2 + C2,€R, - Jiegi + c9,€R,; - Jiégi.

Substituting (70), the above equation becomes
n
V2 = Z _kQ”eQi ||2 =+ C2iéRi ! ‘]1691 — C2; kRHSRi ||2
i=1

+ C2,€R; ((JZ@SL + di)/\eﬂi - erQz)

We have |eg,|| < 1, |1ér,|l < lleq,]l [19], and choose a
constant By, such that ||d;|| < B;,. Then we have

= 2 Wa,z,, (76)
i=1
where the matrix W, € R?*? is given by
Wy = | o kR — 5+ (ko + Ba,)
%7 | =Zi(ka + Ba,) ko — 2c2,
The matrix W5, is a positive definite matrix if
krAm, 4kq
¢z, < min *, . 77
% { A, 8krA; + (ko + Bi2)2} 77
This implies that
= A (W) |22, 117, (78)
i=1

which shows stability of the attitude dynamics of quadrotors.
3) Error Dynamics of the Payload and Links: We derive
the tracking error dynamics and a Lyapunov function for
the translational dynamics of a payload and the dynamics
of links. Later it is combined with the stability analyses of
the rotational dynamics. From (I0), 26), (31), and (36), the
equation of motion for the controlled dynamic model is given

by
Mx + Gx =

where
uy —(Myr + "0)ges
U —(Mar + %2)ges
u= | .|,u = . , (80)
Up, _(MnT + %)963

and g(x,x) corresponds to the higher order terms. As u; =
—fiR;es for the full dynamic model, du = u — u* is given
by

—fiRiez + (Mair + %%)ges

—faRoez + (Mar + "TLLO )ges

Su = (81)

—fnRnes + (MnT + = )963
The subsequent analyses are developed in the domain D,

Dy = {(x,%, Ri,eq,) € RP* x RPx x SO(3) x R?|

U, <y, <1} (82)
In the domain D;, we can show that
1 2 1 2
- A7 <Ry, Re,) < Al 83
3 e < WilRe Re) < 5o ler, (83)

Consider the quantity e R R;es, which represents the co-
sine of the angle between b3, = R;es and b3ci = R.e3.
Since 1 —U;(R;, R,,) represents the cosine of the eigen-axis
rotation angle between R., and R;, we have e3TR£ Res >
1-U,;(R;, R.,) > 0in D;. Therefore, the quantity ﬁ

is well-defined. We add and subtract W
right hand side of (8I)) to obtain

e R.es— Xy + (Mir + 0 )ges

R.,es3 to the

RT R €3
WRCQQB = Xo + (Mar + =) ges
ou =
WR%% — X + (M + %2)ges
(84)
where X; € R? is defined by
fi T T
Xi = m(((% RciRieg)Rieg — RC¢€3)~ (85)
Using
S on = UAil[Reie3) - Ries A
el RT Ries 3 el RT R;es [l As ] v
(86)
the equation (84) becomes
Ay — X1+ (Myr + 22)ges
Ay — Xo + (Mo + "ff )ges
du = ) (87)

An - Xn + (MnT + )963

Substituting (31)) into the above equation, (79) becomes

Mx + Gx = B(—Kyx — Kyx — X) +g(x,%x), (88)



where X = [X], XTI, ..
the following matrix form

-, X7 € R3". It is rewritten in

4 = Az + B(BX + g(x, %)), (89)
where 2z = [x,%|T € R?Px and
0 I 0
A= _M (G + BKy) —M—lBKJ B = {M—l] '
(90)

We can also choose Ky and Ky such that A € R2P=x2D=
is Hurwitz. Then for any positive definite matrix ¢ €
R2DPxx2Dx ' there exist a positive definite and symmetric
matrix P € R?P=*2Dx gquch that ATP + PA = —Q
according to [20, Thm 3.6].

4) Lyapunov Candidate for Simplified Dynamics: From
the linearized control system developed at section 3, we use
matrix P to introduce the following Lyapunov candidate for
translational dynamics

V) = 2T Pz. 1)

The time derivative of the Lyapunov function using the
Leibniz integral rule is given by

V) = TPz + 2T Py, (92)

Substituting (89) into above expression
Vi = 2T (ATP 4+ PA)z + 22T PB(BX + g(x,%)). (93)

Let c3 = 2||[PBB||2 € R and using ATP + PA = —Q, we
have

Vi < =28 Q21 + ez ||| X || + 22 PBg(x,%).  (94)

The second term on the right hand side of the above equation
corresponds to the effects of the attitude tracking error on
the translational dynamics. We find a bound of X;, defined
at (85), to show stability of the coupled translational dy-
namics and rotational dynamics in the subsequent Lyapunov
analysis. Since

fi = lAil|(e3 R Ries), (95)

we have

X3l < I|Aillll(e5 RE Ries)Ries — Rees|.  (96)

The last term |[(e3 RL Rie3)Rie3 — Re,es|| represents the
sine of the angle between b3, = R;e3 and bg@i = Res,
since (bs,, b3, )bs, —bs,, = bs, X (b3, X b3, ). The magnitude
of the attitude error vector, ||eg,|| represents the sine of the
eigen-axis rotation angle between R., and R;. Therefore,
|\(e§R£Ri63)Rieg - Rci€3H < ||eRi || in D;. It follows that

(X RT Ries)Ries — Re,es) < |ler,|| = V(2 — ;)
<{VYL2—¢1,) 2} <1,
Cn)
therefore
X3l < [[Aillller,
< [|Ailla. (98)

We find an upper boundary for
A; = —Kyx — KiX + u], (99)
by defining
lui || < By, (100)
for a given positive constant B. defining K,,,, € R
Kmax = max{|[Kxl|, [ Kx[l},
and then the upper bound of A is given by

HAiH < Kmax(HX” + HXH) + By

S 2Kmax||le +B1 (101)

Using the above steps we can show that
X[ < D (2Kmaxllz1ll + By)ller, )

i=1

S (QKmaxHZIH + Bl)a7
where o = > | ;. Then, we can simplify as
vl S - ()\min(Q) - 283Kmaxa)HZ1”2

(102)

+> esBillzlller, || + 227 PBg(x,%).  (103)
=1

5) Lyapunov Candidate for the Complete System: Let
YV = V; + Vs be the Lyapunov function for the complete
system. The time derivative of V) is given by

V=V +W.
Substituting (T03)) and into the above equation
V<= nin(Q) — 263 Kmax@) || 21||* + 22{ PBg(x, %)

(104)

+_esBillzflller | = Y An(Wa,)l|z2, )%, (105)

i=1 i=1
and using |leg, || < ||22,]|, it can be written as

v S - (Amin(Q) - 263Kmaxo¢)||21”2 + 2Z¥1PB9(X7 X)

+Y esBillzlllza ) = D Am(Wa,) 22, 1% (106)

i=1 i=1
The 22T PBg(x, %) term in the above equation is indefinite.
The function g(x,x) satisfies
la(x, %) ||
21

Then, for any v > 0 there exists > 0 such that

—0 as |z —0.

la(x, ) <yllzall Vilzall <7
Therfore
221 PBg(x, %) < 29[ Plla|21 )% (107)
Substituting the above inequality into (106)
V < = Anin(Q) — 263 Kmax) 2112 + 29| P2 ]| 21|
+ ) esBifallllzz | = D Am(Wa,)

i=1 i=1

|22, |12, (108)




and rearranging

g " )\min(Q) - 203Kmax04
V-3 . el
i=1
— cs Bz ll|z2, | + Am (Wo,)[122,1%)
+ 27| Pllz |21 [, (109)
we obtain
. n
V<= (2 Wiz) + 29[|Po| =P, (110)
i=1
where z; = [||21]],[|22,]]]T € R? and
)\min(Q)_2CS Knaxo _ C3Bli
wo— | 2o am
_% Am(WQi)
By using ||z1]| < ||z||, we obtain
~ S 29[| P2 5
< - )\min Wz - il - 112
V<=3 ) = Ll 1)
Choosing v < n(Amin(W;))/2||P]|2, and
|22 12
Am(Wa,) > 2 (113)

)\min(Q) - 2CSI(maXOC ’

ensures that V is negative definite. Then, the zero equilibrium
is exponentially stable.
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