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Abstract

This paper investigates a modification of cyclic constant bearing (CB) pursuit in
a multi-agent system in which each agent pays attention to a neighbor and a beacon.
The problem admits shape equilibria with collective circling about the beacon, with the
circling radius and angular separation of agents determined by choice of parameters in
the feedback law. Stability of circling shape equilibria is shown for a 2-agent system,
and the results are demonstrated on a collective of mobile robots tracked by a motion
capture system.

Index Terms - Cyclic pursuit, Multi-agent systems, Decentralized control, Robot motion

1 Introduction

Previous works [1–7] have demonstrated pertinence of dyadic pursuit interactions as a build-
ing block for collective control. In [1,2], the particular focus is on a cyclic pursuit scheme in
which each agent employs a constant bearing (CB) pursuit law [8] with regards to exactly
one other agent in the collective. In that context, it was demonstrated (for a range of control
parameters) that the closed-loop dynamics admit circling relative equilibria (among other
special solutions), with the corresponding formation shape determined by the choice of con-
trol parameters. However, both the location of the circumcenter (with respect to an inertial
frame) and the radius of the circular orbit are determined by initial conditions rather than
control parameters, which limits the effectiveness of the control methodology from a design
perspective.

In the current work, we introduce a modified version of the CB control law, in which the
pursuer is attentive to both a neighboring agent as well as to a beacon (which is assumed to be
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fixed in the current setting). Though the control law is not designed to stabilize a particular
station-keeping range from the beacon, we demonstrate that in an n-agent collective where
each agent i employs this “beacon-referenced” CB control law with respect to agent i`1 and
a common beacon, circling equilibria exist which are centered on the beacon position and
have a radius determined by the control parameters. For the case where n “ 2, we analyze
the stability of the associated circling equilibria by linearization of the dynamics, deriving
stability conditions in terms of the control parameters.

While our approach is motivated by the numerous robotic station-keeping applications
which require autonomous agents to orbit a specified location while maintaining a fixed
formation shape and scale (e.g. search and rescue, environmental sensing, etc.), we also
note that this work may provide insights into the mechanisms underlying collective behavior
observed in nature. For example, the beacon-referenced cyclic pursuit analyzed in this paper
may provide tools for modeling the “explore-exploit” behavior evidenced by some animal
collectives (e.g. honeybees [9]) searching for food sources.

2 Modeling the interaction

2.1 Modeling the system

As presented in [10, 11], we model an agent as a unit-mass self-steering particle with twice-
differentiable motion path in R

2. This allows us to use natural Frenet frame [12] equations
to describe the motion for a group of n agents. By letting ri denote the position of the i-th
agent, underlying system dynamics can be expressed as

9ri “ νixi

9xi “ νiuiyi

9yi “ ´νiuixi, i “ 1, 2, . . . , n.
(1)

Here xi is the normalized velocity and yi represents orthogonally rotated xi in the counter-
clockwise direction. Moreover, νi is the speed, and ui is the natural curvature viewed as a
steering control. Alternatively, by packing ri,xi,yi inside a matrix

gi fi

„

xi yi ri
0 0 1



P SEp2q, (2)

the natural Frenet frame equations (1) can be expressed as a left invariant dynamics on
SEp2q. From this perspective, the dynamics of an agent can be expressed as

9gi “ giξi “ νigipX0 ` uiX2q, (3)

where X0 and X2 represent standard basis elements of sep2q.
As discussed earlier, practical applications often require the collective of agents to maneu-

ver with respect to some particular desired location. Therefore, in this work we introduce a
beacon at location rb P R

2, along with a fixed frame rxb ybs attached to it (which is assumed
to be the inertial reference frame, without loss of generality), and define gb P SEp2q as in
(2) to pack rb, xb and yb inside a single matrix.
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2.2 Directed graph and commutativity constraints

Now we introduce the notion of an attention graph [2] to describe which agent(s) a particular
agent is paying attention to. By letting N “ t1, 2, . . . , n, bu denote the node-set for the
problem of our concern, the corresponding arc/edge-set (A) is defined as

A “
 

pi, i ` 1q, pi, bq
ˇ

ˇi “ 1, 2, . . . , n
(

, (4)

where addition in the index variables should be interpreted modulo n throughout this paper.
Clearly, this attention graph G “ pN ,Aq is weakly connected and devoid of any self loop.

Now, we formulate a reduction to the shape space, and introduce the following set of
variables (possibly redundant) along arcs of the attention graph G:

g̃i,i`1 “ g´1

i`1
gi (5)

and, g̃ib “ g´1

b gi. (6)

It follows from the definition that g̃i,i`1, i “ 1, 2, . . . , n are subject to the cycle closure
constraint

n
ź

i“1

g̃i,i`1 “ g̃n1g̃n´1,n ¨ ¨ ¨ g̃23g̃12 “ I3, (7)

where I3 is the 3ˆ3 identity matrix. (See also [2].) Moreover, by exploiting the commutative
property, we have

g̃i,i`1 “ g̃´1

i`1,bg̃ib, i “ 1, 2, . . . , n´ 1. (8)

This set of equations (8) poses consistency conditions on the space of shape variables. We
should note here that together (7) and (8) ensure g̃n1 “ g̃´1

1b g̃nb.
Also, from (3), (5) and (6), it follows that the shape dynamics can be expressed as

9̃gib “ g̃ibξi,

and 9̃gi,i`1 “ g̃i,i`1ξ̃i,i`1,
(9)

where ξ̃i,i`1 “ ξi´ g̃
´1

i,i`1
ξi`1g̃i,i`1. It is a straightforward exercise to show that the constraints

(7)-(8) will be satisfied for all future time if they are satisfied initially.

2.3 Scalar shape variables

Now, following the approach of earlier works [2], we introduce scalar shape variables (a polar
parametrization) to describe the state of an agent relative to the beacon and other agents.
By letting

Rpϑq “

„

cosϑ ´ sinϑ
sinϑ cosϑ



P SOp2q (10)

denote a counter-clockwise planar rotation through an angle ϑ, we define a set of scalar
shape variables ρi, ρib, κi, θi, κib and ψi as

ρi “ |ri`1,i|, ρib “ |rb,i|,

Rpκiqxi “
ri`1,i

|ri`1,i|
, Rpθiqxi “ ´

ri,i´1

|ri,i´1|
(11)

Rpκibqxi “
rb,i

|rb,i|
, Rpπ ´ ψiqxb “

rb,i

|rb,i|
,
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rb

xi

xi+1

θi

κib κi

ρi,b = |rb,i| ρi = |ri+1,i|

ρi+1,b = |rb,i+1|

ρi−1,b = |rb,i−1|

ρi−1 = |ri,i−1|ri−1

ri+1

ri

xi−1

Figure 1: Illustration of the scalar shape variables (ρi, ρib, θi, κi and κib) used in our analysis
of an n-agent system with a fixed beacon at location rb.

where i “ 1, 2, . . . , n and ri,j “ ri ´ rj represents the position of i-th agent relative to the
j-th agent (see Fig 1).

Using these recently introduced scalar shape variables, the consistency conditions (8) can
be expressed as

Rpψi ´ ψi`1q “ Rpπ ` κi ´ θi`1 ` κi`1,b ´ κibq (12)

ρiI2 “ ρibRpκib ´ κiq ` ρi`1,bRpκi`1,b ´ θi`1q (13)

for i “ 1, 2, . . . , n´ 1. In a similar way, the cycle closure constraint (7) can be expressed as

R
`

n
ÿ

i“1

pπ ` κi ´ θi`1q
˘

“ I2 (14)

n
ÿ

i“1

ρiR
`

i
ÿ

j“1

pπ ` κj ´ θj`1q
˘

“ 0. (15)

In actuality, certain simplifications allow us to consider only a subset of these variables and
constraints. First, it is clear that for a particular choice of ψ1, (12) provides an explicit
representation for the scalar shape variables ψi, i “ 2, 3, . . . , n in terms of other shape
variables, and therefore we can disregard those variables as well as constraint (12) from the
following analysis. Furthermore, the choice of beacon frame rxb ybs is arbitrary and the
proposed feedback law (see Section III) is invariant to any rotation of the beacon frame,
and therefore there exists an S1 symmetry enabling us to exclude ψ1 from further analysis.
Finally, one can show that (13) together with (14) and (15) can be expressed more concisely
as simply (13) (holding for i “ 1, 2, . . . , n) with (14). Therefore, the shape space can be
parametrized by the scalar variables κi, κib, θi, ρi, ρib, for i “ 1, 2, . . . , n, subject only to
the positivity constraints on ρi and ρib (necessary for the well-posedness of a feedback law
introduced in the next section) and the constraints (13) - (14) for i “ 1, 2, . . . , n, i.e.

R
`

n
ÿ

i“1

pπ ` κi ´ θi`1q
˘

“ I2 (16)

ρiI2 “ ρibRpκib ´ κiq ` ρi`1,bRpκi`1,b ´ θi`1q. (17)

Next we focus on representing the shape dynamics (9) in terms of scalar shape variables.
By straightforward calculations, one can show that the shape dynamics are given in terms

4



of the scalar variables by

9ρi “ ´νi cosκi ´ νi`1 cos θi`1

9κi “ ´νiui `
1

ρi

“

νi sin κi ` νi`1 sin θi`1

‰

9θi “ ´νiui `
1

ρi´1

“

νi´1 sin κi´1 ` νi sin θi
‰

(18)

9ρib “ ´νi cosκib

9κib “ ´νiui `
νi

ρib
sin κib, i “ 1, 2, . . . , n,

subject to the cycle closure constraint (16) and consistency conditions (17).

3 A beacon-referenced CB pursuit law

In this section we introduce a modified version of the CB pursuit law from [8] that introduces
an additional term referenced to the beacon bearing. We construct this feedback law as a
convex combination of two fundamental building blocks, expressed as

ui “ p1 ´ λquiCB ` λuiB, λ P r0, 1s (19)

where uiCB is given by the original CB pursuit law [8] referenced to agent i ` 1, and uiB
represents the deviation from a desired bearing angle to the beacon. More specifically, we
choose

uiCB “ ´µi

ˆ

Rpαiqyi ¨
ri,i`1

|ri,i`1|

˙

´
1

νi|ri,i`1|

ˆ

ri,i`1

|ri,i`1|
¨Rpπ{2q 9ri,i`1

˙

, (20)

with µi ą 0 being a control gain and the angle αi P S1 representing the desired offset between
the i-th agent’s heading and the current location of the pi ` 1q-th agent. For the beacon
tracking component, we let

uiB “ ´µb
i

ˆ

Rpαibqyi ¨
ri,b

|ri,b|

˙

, (21)

where µb
i ą 0 is the corresponding control gain and the angle αib P S1 is the desired offset

between the current heading of the i-th agent and the bearing to the beacon location. Note
that the neighbor tracking goal may conflict with the beacon referencing goal, and the
parameter λ maintains a balance between the beacon’s influence and the influence of the
neighboring agent i ` 1. In particular, for λ “ 0, ui is simply the original CB pursuit law
with no reference to the beacon.

In terms of scalar shape variables, the feedback law ui can be expressed as

ui “ λµb
i sinpκib ´ αibq ` p1 ´ λqµi sinpκi ´ αiq `

1 ´ λ

ρi

ˆ

sin κi `
νi`1

νi
sin θi`1

˙

. (22)

Remark 3.1. As noted in [8], the last component of this feedback law (22) can be interpreted
as the angular speed at which the baseline between agent-i and agent-i` 1 is rotating around
the i-th agent. Therefore it is plausible to evaluate the steering command ui without explicit
measurement of distance between the agents, although it will require an appropriate sensing
mechanism (mimicking the principle of compound eyes in visual insects).
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Before going into detailed analysis of relative equilibria, we introduce the following sim-
plifying assumptions:

(A1) The speed of the agents are equal and constant. Hence, without loss of generality, we
can assume νi “ 1 for every i P t1, 2, . . . , nu.

(A2) The controller gains (µi and µ
b
i) are equal and common for all agents, i.e. µi “ µb

i “ µ

for every i P t1, 2, . . . , nu.

(A3) The bearing angles (αib) with respect to the beacon are common for all agents, i.e.
αib “ α0 for every i P t1, 2, . . . , nu.

Under assumptions (A1)-(A3), the closed loop shape dynamics ((18) with (22)) can be
expressed as

9ρi “ ´
`

cosκi ` cos θi`1

˘

9κi “ ´µ
“

p1 ´ λq sinpκi ´ αiq ` λ sinpκib ´ α0q
‰

`
λ

ρi

“

sin κi ` sin θi`1

‰

9θi “ 9κi ´
1

ρi

“

sin κi ` sin θi`1

‰

`
1

ρi´1

“

sin κi´1 ` sin θi
‰

(23)

9ρib “ ´ cosκib

9κib “ 9κi ´
1

ρi

“

sin κi ` sin θi`1

‰

`
1

ρib
sin κib

for i “ 1, 2, . . . , n, subject to the constraints (16)-(17).

4 Relative equilibria

In this section we analyze the closed loop shape dynamics (23) to determine existence con-
ditions and characterization of their equilibria (i.e. relative equilibria for the full dynamics
(1) with (19)). At the extreme value of λ “ 0, the shape dynamics simplify to the cyclic CB
pursuit dynamics previously analyzed in [2], while at the other extreme, inter-agent interac-
tion is completely lost whenever λ “ 1. Therefore we restrict λ to lie in the open interval
p0, 1q for the rest of our analysis.

From the form of 9ρib and 9ρi in (23), we can obtain necessary conditions at equilibrium
given by

κib “ ˘
π

2
, and, θi`1 “ π ˘ κi, (24)

for i “ 1, 2, . . . , n. Similarly, by setting the dynamics of θi and κib equal to zero, we obtain
(for i “ 1, 2, . . . , n)

1

ρi
psin κi ` sin θi`1q “

1

ρi´1

psin κi´1 ` sin θiq, (25)

1

ρi
psin κi ` sin θi`1q “

1

ρib
sin κib. (26)

A straightforward calculation reveals that if κib “ ˘π{2 with κi “ π` θi`1, then (26) results
in a contradiction since its left hand side vanishes to zero, contrary to a non-zero (˘1{ρib)
right hand side. Thus, at a relative equilibrium, we have

θi`1 “ π ´ κi, i “ 1, 2, . . . , n. (27)

6



By introducing a new variable γi defined as

γi fi
1

ρi

`

sin κi ` sin θi`1

˘

“
2

ρi
sin κi, (28)

we obtain the following condition

γi “ γi´1 i “ 1, 2, . . . , n (29)

from (25). This condition, along with (26), gives rise to

sin κib
ρib

“
sin κi´1,b

ρi´1,b

i “ 1, 2, . . . , n, (30)

which in turn yields the equilibrium values of κib as

κib “

"

π{2 @i P t1, 2, . . . , nu, or
´π{2 @i P t1, 2, . . . , nu.

(31)

Now setting the dynamics of κi to zero, we obtain

µ
”

p1 ´ λq sinpκi ´ αiq ` λ sinpκib ´ α0q
ı

“
λ

ρi
psin κi ` sin θi`1q “ γi (32)

for i “ 1, 2, . . . , n. As κib “ ˘π{2 and θi`1 “ π ´ κi at a relative equilibrium, (32) yields an
equilibrium value for ρi given by

ρi “
2 sinκib sin κi

µ
`

1

λ
´ 1

˘

sin κib sinpκi ´ αiq ` µ cosα0

. (33)

Similarly, by (26) an equilibrium value of ρib can be expressed as

ρib “
1

µ
`

1

λ
´ 1

˘

sin κib sinpκi ´ αiq ` µ cosα0

“
sin κib
γi

. (34)

As we have shown earlier in (29) that γi “ γi´1 for every i P t1, 2, . . . , nu, it follows from
(34) that the agents will be equi-distant from the beacon at any relative equilibrium. Hence,
all relative equilibria for the system must be circling equilibria. Moreover, as both
ρi and ρib are required to be positive, we have necessary conditions for existence of circling
equilibrium, given by

λ cosα0 ` p1 ´ λq sinκib sinpκi ´ αiq ą 0 (35)

and, sin κib sin κi ą 0. (36)

4.1 Evaluating solutions for κi

It is easy to check that at any (circling) equilibrium of the closed loop shape dynamics, (29)
with (32) implies that

sinpκi`1 ´ αi`1q “ sinpκi ´ αiq, (37)

7



α˚

α˚

α˚

...

α˚ α˚
c

...

α˚
c

...
...

α˚
c

α˚
c

...
...

α˚

...
...

α˚
c α˚ #n

...

#3

#2

#1

Figure 2: Graphic representation of all possible solutions for sinpκi`1 ´ αi`1q “ sinpκi ´ αiq,
i “ 1, 2, . . . , n wherein α˚

c “ π´ α˚. It is important to note here that a particular branch of
this tree might not yield a plausible value of κi (due to closure and positivity constraints).
The leftmost branch in this tree represents the relative equilibrium with equal pκi ´ αiq for
every agent.

for which we have two possible solutions given by

κi`1 ´ αi`1 “

"

κi ´ αi (38a)

π ´ pκi ´ αiq (38b)

where i P t1, 2, . . . , nu. Equilibrium values for κi can therefore be derived from (38a)-(38b),
along with shape variable constraints (16)-(17) and positivity conditions (35)-(36).

If we let α˚ be the angle satisfying κ1 ´ α1 “ α˚ at equilibrium, then by (38a)-(38b)
κ2 ´ α2 must assume either α˚ or π ´ α˚. This aspect of binary possibilities holds true for
every agent and therefore results in the branching depicted in Fig 2. This figure provides
a graphical illustration of all possible solutions for (37), with each branch representing a
candidate solution for κi. By considering a particular branch of the tree with M (where
M P t1, 2, ¨ ¨ ¨ , nu) copies of α˚ and pn ´ Mq copies of π ´ α˚, we have

n
ÿ

i“1

κi “ pn´ Mqπ ` p2M ´ nqα˚ `
n
ÿ

i“1

αi. (39)

Now we focus on the shape variable constraints (16)-(17) to obtain solutions for α˚. It
is easy to check that the consistency conditions (17) hold true at any relative equilibrium of
the closed loop dynamics. Additionally, by exploiting the relationship between equilibrium
values of κi and θi, the cycle closure constraint (16) can be expressed as

n
ÿ

i“1

κi “ mπ, m P Z, (40)

where Z is the set of integers. By substituting (40) into (39), we have

p2M ´ nqα˚ “ pm ` M ´ nqπ ´
n
ÿ

i“1

αi. (41)

8



We summarize the preceding discussion in the following proposition.

Proposition 4.1. Consider an n-agent cyclic CB pursuit system with beacon, whose shape
dynamics is governed by (23) parametrized by µ, λ, and the CB parameters tα0, α1, α2, . . . , αnu.
The following statements are true.

(a) The only possible relative equilibria are circling equilibria.

(b) Whenever sinp
ř

αiq ‰ 0, a circling equilibrium exists if and only if there exists m P Z

and σ “ pσ1, σ2, . . . , σnq P t´1, 1un such that

(i) the cardinality M of the subset tσi|σi “ 1, i “ 1, 2, . . . , nu satisfies

2M ´ n ‰ 0, (42)

and

(ii)
λ cosα0 ` p1 ´ λq sinα˚ ą 0,

sin
`

α˚ ` σiαi

˘

ą 0, i “ 1, 2, . . . , n
(43)

where α˚ is given by

α˚ “

ˆ

m` M ´ n

2M ´ n

˙

π ´
n
ÿ

i“1

ˆ

αi

2M ´ n

˙

. (44)

At equilibrium, we have either κib “ π{2, i “ 1, 2, . . . , n or κib “ ´π{2, i “ 1, 2, . . . , n
and the equilibrium values of κi, ρib, and ρi given by

κi “
πp1 ´ σiq

2
` pσiα

˚ ` αiq “

"

α˚ ` αi, if σi “ `1
π ´ α˚ ` αi, if σi “ ´1

ρib “
1

µλ cosα0 ` µ p1 ´ λq sin κib sinα˚

ρi “ 2ρib sin κib sin κi.

Proof. The first statement of the proposition directly follows from (34).
The preceding discussion has demonstrated that if a circling equilibrium exists, then κib

and κi must satisfy (31),(35)-(36), (38a)-(38b), and (40), and the equilibrium values for θi,
ρi and ρib can be expressed in terms of κib and κi by (27), (33), and (34). Further analysis
of (35)-(36) demonstrated that if we let α˚ denotes the angle difference pκ1 ´ α1q, then for
each i, we have one of two possibilities - either κi “ α˚ ` αi or κi “ π ´ α˚ ` αi, which we
represent by the binary tree in Fig 2.

We now consider a particular branch of the binary tree (Fig 2), for which κi “ α˚ `αi for
exactlyM agents (1 ď M ď n) and κi “ π´α˚ `αi for the remaining n´M agents. Clearly,
for the first set of M agents we have sin κi “ sinpα˚ ` αiq, while the remaining agents will
have sin κi “ sinpα˚ ´ αiq, and therefore there exists some σ “ pσ1, σ2, . . . , σnq P t´1, 1un

such that sin κi “ sinpα˚ ` σiαiq for every i “ 1, 2, . . . , n, and the cardinality of the set
tσi|σi “ 1, i “ 1, 2, . . . , nu is M . This implies that (41) will hold (as demonstrated in the

9



previous discussion), and thus for κib “ π{2, it is clear that the positivity conditions (35)-(36)
can be expressed as (43), with (44) following from (41) as long as 2M ´ n ‰ 0.

It remains to be shown that (43) also encompasses the case κib “ ´π{2, so that (43) is
equivalent to (35)-(36). For κib “ ´π{2, the positivity conditions (35)-(36) simplify to

λ cosα0 ´ p1 ´ λq sinα˚ ą 0

sinpα˚ ` σiαiq ă 0,
(45)

and we must show that there exists m̂ P Z such that (43) with m̂ substituted into (44)
is equivalent to (45). Choosing m̂ “ m ` 2M ´ n yields the desired result, and therefore
statement (b) of the proposition is established. The characterization of the associated equi-
librium values follows from the preceding discussion, and also establishes the sufficiency of
our existence conditions, completing the proof.

Remark 4.2. The possibility of having 2M ´ n “ 0 cannot be ruled out for an even number
of agents, in which case (41) can only be satisfied if

ř

αi is an integer multiple of π. This
case corresponds to existence of a continuum of circling equilibria.

Remark 4.3. Letting ψi,i`1 denote the angular separation between agent i and i ` 1 at a
circling equilibrium, we have

cosψi,i`1 “
ρ2ib ` ρ2i`1,b ´ ρ2i

2ρibρi`1,b

“ cosp2κiq. (46)

Therefore the equilibrium value of angular separation between agent i and agent i` 1 is 2κi.

Remark 4.4. If we consider the special case for which (38a) holds true for each pair of
agents (i.e. the leftmost branch in Fig 2), then we have σ “ p1, 1, . . . , 1q, i.e. M “ n. In
this case (41) simplifies to the form

α˚ “ m
´π

n

¯

´
n
ÿ

i“1

´αi

n

¯

. (47)

5 Stability analysis for the two-agent system

Here we consider the case where n “ 2 and analyze the stability of the associated circling
equilibria. For the two-agent system, our constraints (16)-(17) imply that ρ1 “ ρ2 fi ρ and
θi “ κi for i “ 1, 2. Thus the dynamics (23) simplify for the two-agent case to

9ρ “ ´pcosκ1 ` cos κ2q

9κi “ ´µ
”

p1 ´ λq sinpκi ´ αiq ` λ sinpκib ´ α0q
ı

`
λ

ρ
psin κ1 ` sin κ2q (48)

9ρib “ ´ cosκib

9κib “ 9κi ´
1

ρ
psin κ1 ` sin κ2q `

1

ρib
sin κib, i “ 1, 2,

and are subject to the constraint (16) which simplifies to

ρI2 ´ ρ1bRpκ1b ´ κ1q ´ ρ2bRpκ2b ´ κ2q “ 0. (49)

10



5.1 Existence of circling equilibria for the two-agent case

For the two-agent system, we have only two possible branches in Fig 2. The right-hand
branch corresponds to M “ 1, for which we have 2M ´ n “ 0, and Proposition 4.1 does not
apply. However, if α1 ` α2 “ kπ for some k P Z, then a continuum of equilibria exist with
κ1 and κ2 satisfying κ1 ` κ2 “ π ` α1 ` α2.

For the left-hand branch in Fig 2, we have M “ 2 (i.e. 2M ´ n ‰ 0) and therefore we
can apply Proposition 4.1 (as long as sinp

ř

αiq ‰ 0) for which (44) simplifies to

α˚ “ m
´π

2

¯

´
2
ÿ

i“1

´αi

2

¯

. (50)

Thus we have (for i “ 1, 2)

sinpα˚ ` σiαiq “ sin
´

m
π

2
` αi ´

α1 ` α2

2

¯

, (51)

and the second constraint in (43) requires m “ ˘1. We label these options as Type 1
and Type 2 two-agent circling equilibrium and summarize the resulting characterization in
Table 1, where we have made use of the notation

α` “ pα1 ` α2q{2, α´ “ pα1 ´ α2q{2. (52)

5.2 Stability analysis

We analyze the stability of two-agent circling equilibria by linearizing the dynamics (48)
about the equilibria described in the previous section. Following the line of thought from
the stability analysis in [3], we first demonstrate that the linearized dynamics will always
have exactly one pair of pure imaginary eigenvalues resulting from the constraint equation
(49).

First, denoting ξ “ tκ1, κ2, ρ, κ1b, κ2b, ρ1b, ρ2bu and the corresponding dynamics (48) by
fpξq, we express (49) in terms of scalar constraints by

g1pξq fi ρ´ ρ1b cospκ1b ´ κ1q ´ ρ2b cospκ2b ´ κ2q “ 0,

g2pξq fi ρ1b sinpκ1b ´ κ1q ` ρ2b sinpκ2b ´ κ2q “ 0.

We define the manifold on which these constraints are satisfied by

M “
 

ξ P R
7n : g1pξq “ g2pξq “ 0

(

, (53)

which can be shown to be invariant under the dynamics (48). If we let ξ̄ denote a repre-

sentative circling equilibrium for the two-agent case and let
9̃
ξ “ Aξ̃ denote the linearization

of the dynamics (49) about ξ̄, then it was demonstrated in [3] that invariance of M implies
existence of a change of basis which will transform A into upper-triangular form with a 2ˆ2
lower-right hand block. A suitable explicit form for the change of basis is given by φ “ Φpξq,
where

φ1 “ κ1, φ2 “ κ2, φ3 “ ρ, φ4 “ κ1b,

φ5 “ ρ1b, φ6 “ g1pξq, φ7 “ g2pξq. (54)

11



We note that the corresponding equilibrium φ̄ “ Φpξ̄q will have 0’s for the last two compo-
nents.

By a straightforward calculation, we have

9g1pξq “
Bg1pξq

Bξ
fpξq “ ´

sin κ1 ` sin κ2
ρ

g2pξq,

9g2pξq “
Bg2pξq

Bξ
fpξq “

sin κ1 ` sin κ2
ρ

g1pξq, (55)

from whence it follows that, under the change of basis, the dynamics linearized about φ̄ take
the upper-triangular form

9φ “

„

A11 ˚
02ˆ5 A22



φ, (56)

with

A22 “

„

0 ´ sinκ1`sinκ2

ρ
sinκ1`sinκ2

ρ
0



ξ“Φ´1pφq

“

„

0 ¯δ
˘δ 0



, (57)

where δ fi µ
`

cosα0 `
`

1´λ
λ

˘

cosα`
˘

. It is clear from (57) that A22 has a pair of pure
imaginary eigenvalues at λ “ ˘jµδ (resulting from the constraint equation (49)). By analogy
with the argument presented in [3], we focus our stability characterization on the remaining
five eigenvalues.

Returning to the original coordinates ξ, we proceed with our stability analysis by lin-
earizing the dynamics about the Type 1 CCW circling equilibrium from Table 1. One can
show that the corresponding characteristic polynomial P pxq is given by

P pxq “ px2 ` δ2qpx2 ` λΨx ` λδ2q
`

x3 ` λΨx2 ` δ2x` p1 ´ λqµ sinα`δ2
˘

, (58)

where

Ψ fi µ

„

sinpα0q `

ˆ

1 ´ λ

λ

˙

sinpα`q



. (59)

As expected based on the previous discussion, P pxq has two pure imaginary roots at x “ ˘jδ.
It is also clear that the roots of the quadratic term will have strictly negative real part if and
only if Ψ ą 0. By the Routh-Hurwitz criterion, the roots of the cubic factor will be in the
open left-half plane if and only if Ψ ą 0, sinα` ą 0, and λΨδ2 ´ p1´λqµ sinα`δ2 ą 0. Since
this last condition simplifies to λΨ ´ p1 ´ λqµ sinα` ą 0, which always holds if sinpα0q ą 0,
our requirement for stability is given by sinα` ą 0 and sinpα0q ą 0.

A similar analysis of the other possible circling equilibria (i.e. Type 1 CW and Type 2
CCW and CW) results in analogous stability conditions, which can be summarized in the
following proposition.

Proposition 5.1. The Jacobian associated with the two-agent circling equilibria has two pure
imaginary eigenvalues resulting from the constraint equation (49). The remaining eigenvalues
all have real parts less than zero if and only if

12



Type 1 Type 2

Existence Condition
cosα´ ą 0
λ cosα0 ` p1 ´ λq cosα` ą 0

cosα´ ă 0
λ cosα0 ´ p1 ´ λq cosα` ą 0

CCW CW CW CCW

Chracterization
of
Equilibria

κib “ π
2

κ1 “ π
2

` α´

κ2 “ π
2

´ α´

ψ12 “ π ` 2α´

κib “ ´π
2

κ1 “ ´π
2

` α´

κ2 “ ´π
2

´ α´

ψ12 “ ´π ` 2α´

κib “ ´π
2

κ1 “ π
2

` α´

κ2 “ π
2

´ α´

ψ12 “ π ` 2α´

κib “ π
2

κ1 “ ´π
2

` α´

κ2 “ ´π
2

´ α´

ψ12 “ ´π ` 2α´

ρi “
2λ cosα´

µλ cosα0 ` µp1 ´ λq cosα`

ρib “
λ

µλ cosα0 ` µp1 ´ λq cosα`

ρi “
2λ cosα´

µp1 ´ λq cosα` ´ µλ cosα0

ρib “
λ

µp1 ´ λq cosα` ´ µλ cosα0

Stability Condition
sinα0 ą 0
sinα` ą 0

sinα0 ă 0
sinα` ă 0

sinα0 ą 0
sinα` ă 0

sinα0 ă 0
sinα` ą 0

Table 1: Characterization of circling equilibria for a two-agent system (whenever sinp2α`q ‰
0), with α`

fi pα1 ` α2q{2 and α´
fi pα1 ´ α2q{2.

• sinpα0q ą 0 and sinα` ą 0 in the Type 1 CCW case;

• sinpα0q ă 0 and sinα` ă 0 in the Type 1 CW case;

• sinpα0q ą 0 and sinα` ă 0 in the Type 2 CCW case;

• sinpα0q ă 0 and sinα` ą 0 in the Type 2 CW case.

Proof. Follows from the discussion above.

Note that these results are also summarized in Table 1.

6 Implementation Results

6.1 Experimental setup

We use Pioneer 3 DX (from Adept MobileRobots), a compact differential-drive mobile robot
with reversible DC motors, high-resolution motion encoders, as the experimental platform.
Onboard computation is done via 32-bit Renesas SH2-7144 RISC microprocessor, includ-
ing the P3-SH microcontroller with ARCOS. ARIA, a software library from the developer,
provides an interface for controlling and receiving data from the robot, and communication
with the robot for sending control commands (forward velocity and turning rate) is carried
out via 802.11-b/g/n networking.

Algorithm implementation (i.e, feedback law computation) has been carried out in C++
using ROS (Robot Operating System), along with ROS-ARIA, as the interfacing robotics
middleware. The experiments have been carried out in a laboratory environment equipped
with a sub-millimeter accurate Vicon motion capture system (www.vicon.com). The Dell
workstation, which we use to evaluate control commands at 25Hz, is connected to the Vicon
server via a dedicated Ethernet connection.
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Figure 3: Mobile robot based experimental platform (Pioneer 3 DX) with two-wheel differ-
ential and caster.

6.2 Two robots with asymmetric distribution on the circle

The first experiment presented here involves two robots circling around the beacon in a
counter-clockwise direction. The parameters α1 and α2 were selected as 5π{12 and ´π{12,
respectively. These choices, by yielding the equilibrium value of angular separation as π{2,
demonstrate that the proposed approach can give rise to asymmetric distribution of agents
on the circle (at equilibrium). Moreover, the parameter values α0 “ π{3 and λ “ 1{2 yield
the circling radius as

ρib “
1

µ
`

cospπ{3q ` cospπ{6q
˘ , i “ 1, 2,

and by choosing µ “ 0.75m´1 we get ρib “ 0.9761m. The corresponding robot trajectories
are shown in Fig 4a, and the evolution of distance and angular separation for the agents
are shown in Fig 4b and Fig 4c, respectively (refer [13] for implementation videos). These
figures show a quick convergence to the circling equilibrium (within 150sec.).

6.3 Five robots with symmetric distribution on the circle

Next we choose control parameters which result in five robots circling around the beacon
in a clockwise direction, with the robots distributed symmetrically around the circle. More
specifically, we choose the same value for every αi (“ ´π{4), and let α0 “ ´π{6 and λ “ 1{2.
Then we have

ρib “
1

µ
`

cosp´π{6q ´ sinp´π{5 ` π{4q
˘ , i “ 1, . . . , 5,

and a choice of µ “ 1.50m´1 yields an equilibrium circle radius of ρib “ 0.9395m. The
corresponding robot trajectories, along with the evolution of distance and angular separation
of the agents, are shown in Fig 5 (refer [13] for implementation videos). In this experiment
we introduced a perturbation to the system at 723sec. into the experiment, and later (at
868sec.) the beacon has been moved to a new position. In both cases, the formation quickly
converges back to the desired circling equilibrium.

6.4 Discussion

The results show some level of imperfection during implementation of the proposed feedback
law. This deviation from theoretical predictions can be attributed to multiple factors. To

14



−2500 −2000 −1500 −1000 −500 0 500 1000 1500

−2000

−1500

−1000

−500

0

500

1000

x−Direction (mm)

y−
D

ire
ct

io
n 

(m
m

)
 

 
Beacon
Agent −1
Agent −2

(a) Robot trajectories

0 100 200 300 400 500 600

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Time (seconds)

D
is

ta
nc

e 
(m

et
er

)

 

 
ρ

1B

ρ
2B

Theoretical

(b) Distances from the beacon

0 100 200 300 400 500 600
60

80

100

120

140

160

180

Time (seconds)

A
ng

le
 (

de
gr

ee
s)

 

 
Robot −1
Robot −2
Theoretical

(c) Inter-agent angular separations

Figure 4: Robot trajectories during implementation of (23), along with evolution of relevant
quantities (Note that, n “ 2, α0 “ π{3, α1 “ 5π{12, α2 “ ´π{12, λ “ 1{2, µ “ 0.75m´1).

start with, our theoretical analysis assumes the agents to be point particles where in reality
they occupy significant space (width - 380mm, swing radius - 260mm). Also the placement
of markers (necessary for measurement using Vicon motion capture system) introduces some
error due to misalignment between center of the robot axle and origin of the body fixed
frame. Furthermore, as only planar components of positions and heading were considered
in measuring relevant quantities, a small slope (which has later been verified) in the lab
floor acts as another source of error. However, in spite of these multiple sources of error,
the proposed feedback mechanism (22) is able to restrict the error margins well below the
physical dimension of the agents.

7 Conclusion and Future Work

We have introduced a modified version of the CB pursuit law which references a fixed beacon
as well as a neighboring agent, and demonstrated that implementation in a cycle graph (with
“spokes”) yields an interesting set of closed-loop dynamics. Analysis of those dynamics
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reveals the existence of circling equilibria centered on the beacon, and it is of particular
interest that a specific equilibrium radius emerges as a function of the control parameters.
Future work will focus on extending our analysis to the 3-d setting, as well as consideration
of scenarios with multiple beacons or slowly moving beacons.
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Figure 5: Robot trajectories during implementation of (23), along with evolution of relevant
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was applied to the system at 723sec. into the experiment, and at 868sec. the beacon was
relocated to a new position.
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