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Abstract

In this article a model predictive control (MPC) based frequency control scheme for energy storage units
was derived, focusing on the incorporation of stability constraints based on Lyapunov theory and the concept of
passivity.

The proposed control schemes, guaranteeing closed-loop stability, are applied on a one-area and two-area power
system. For the two-area power system, a coordinated (centralized) control and an uncoordinated (decentralized)
control approach is conducted.

The stability properties of the different MPC setups were derived, implemented and simulated. Furthermore
the corresponding control performance was analyzed.
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I. INTRODUCTION

A. Motivation
Traditionally, power system operation has essentially been based on the assumption, that electricity is

reliably and steadily produced by large power plants, which are fully dispatchable, i.e. controllable and
have a high frequency inertia.
However, a strong trend towards generation of electrical energy by renewable energy sources (RES), i.e.
PV units and wind turbines with no or decoupled rotating masses, exists1. How power systems could be
adapted in order to accommodate for increasing shares of uncontrolled fluctuating RES as well as power
market activities is a highly relevant and still open research question.
Options to deal with these challenges might be the expansion of transmission capacities, the extensive
integration of storage capacities as well as a better exploitation of the inherent flexibility within the power
system.
Model predictive control (MPC) as an optimal control scheme for regulating grid frequency receives rising
attention due to rapidly growing shares of variable RES and thereby arising challenges for power system
operation.
The choice of MPC as a control approach is especially motivated by its ability to incorporate operational
constraints of power systems, which cannot be handled by conventional P/PI-controllers. It enables the
provision of frequency control using a generic power system storage unit, e.g. a battery, with given
operational constraints, such as the power ramp rate, power rating and storage capacity. Additionally,
the recently growing interest in using MPC for control purposes of power systems emerges due to the
availability of faster and cheaper computing resources, as a significant computational effort comes with
the use of such a receding horizon control scheme.

1On 16th of June 2013, the share of energy produced by wind and solar power reached a level of above 60 % for the first time in Germany.
It resulted in negative electricity prices in France and Germany [1].
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B. Goal and Content
The objective of this article is to derive an MPC based frequency control scheme for energy storage

units. Specifically, the employment of stability constraints will be studied. The theoretical focus lies on
the derivation of passivity as a concept for guaranteeing stability. Furthermore stability guaranties derived
from Lyapunov-Theory, so called Control Lyapunov Functions (CLF) are incorporated into the optimal
control setup.
Eventually, the goal is to ensure a stable frequency regulation of a one-area and a two-area power system,
which is disturbed by a fault signal.

The remainder of the article is organized as follows: Section II elaborates on the dynamics of grid
frequency. Subsequently in section III, first, a theoretical introduction to stability is stated, followed by
derivation, simulation and validation of conventional control. Subsequently in section IV, the derivation
of the model predictive frequency control (MPFC) problem is given. In section V different approaches to
ensure stability of the controller are derived. This is followed in section VI by a study case. Finally, the
outcome of the article is presented in section VII.

II. POWER SYSTEM MODELING AND ANALYSIS

A. Grid Frequency
Power systems are dynamic systems with a high degree of complexity. Corresponding processes within

the power system therefore happen on several time-scales (milliseconds to yearly seasons), with a large
spatial distribution (hundreds to thousands of kilometers) and numerous grid hierarchy levels (voltage
levels).
Dominant for the effect of frequency stability, and hence stable operation, is active power balance, meaning
that the total power in-feed minus the total consumption is zero. The nominal frequency is set to f0 = 50 Hz
as in the ENTSO-E Continental Europe system (formerly UCTE). Generally deviations from the nominal
frequency arise from imbalances between instantaneous electric power consumption and production. If
there is a higher consumption than production in a time instant, this results in a decelerating effect on
the synchronous machines. On the contrary, higher production than consumption of electric power, leads
to an accelerating effect on the synchronous machines [2].
Small local disturbances can evolve into consequences influencing the whole power system, which could
lead to cascading faults and black-outs in the worst case.
The key system state to observe is the grid frequency f , concerning this (dominant) aspect of power grid
stability. As the rotational speed of the synchronous generators ω is inherently coupled to grid frequency
(ω = 2πf ), frequency deviations should be kept as small as possible, since this leads to damaging
vibrations in synchronous machines.
Maintaining the grid frequency within an acceptable range is therefore required for stable operation of the
power system. Small variations occur spontaneously by small load or generation deviations and usually
do not have critical consequences in normal operation.
Large frequency variations, which might be caused by errors in demand forecasts or RES forecasts, the
spontaneous loss of load or generation units, however, could lead to situations, where synchronization
between the generating unit is lost. This happens when the angle differences get too large, which would
result in (possibly cascading) disconnection of the machines [3].

B. Aggregated Swing Equation
The frequency dynamics of a power system can be described by the aggregated swing equation (ASE)

∆ḟ =
f0

2H
(∆Pm(p.u.)−∆Pload(p.u.)) , (1)



with ∆Pload being the deviation of load, ∆Pm being the mechanical (or inert) power deviation, and H
being the total inertia constant2.

Please note, that losses are not taken into account here. Regarding the stability analysis, which is done
in the sequel, this is a very conservative assumption.

The following assumptions are made
• The synchronous machine is modeled as a constant electro-magnetic field behind the transient

reactance. The angle of the electro-magnetic field is assumed to coincide with the rotor angle.
• Resistances in lines, transformers and synchronous machines are neglected.
• Voltages and currents are assumed to be perfectly symmetrical, i.e. pure positive sequence.
• The angular velocity is close to nominal.
• Static models for lines are used.
Despite its simplicity, a number of important conclusions concerning the angular stability in large

systems can be drawn from this analysis [5].

C. Frequency Dependency of the Loads
In real power systems, a frequency dependency of the aggregated system load is clearly observable.

This has a stabilizing (”self-regulating”) effect on the system frequency f .
It is assumed, that the damping power of the system can be written as

Pd =
1

Dl

·∆f.

Including the frequency-dependency of the loads into equation 1 leads to

∆ḟ = − f0

2HDlSB
∆f +

f0

2HSB
(∆Pm −∆Pload) . (2)

Rotating mass loads are neglected. They play a decreasing role in future power systems and are not of
big importance for (conservative) stability analyses.

D. Mathematical Modeling
For the system dynamics the following basic model is assumed:

ẋ = f (x, u) , (3)

where x =
[
∆f xSoC

]T
, with ∆f ∈ R referring to the deviation of the normal frequency of the grid

and xSoC ∈ [−1, 1] to the state of charge of a connected battery.

The corresponding linearization in (x, u) = (x0, u0) as a state space model is given by:

ẋ =
∂f

∂x

∣∣∣∣
x0,u0

x+
∂f

∂u

∣∣∣∣
x0,u0

u (4)

= Ac (x0, u0)x+Bc (x0, u0)u

= Acx+Bcu. (5)

Next, the continuous linear system is discretized

xk+1 = Adxk +Bduk. (6)

2H is typically valued in the range 2...10 s, cf. [4].



To be able to account for energy constraints of the control input later (due to energy storage restrictions
etc.), the additional power u = Padd is integrated as following, and xSoC is used as another state within
the state space model:

Eadd =

∫
Padd dt =

∫
−CbatẋSoC dt.

Including the possibility of losses, respectively self-discharging v of the battery with capacity Cbat leads
to

ẋSoC = − v

Cbat
− 1

Cbat
· u, (7)

with xSoC ∈ [−Cbat/2, Cbat/2]. Combining equation 7 and the aggregated swing equation 2 and transform-
ing it into (continuous) state space form yields:

d

dt

[
∆f
xSoC

]
=

[
Afreq 0

0 −v
Cbat

] [
∆f
xSoC

]
+

[
Bfreq 0

0 −1
Cbat

] [
∆P
u

]
(8)

with:

Afreq =
−f0

2HSBDl

, Bfreq =
f0

2HSB
.

∆P refers to the deviation of the expected power, including the fault power, therefore, it directly
influences the frequency deviation in the grid.
u however refers to the electrical power, which is injected into the grid by the controller, hence directly
influencing the state of charge of the battery [6], [7].

E. Two-Machine Model
If a power system is highly meshed, it can be seen as all units being connected to one single bus, i.e.

acting as one (aggregated) swing equation. However, in practice, a large interconnected system is divided
into several ”control zones”. To understand the interaction between two such zones, in this section a
two-area model as in figure 1, with a tie-line in between is derived.

The power exchange between the two zones is

PT12 =
U1U2

X
sin(ϕ1 − ϕ2),

where X equals the (equivalent) reactance of the tie line between zone 1 and zone 2. This can also be
written as:

PT12 = P̂T sin(ϕ1 − ϕ2),

with P̂T being the maximum power transmission

P̂T =
U1U2

X
.

The (aggregated) swing equation divides into a system of equations, comprising the interaction between
the two areas:

∆ḟ1 =
f0

2H1SB,1

(
−1

Dl,1

∆f1 − P̂T sin(ϕ1 − ϕ2) + u1

)
,

∆ḟ2 =
f0

2H2SB,2

(
−1

Dl,2

∆f2 + P̂T sin(ϕ1 − ϕ2) + u2

)
,

∆ϕ̇ =
d

dt
(ϕ1 − ϕ2) = 2π(∆f1 −∆f2). (9)
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Figure 3.14. Two-area dynamic model including tie-line flows.Fig. 1. Two-machine respective two-area model including tie flows (from [2]).

After linearizing the model around the set point x =
[
0 0 0 0 0

]T , where sin(ϕ1 − ϕ2) ≈ (ϕ1 −
ϕ2) = ∆ϕ, the state space matrices change to

Acoupled =


Afreq,1 0 0 0 Afreq,1Dl,1P̂T

0 −v1

Cbat,1
0 0 0

0 0 Afreq,2 0 −Afreq,2Dl,2P̂T
0 0 0 −v2

Cbat,2
0

2π 0 −2π 0 0

 ,
and

Bcoupled =


Bfreq,1 0 0 0

0 −1
Cbat,1

0 0

0 0 Bfreq,2 0
0 0 0 −1

Cbat,1

0 0 0 0

 ,
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Fig. 2. Used fault signal, note asymmetric behavior: upper half-waves are shorter than the lower ones (resulting in a decreasing moving
average).

with

Afreq,i =
−f0

2HiSB,iDl,i

, Bfreq,i =
f0

2HiSB,i
,

the corresponding states x =
[
∆f1 xSoC,1 ∆f2 xSoC,2 ∆ϕ

]T and inputs u =
[
∆P1 u1 ∆P2 u2

]T
.

F. Simulation of Power System Dynamics
For simulation purposes, power system parameters as in table I were assumed. For load damping, the

minimum measurement in [8] was assumed, to carry out very conservative stability analysis.

Unit Size Description

H 6 s system inertia

kpf 1.5 % self regulating effect

Dl
1
kpf

= 66.67 %−1 load damping

S 200 mHz
3000 MW frequency droop, for primary freq. control

TN 240 s integration param. for conv. freq. control

CP 0.17 proportional param. for conv. freq. control

B 1
Dl

+ 1
S

= 20550 bias factor, for conv. control

TABLE I
POWER SYSTEM PARAMETERS USED.

1) Fault Signal: In all simulations, as long as not stated otherwise, the disturbance signal given in
the power deviation graph in figure 2 is introduced in the power system. This signal was taken as it
provokes instabilities for (conservative) stability tests due to enormous sudden disturbances, e.g. cascading
disconnection of load or generation units. Applying the fault to an uncontrolled, system comprising two
control areas shows the frequency response in figure 3.
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Fig. 3. Uncontrolled frequency response on given fault signal on a two area system.

III. CONVENTIONAL FREQUENCY CONTROL

A. Power System Stability
A dynamic phenomenon in a power system is initiated by a disturbance in the system, e.g. a a line

or a generator trips. While smaller disturbances usually result in small transients in the system, which
diminish quickly because of damping, larger disturbances could have a significant impact and excite larger
oscillations. Hence, stability is associated with decaying oscillations and that the operation of the power
system can continue without major impact for any power consumer [5].

In this article the focus lies on frequency stability, corresponding to the frequency dynamics, which were
analyzed in section II. Unlike voltage stability, which only acts locally, frequency stability plays a global
role in a power system. It refers to the difference between the total power fed into the power system and
the total power consumed by the loads, including the losses. If the resulting imbalance is comparatively
small, the generators participating in frequency control will regulate the active power input from their
prime movers, and bring back the frequency deviation to acceptable values. But if the imbalance is too
large, the frequency deviation gets significantly big and might cause serious consequences.In real power
systems, instabilities result both from active and reactive power imbalances, so the assumptions, which
are made in this article, are of course not valid in every case of power system instabilities. However, in
many cases it is possible to identify active power imbalances and resulting frequency instability as the
dominating processes at the start of power system instabilities [5].

B. Conventional Frequency Control
The nominal grid frequency is defined to be f0 = 50 Hz in the grid zones of the European Network

of Transmission System Operators for Electricity (ENTSO-E). To maintain this frequency, for secure
operation, electricity demand and supply have to be in balance at every point in time. Small local
disturbances in a power system can lead to consequences influencing the whole system, in the worst
case ending in a black-out.

In order to secure a stable operation, a frequency regulation mechanism is implemented. In traditional
frequency control, there are three categories (cf. figure 4): Primary frequency control provides power output
proportional to the deviation of the system frequency, which stabilizes the system without restoring the
reference frequency. Its time horizon lies within a few seconds after the occurrence of the deviation.
Furthermore secondary frequency control, taking over after approx. 30 s, has an integral control part,
which restores the reference frequency. The time constant of secondary frequency control is chosen to
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Fig. 5. Frequency response of the developed power system
model (one area) controlled by conventional P/PI-control loops.

0 100 200 300 400 500 600 700 800 900
0

0.02

0.04

0.06

0.08

0.1

0.12

Conventional Control

Time [s]

P
ow

er
 [p

.u
.]

 

 
Combined Primary and Secondary Control
Primary Control
Secondary Control

Fig. 6. The conventional primary and secondary control input,
which yields to the frequency deviation in figure 5.

be significantly larger than the time constant for primary control in order not to interfere with it as well
as avoid ”wear and tear” for the units. Tertiary control, finally, is operated manually and adjusts power
generation set-points about 15 min after severe faults. Generator rescheduling is dispatched through intra-
day auctions, according to the estimated permanent fault magnitude, aiming to relieve tertiary control by
cheaper sources [3].

One of the factors used in this control scheme is the frequency bias factor. Load frequency control
is based on the non-interaction principle, hence, the disturbance power balance between all neighboring
areas is restored [9].

Referring to the system self-regulating effect (cf. section II-C) in the European power system, a
frequency dependency of at least kpf = 1

Dp.u.
l

= ∆P/P0

∆f/f0
= 1.5%

%
was estimated in [10].

C. Simulation of Conventional Frequency Control
a) One Area: The simulation of the frequency response in figure 5 was conducted to validate the

developed model. Together with the conventional primary and secondary (cf. figure 6), it shows very
similar behavior as in other publications and power grid measurements ( [8]).

b) Two Areas: In this setup, two equally sized areas are interconnected via a tie-line, e.g. with a
transmission capacity of P̂T = 0.2 p.u. Each controlled area is equipped with an individual conventional
primary and secondary controller.
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Fig. 7. Frequency response of the developed model with two interconnected power systems controlled by two individual conventional
P/PI-controllers. Fault signal as before.

D. Motivation for new Methods
In conventional systems, primary and secondary frequency control, referred to as automatic generation

control (AGC), usually is implemented with satisfactory results.

The main conventional AGC properties are (summarized from [11]):
• ”The control system is naturally area-wise decentralized.” Except in the case of a lack of area

generation capacity, the frequency deviation diminish and all the inter-area power transmissions return
to their preassigned values, while each area needs only data available within the area itself.

• ”The control system is robust.” Robustness is meant in a ”rustic, simple and not fragile way”:
– Only regional data is needed.
– Only little information is needed: frequency, the sum of exported powers and the electric gen-

erated powers, with possibly low sampling rates and large transmission delays.
– It is practically insensitive to the exact physical system parameter values as well as control

system failures.
• ”The control system is sufficiently stable in practice,” if it is carefully designed and tuned. Both static

and dynamic aspects have been studied in the past.
• ”Adaptive control is easy to implement.” This is due to the system’s simplicity.
• ”Control may not be sufficiently smooth.” No attention is paid to unit response rate limits in the

controller. In practice, regulating margins are used, but rate constraints can not be guaranteed to be
met.

• ”The interface between load frequency control3 and economic dispatch4 is not satisfactory.” Due to
different time scales, the orders of the different control levels might contradict each other, resulting
in undesired oscillations as well as useless wear of the generation units.

Besides the final two properties, the given points essentially explain the success and long life of the
conventional implementations.

But, many proposals exist for modern control systems, most of them applying optimal control theory

3I.e. primary and secondary control.
4I.e. tertiary control and generation rescheduling.



or optimal power flow techniques. The relevant capabilities and desirable properties of these modern
proposals are seen as high (summarized from [11]):
• It could take system constraints into account, e.g. transmission security and power rate limits.
• It might improve economy, by an accurate application of economic dispatch and the reduction of

regulating margins.
• It still must have good transients, with large stability margins and smooth control, but especially

addressing the LFC-ED interface problem.
• It must be kept robust, i.e. not fragile, by avoiding data complexity, and, probably most important,

being area-wise decentralized.
With all potentials lying in modern control techniques involving optimal control and optimal power flow:

one should never forget the engineer’s perspective, particularly regarding the objectives, the constraints
and, especially, the robustness of the control system [11].

IV. MODEL PREDICTIVE CONTROL

A. Main Concept of Model Predictive Control
The design of a stabilizing feedback with a performance criterion being minimized, while satisfying

constraints on the control input and the system states at the same time, is desired for many control
problems. A solution approach is to repeatedly solve an open loop optimal control problem. The first
sample of the resulting open-loop optimal trajectory, is then applied to the real system. Afterwards the
whole process is repeated for the next time step. Control methods like these are referred to as either model
predictive control (MPC), moving horizon or receding horizon control (RHC) [12].

MPC is formulated as a repeated online solution of a finite horizon open-loop optimal control problem.
When measuring the initial system state x(0) = [x1(0), ..., xn(0)]T = x0, a control input over the prediction
horizon Tp can be determined, by solving the following optimal control task:

min
u

Jk

s.t. xk+1 = f(xk, uk)

uk ∈ U
xk ∈ X
k = 1, ..., N (10)

with the control input u ∈ Rg and the system state x ∈ Rn. k is an integer counting in time: k · Ts ≤ Tp,
Jk refers to the cost at time k, xk to the state at time k, uk to the corresponding, cost minimizing control
input at time k while U is the (allowed) solution space for the control inputs uk and X the respective
(allowed) solution space for the system states xk.

B. Model Predictive Frequency Control
The model predictive frequency controller uses the directly available system output ∆f as control

signal. The control input (determined by the controller) is the regulation power Padd that is supplied to
the power system (e.g. by a battery).

The system, implemented within the MPC controller, based on the model in equation 8 derived in
section II, is the discretization of:

ẋ = Ax+Bu

ẋ =

[ −f0

2HSBDl
0

0 −v
Cbat

]
x+

[ f0

2HSB−1
Cbat

]
u (11)



with
x =

[
∆f
xSoC

]
and u = Padd.

The first line in equation 11 refers to the swing equation, while the second line captures the state of
charge by integrating and accounts for losses. The MPC cost function weights5 are defined as Q, R > 0,
with N = 2...50 steps and a sampling time of Ts = 100 ms:

min
u

N∑
k=1

[
xTkQxk + uTkRuk

]
s.t. x0 = x(0)

x(k + 1) = Ax(k) +Bu(k)

xmin ≤ x(k) ≤ xmax

umin ≤ u(k) ≤ umax

δumin ≤ u(k)− u(k − 1) ≤ δumax. (12)

V. EMPLOYING STABILITY CONSTRAINTS

A. Control Lyapunov Function
Derived from Lyapunov theory, another approach for guaranteeing stability can be found. The new

approach is based on a finite horizon optimal control problem with terminal cost. By inserting a so-called
Control Lyapunov Function (CLF) as a terminal cost term

ϕ(x(t+ Tp)) := V (x(t+ Tp))

into a generalized MPC setup, stability is achieved.
For a nonlinear system

ẋ = f(x, u),

where x ∈ Rn, u ∈ Rm and
V̇ (x, u) = Vx · f(x, u)

a CLF is a proper, positive definite function V : Rn → R+ such that:

inf
u

[
V̇ (x, u)

]
≤ 0.

If it is possible to ensure a negative derivative at every point by an appropriate choice of u, the system
can be stabilized with V . It can be shown, that such a CLF V exists, when a globally asymptotically
stabilizing control law u = k(x) exists (smooth everyhwere except at x = 0, cf. [13]). However, there
do not exist systematic approaches to find suitable CLFs for given nonlinear systems [14]. The terminal
region is not restricted W :=∞.

5The ramp rate δuk is not penalized, as this not of substantial interest for energy storages like batteries, that can ramp power output very
fast.



1) CLF based MPC: To implement a Control Lyapunov Function as a stability guarantee into an MPC
setup, the corresponding terminal cost has to be derived. For that, a quadratic penalization of the form is
used: xTQtermx, with Qterm being the solution X of the Lyapunov equation:

AXAT −X +Q = 0. (13)

The solution X is symmetric and positive definite, as Q is symmetric, positive definite and A has all its
eigenvalues inside the unit disk (time discrete case). This approach assumes no control action after the
end of the horizon, so that

x(k + i+ 1) = Ax(k + i), i = N, ...,∞.

This only makes sense if the system is asymptotically stable, or no solution will exist.

B. Passivity
As with the Zero Terminal State constraint and the Control Lyapunov Functions described in the

preceding part, closed-loop stability can also be guaranteed by imposing passivity for a model predictive
control problem. In [15] a nonlinear model predictive control scheme was proposed, which is based on the
optimal control, nonlinear model predictive control and Control Lyapunov Function. Analogously in [16]
a nonlinear model predictive control scheme was developed, which makes use of the relationship between
passivity and optimal control, as well as the relationship between nonlinear model predictive control and
optimal control.
In the sequel, an introduction into the concept of passivity is given. Passivity is tied to optimal control
by an input affine system, which is optimal if and only if it satisfies a passivity property with respect
to the optimal feedback [17]. Based on this, it is shown in [16], that passivity and (nonlinear) model
predictive control can be merged together, such that the individual advantages of each concept can be
maintained, i.e. feasibility and closed-loop stability due to passivity as well as good performance due to
online optimization in nonlinear model predictive control.

Following [16], consider the following affine nonlinear system

ẋ = f (x) + g (x)u

y = h (x) , (14)

where x ∈ Rn is the state, u ∈ Rm is the input and y ∈ Rm the output. Local Lipschitz continuity as
well as (x, u) = (0, 0) being an equilibrium point is assumed. Then, system 14 is said to be passive, if
there exists a positive semidefinite storage function S, such that the following is satisfied for all t0 ≥ t1:

S(x(t1))− S(x(t0)) ≤
∫ t1

−t0
uT (t)y(t) dt, (15)

where (u(t), x(t), y(t)) is a solution of 14. If S is differentiable as a function of time, then the this relation
can be reduced to

Ṡ(x(t)) ≤ uT (t)y(t). (16)

In case, system 14 has a well-defined normal form, a further characterization of passive systems is also
possible in terms of relative degree and minimum-phase property. Specifically, the relative degree needs
to be r = 1, i.e. Lgh(0) 6= 0, and the system must be weakly minimum-phase.



1) Passivity and Stability: To achieve asymptotic stability of system 14, one can make use of the
relationship between Lyapunov stability and the concept of passivity. It can be established by using the
storage function S(x) as Lyapunov function. As passivity only requires S(x) to be positive semi-definite,
the equlibrium point x = 0 might be unstable, even if passivity is ensured. This would be the case, if
there exists an unobservable part of the system that is unstable. Hence, this unobservable part needs to
be asymptotic stable for system 14, i.e. for its solution holds:

u = 0 satisfies lim
x→∞

x(t) = 0 for y(t) = 0 and t ≥ 0, (17)

which is is the so called property of zero-state detectability.
In [18] a concise summary of the key points describing the relationship between passivity and Lyapunov

stability is given:
• The equilibrium point, x = 0, of the system 14 with zero input, u = 0, is stable, if the storage

function S(x) is positive semi-definite and the system is passive and zero-state detectable.
• The equilibrium point, x = 0, of the system 14 with zero input, u = 0, is stable, if the storage

function S(x) is positive definite and the system is passive.
• The equilibrium point, x = 0, of the system 14 with zero input, u = 0, is asymptotically stable, if

the storage function S(x) is positive definite and the system is strictly passive.
In this case, a semidefinite storage function S(x) is considered. Assuming zero-state detectability, the

system can be stabilized with the feedback u = −y. With equation 16, the following relation can be
established:

Ṡ(x(t)) ≤ uT (t)y(t) ≤ −yT (t)y(t) ≤ 0, (18)

and S(x(t)) = 0 → h(x(t)) = 0 [17]. Furthermore, if S(x) is radially unbounded, i.e. S(x) → ∞
for ‖x‖ → ∞, and all solutions are bounded, then the system 14 can be globally stabilized by feedback
u = −y.

Please note here, that 18 can promptly be rewritten to an inequality, which easily adds to common
MPC setups as a state constraint:

uT (t)y(t) + yT (t)y(t) ≤ 0. (19)

Unfortunately, the derived passivity constraint is generally not convex, written for a time-discrete setup:

uT (k)y(k) + yT (k)y(k) ≤ 0

with y = x and written for the case with one state x1 and one control input u1:

x1u1 + x2
1 =

[
x1 u1

]
M
[
x1

u1

]
=
[
x1 u1

] [ 1 1/2
1/2 0

] [
x1

u1

]
where M has the eigenvalues λ1 ≈ 1.21 and λ2 ≈ −0.21, which means, that M is not positive

(semi-)definite. Actually, by a similar argument, x(k)u(k) ≤ 0 is bilinear and therefore never convex.
To obtain a convex QP optimization problem, which can be solved by standard solvers, the passivity

constraint is implemented in a way, such that it only holds for the first (applied) sample k = 1 of the
receding horizon. With this, x(1) is fixed, a linear and hence convex constraint is obtained:

uT (1)x(1) + xT (1)x(1) ≤ 0. (20)



a) Passivity and Optimality: In addition to the statements given in the sections before, the relationship
between optimal control and passivity can be established by using the value function V ∗ as a storage
function S and the otpimal feedback u∗ as an output of the system 14. Taking the optimal feedback,
which stabilizes the considered system, it minimizes the performance index V ∗ if and only if the system

ẋ = f (x) + g (x)u

y = k∗ (x) , (21)

is zero-state detectable and output feedback passive with respect to

Ṡ(x(t)) ≤ uT (t)y∗(t) +
1

2
y∗T (t)y∗(t),

with S = 1
2
V ∗, following [16]. For a more rigerous argument, please be referred to [17].

2) Passivity based MPC: The in the preceding parts of this article, both (nonlinear) model predictive
control and passivity were presented. Here, the aim is to merge these two concepts, inspired by the
relationships between optimal control and passivity and between optimal control and nonlinear model
predictive control [15].
The goal of merging those concepts is to maintain their corresponding individual advantages, i.e. good con-
trol performance due to on-line optimization within the nonlinear model predictive scheme and guaranteed
closed-loop stability due to passivity, referred to as passivity based NMPC.

Suppose a general NMPC setup, with a passivity constraint added (last line):

min
u

∫ t+Tp

t

(
q(x(τ)) + uT (τ)u(τ)

)
dτ

s.t. ẋ = f (x) + g (x)u

y = h(x)

uT (t)y(t) + yT (t)y(t) ≤ 0. (22)

Where the last line directly follows from 19 as a passivity based constraint. In case the system 14 is
passive and zero-state detectable, it can be stabilized with the feedback u = −y (cf. [15]). Therefore, the
passivity based constraint is a stability constraint which guarantees closed-loop stability. This holds even
globally, if the storage function S(x) is radially unbounded and all solutions of the system are bounded.
Unlike to many other nonlinear model predictive control schemes, which achieve stability by enforcing a
decrease of the Control Lyapunov Function (CLF), V (x), along the trajectory of the solution, stability is
achieved directly with the aforementioned state constraint.

On first sight, the proposed scheme seems to be rather restrictive, as it is only applicable to passive
systems. However, for stabilizing purposes, no real physical output y is needed. It is enough to have a
fictitious output η = σ(x), yielding the following (fictitious), passive system:

ẋ = f (x) + g (x)u

η = σ (x) . (23)

Note, that there always exists such a fictitious output η, if a Control Lyapunov Function exists, since
then, by definition ∂V

∂x
g(x) is a (fictitious) passive output. Unfortunately, there is no standardized way

to construct a passive output. But as passivity is a physically inherited concept, such a fictitious passive
output can often be found.



a) Applied Passivity Constraint: In the following, the applied passivity constraint will be derived.
As stability with respect to the frequency deviations x1 = ∆f1 and x2 = ∆f2 should be secured, a storage
function of the form is taken:

S(x) =
1

2
β1x

2
1 +

1

2
β2x

2
2. (24)

The goal is, to fulfill the passivity property

uT (t)y(t) + yT (t)y(t) ≤ 0 (25)

with
Ṡ(x) ≤ uT (t)y(t). (26)

First, the constant βi is derived, which is a proportionality factor of the frequency f , describing the
kinetic energy Ekin,i stored in the rotating machines of area i around the setpoint f ≈ f0:

Ekin,i = HiSB =
1

2
Jiω

2
m =

1

2
Ji(2π)2f 2 =

1

2
βif

2 ≈ 1

2
βif

2
0 ,

with
βi = Ji(2π)2 =

2HiSB,i
f 2

0

≥ 0. (27)

Assuming two machines or areas i = {1, 2}, the storage function from equation 24 becomes:

Ṡ = β1x1ẋ1 + β2x2ẋ2

= β1x1(Afreq,1x1 +Bfreq,1u1) + β2x2(Afreq,2x2 +Bfreq,2u2), (28)

where βiAfreq,ix
2
i ≤ 0 for i = {1, 2} is true for all xi ∈ R, since βi ≥ 0 and Afreq,i = −f0

2HiSB,iDl,i
≤ 0.

The passivity property Ṡ ≤ uTy = u1y1 + u2y2 (cf. equation 26) hence yields

Ṡ = β1x1Afreq,1x1︸ ︷︷ ︸
≤0

+β1x1Bfreq,1u1 + β2x2Afreq,2x2︸ ︷︷ ︸
≤0

+β2x2Bfreq,2u2

≤ u1y1 + u2y2. (29)

Combined with equation 27, Bfreq,i = f0

2HiSB,i
= 1

βi
· 1
f0

and as well neglecting all (marked) negative terms,
equation 29 can be transformed into

u1

(
x1

f0

)
+ u2

(
x2

f0

)
≤ u1y1 + u2y2. (30)

Taking yi = βiBfreq,ixi yields yi = xi
f0

and together with the passivity property uT (t)y(t)+yT (t)y(t) ≤ 0
(cf. equation 25) finally results in

u1y1 + y2
1 + u2y2 + y2

2 ≤ 0

⇔ u1

(
x1

f0

)
+

(
x1

f0

)2

+ u2

(
x2

f0

)
+

(
x2

f0

)2

≤ 0 (31)

as the corresponding passivity constraint for a two-machine system. Analogously for the one-machine
system:

uy + y2 ≤ 0

⇔ u

(
x1

f0

)
+

(
x1

f0

)2

≤ 0. (32)

In the here presented implementation, the passivity based constraint is enforced only during the first
sampling interval t and not for the whole length of the finite prediction horizon Tp. This allows the same
stability guarantees as enforcement of the constraint for the whole horizon does, while it generally exhibits
better feasibility and less computational effort (cf. section V-B).
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Fig. 8. Overview of the implemented control scheme as an example for controlling a decentralized two area power system. Area 1 is
faulty, which means, that a disturbing power Pfault is applied to the expected balance of Pe = Pm = 1 p.u. for area 1. Area 2, however,
is unfaulty, but connected to area 1 enabling power transmission between both areas.

C. Summary
The passivity based nonlinear model predictive control approach combines passivity with model predic-

tive control by demanding the derivative of a storage function S(x) to fulfill Ṡ(x) ≤ uTy (being positive
semi-definite). At the same time their respective advantages are maintained: Feasibility and closed-loop
stability due to passivity and good performance due to on-line optimization by model predictive control.
A stability guaranteeing Control Lyapunov function ensures a storage function V (x) to satisfy V̇ (x) ≤ 0
(which actually needs to be positive definite). Where such a Lyapunov function cannot be found, the
passivity based approach is especially appealing. The corresponding basic principles are the relationships
of passivity and nonlinear model predictive control to optimal control.

VI. STUDY CASE AND RESULTS

A. General Setup
The application analyzed for the derived stability concepts is to guarantee frequency stability in a power

system. In this article, the focus lies on the evaluation of the interaction between two areas, interconnected
with a tie-line. For this case the used model was derived in section II-E.
All examples are modeled as a quadratic program (QP) and in per-unit system (p.u.) for scalability. The
primary optimization objective is to maintain a frequency deviation ∆f = 0, meaning, that the frequency
should be close to f0 = 50 Hz in every area. Internally, the frequency related states of the used model
are normed to xi = ∆fi

f0
. For illustrative purposes, in all shown diagrams, frequency related states are

transformed to frequencies, hence they are shown with the unit Hz.
For simulation and optimization purposes, the YALMIP environment was used, developed and main-

tained by Johan Löfberg. The software package used for mathematical optimization within the predictive
control framework of YALMIP is CPLEX. All simulations were run on a computer with a quad-core CPU
(Intel Core i7, 3.4 GHz), with 16 GB memory and 64-bit Windows 7 as operating system.

B. Developed Simulink Model
A model was developed within Simulink, which is part of a MATLAB package.
An overview of the devloped Simulink model is provided in figure 8.



1) One Area: For carrying out experiments in a one area setup, the control input for the second plant
was disconnected and a zero transmission power (PT,max = 0) was assumed. The model equations used
are time discretized versions of the derived model in section II-D. The following state vector and input

was used: x =
[

∆f
f0

xSoC

]T
, u =

[
u
]
.

The MPC cost function weights6 are defined as:

Q =

[
10 0
0 0.001

]
, R = 1,

with a prediction horizon length of N = 2...50 steps and a sampling time of Ts = 100 ms =̂ 0.1 s.
Observe here that penalizing u with R > 0 has physical and/or economical reasons, but might lead to
instabilities using the standard MPC setup. The following setup (derived in section IV-B) is referred to
as the standard MPC setup:

min
u

N∑
k=1

[
xTkQxk + uTkRuk

]
s.t. x0 = x(0)

x(k + 1) = Ax(k) +Bu(k)

xmin ≤ x(k) ≤ xmax

umin ≤ u(k) ≤ umax

δumin ≤ u(k)− u(k − 1) ≤ δumax. (33)

For ensuring wide feasibility of the optimization algorithm, the limit of the frequency deviation was set
to a rather big range (higher deviations might cause serious system damages): ∆f ∈ [−1.5 Hz, 1.5 Hz] .
The state of charge is limited to: xSoC ∈ [−0.75, 0.75] . Initially, both states are assumed to equal zero.
The battery power is constrained with

uMPC ∈ [−0.15 p.u., 0.15 p.u.] .

A rate constraint is implemented as well. It is assumed, that a battery can change the power by 1 p.u. at
each sample, hence

δu = uk − uk−1 ∈
[
−1

Ts
,

1

Ts

]
.

a) Setting up Passivity: To ensure passivity, the following constraint was employed to the first
(applied) sample of the optimized control input (cf. equations 20 and 32):

uMPC

(
∆f

f0

)
+

(
∆f

f0

)2

≤ 0,

hence, applied for the first sample:

uMPC(1) · x1(1) + x1(1)2 ≤ 0.

6Please note at this point, that internally the frequency state penalized is normed to ∆f
f0

.



b) Setting up the CLF: To setup the CLF based MPC, the terminal costs for the one area system
are defined as the solution of the (discrete) Lyapunov equation7, which results in qterm = 40005. This is
one dimensional, as it only refers to stability of the first state, the frequency deviation. Stability of the
second state, the state of charge, is implied by constraining the integrated control action. Therefore, the
corresponding terminal costs for the second state are set to zero:

Qterm =

[
40005 0

0 0

]
.

2) Two Areas (Uncoordinated Case): The uncoordinated two area system consists basically of two
equal one area systems (each one comprising the same MPC setup as in the one area case), where power
transmission between the two systems is activated. Both systems are controlled individually with an own
energy storage system, therefore, all parameters and constraints are set as in the one area system mentioned
before.
The power transmission is implemented as derived in section II-E in the form of:

PT12 = P̂T sin(ϕ1 − ϕ2),

with a maximum power transmission of P̂T = 0.2 p.u.
a) Setting up Passivity: Passivity is set as a constraint for each system individually:

uMPC,1

(
∆f1

f0

)
+

(
∆f1

f0

)2

≤ 0,

uMPC,2

(
∆f2

f0

)
+

(
∆f2

f0

)2

≤ 0,

with x1 :=
(

∆f1

f0

)
and x2 :=

(
∆f2

f0

)
it follows applied for the first sample:

uMPC(1) · x1(1) + x1(1)2 ≤ 0,

uMPC(1) · x2(1) + x2(1)2 ≤ 0.

b) Setting up the CLF: The CLF setup is done as in the one area control case (cf. section VI-B1b),
individually for each controller.

3) Two Areas (Coordinated Case): In the coordinated controlled version of the two area system, the
power angle between the two systems is introduced as a new system state. The corresponding model
equations as well as the new state space matrices reflecting the coupling between the systems were
derived in section II-E. Still, it is assumed, that every area uses its own energy storage unit, hence the

two area system consists of the state vector x =
[

∆f1

f0
xSoC,1

∆f2

f0
xSoC,2 ∆ϕ

]T
and input vector

u =
[
u1 u2

]T
.

The cost function weights hence change and were defined as the following for the coordinated case:

Q =


10 0 0 0 0
0 0.001 0 0 0
0 0 10 0 0
0 0 0 0.001 0
0 0 0 0 0.1

 , R =

[
1 0
0 1

]
.

Besides that, all parameters and constraints are the same as in the uncoordinated two area system.

7In Matlab: q term = dlyap(A (1,1), Q(1,1)).



a) Setting up Passivity: The passivity constraint is adapted to account for both frequency related
states x1 and x2 and the same time:

uMPC,1

(
x1

f0

)
+

(
x1

f0

)2

+ uMPC,2

(
x2

f0

)
+

(
x2

f0

)2

≤ 0,

respectively:
uMPC,1(1)x1(1) + x1(1)2 + uMPC,2(1)x2(1) + x2(1)2 ≤ 0.

b) Setting up the CLF: For the coordinated version, CLF stability for both frequency deviations
∆f1,∆f2 is desirable at the same time, hence the solution of the (discrete) Lyapunov equation becomes
the terminal cost as in the following matrix, accounting for both frequency stability related states:

qterm = 10000 ·
[
2.2137 1.7868
1.7868 2.2137

]
.

The corresponding terminal costs for the other states as the angle and the states of charge are set to zero:

Qterm = 10000 ·


2.2137 0 1.7868 0 0

0 0 0 0 0
1.7868 0 2.2137 0 0

0 0 0 0 0
0 0 0 0 0

 .
4) Summary: To summarize, besides the standard MPC setup (as in equation 33) the applied stability

approaches are implemented as following (generalized for both one and two area control).
a) Standard MPC Setup:

min
u

N∑
k=1

[
xTkQxk + uTkRuk

]
s.t. x0 = x(0)

x(k + 1) = Ax(k) +Bu(k)

xmin ≤ x(k) ≤ xmax

umin ≤ u(k) ≤ umax

δumin ≤ u(k)− u(k − 1) ≤ δumax. (34)

b) Passivity based MPC Setup: As an additional constraint to system 34, the passivity constraint is
incorporated:

uT (1)y(1) + yT (1)y(1) ≤ 0.

c) CLF based MPC Setup: Here, the terminal costs are adjusted, i.e. compared to the standard setup
in system 34, the cost function changes to

min
u

N−1∑
k=1

[
xTkQxk + uTkRuk

]
+ xTNQtermxN

C. Results
Two different setups were analyzed. First, the uncoordinated case, where a decentralized control scheme

was applied. Second, the coordinated case, where a centralized controller has knowledge about all (po-
tentially distributed) system states.

First, the angle differences between the two systems are presented for a fixed prediction horizon N .
Afterwards, the simulations were generalized for various different prediction horizons N = 2...50.
The applied fault signal is the one shown in figure 2 for every simulation carried out. Note, that the error
is not zero mean and becomes constantly zero at t = 60 s.
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Fig. 10. Angle differences between areas (coordinated), fixed
N = 3.

1) Two Areas (Uncoordinated Case): Employing frequency stability for two equally sized, intercon-
nected areas of power systems with a maximum transmission capacity of P̂T,max = 0.2 p.u. was simulated.
The uncoordinated version was analyzed with respect to standard MPC control, passivity based MPC
control and CLF based MPC control. Uncoordinated means here, that each area is controlled in an
individual way and each controller has only local information, hence, a decentralized control topology. This
implies a significant model-plant-mismatch, as the possibility of power transmission is not incorporated
within the MPC model.
The effect of stability can be seen especially illustrative in figure 9, which shows the angle difference
for the two controlled zones with respect to the different control approaches. Large angle differences (as
conventional control exhibits) as well as increasing oscillations (as in standard MPC) indicate frequency
instability.

2) Two Areas (Coordinated Case): The power system itself is not altered. However, the area coupling
is incorporated into the MPC setup in the coordinated approach. By that, the model-plant mismatch is
significantly reduced compared to the uncoordinated case. Coordinated control refers to a centralized
control topology, where the controller has full information about all states in all control areas. Compared
with the uncoordinated case, the stability behavior of a standard MPC approach improves, yet still
exhibiting undesired persisting frequency oscillations. Essentially, the stability behavior of the different
approaches remain unchanged.

3) Generalizing Two Area Control: The behavior of the states with respect to time was shown preced-
ingly for a fixed prediction horizon N = 3. Now, a generalization of controlling two areas for various
prediction horizons N = 2...50 is made. For facile comparisons, the performance measures of the presented
MPC approaches with employed stability constraints for two uncoordinated areas are shown together with
the performance measures for two coordinated areas in figures 11, 12, 13, 14, 15, and 16. In these figure,
control performance measures for two controlled systems (one being disturbed) over different horizon
lengths, for two coordinated (continuous lines) and two uncoordinated areas (dashed lines) are compared.
Generally can be said, that the maximum frequency deviation for the coordinated and the uncoordinated
version show rather similar characteristics (cf. figure 11). In the case of standard MPC and passivity based
MPC, the coordinated approach shows smaller frequency deviation than the uncoordinated approach, as
expected and with inherent larger control input for coordinated version (cf. figure 15). Interestingly, with a
horizon length of less than 38 steps, the Lyapunov based MPC setup exhibits a smaller maximum frequency
deviation for the uncoordinated case. If a prediction horizon between 40 and 50 steps is applied, this swaps
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Fig. 14. Average power transmission between areas.

and the coordinated case shows a smaller maximum frequency deviation.
Naturally, as can be seen in figure 14, a smaller frequency deviation causes less power transmission
between the areas.
Referring to the time for each optimization step (which excludes the optimizer setup time), the situation
is similar to the one area setup, where CLF based and standard MPC needs comparably less time than
passivity based MPC. This behavior seems to be fairly independent of the control topology. The coordinated
CLF based MPC approach appears to be an exception, as the slope looks considerably steeper than for
all other MPC approaches.

VII. CONCLUSION AND OUTLOOK

A. Conclusion
In this paper a model predictive control based frequency control scheme for energy storage units was

derived. The focus was on the incorporation of stability constraints, based on Lyapunov theory and the
concept of passivity.
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It has been shown that the concept of passivity as well as the concept of Control Lyapunov Functions (CLF)
can easily be merged with the idea of MPC. The stability properties of the different MPC setups were
derived, implemented and simulated. Furthermore the corresponding control performance was analyzed.

It was shown, that a standard MPC controller might evolve into unstable behavior. One of the reasons
influencing this might be that energy storage charging level xSoC and the control input u are penalized in
the chosen setup. Augmenting this setup with stability constraints, such as in passivity based or CLF based
MPC, stabilizes its behavior under otherwise equal conditions for all analyzed cases. To illustrate this in
a study case, simulations were conducted for controlling a two area power system in a centralized and a
decentralized setup. Using a longer prediction horizon might stabilize the conventional MPC controller,
although this is usually not guaranteed.

Although the computational demands for passivity based MPC might be comparably higher than for
standard MPC at equal prediction horizons, a considerably longer prediction horizon seems to be needed
for achieving (not guaranteeing) stability in a standard MPC setup. This could lead to less computational
costs for the passivity based MPC approach, e.g. a prediction horizon of only N ≤ 3 is needed in this
setup with active passivity constraints to achieve acceptable control performance.
Regarding CLF based MPC, especially for the uncoordinated case, the time needed per optimization step
is similar to the time needed within the standard MPC approach and results in guaranteed stability as in
the passivity based approach.

Due to the fact, that asymptotic closed loop stability of the CLF based and passivity based MPC is
guaranteed independently of the choice of Q and R in the quadratic objective functional, a separation
between performance and stability considerations is achieved to some degree. Specifically, the tuning of
the corresponding MPC cost weights might be carried out with less effort to achieve acceptable control
performance and stability.

B. Future Research
It might be promising to analyze how stability constraints (especially in a decentralized setup) would

perform in a multi-node power network. It is shown in [20], that for example in a three-node power
network, the system may not be completely stable, even when the damping is made arbitrarily large –
unlike in a two-node power network.
Furthermore, investigations on robustness properties of the proposed control schemes as well as including



both active and reactive power transmission into the corresponding models might be of interest.
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