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Decentralized Event-Triggered Consensus of Linear Multi-agent Systems
under Directed Graphs

Eloy Garcia∗, Yongcan Cao, Xiaofeng Wang, and David W. Casbeer

Abstract— An event-triggered control technique for consen-
sus of multi-agent systems with general linear dynamics is
presented. This paper extends previous work to consider agents
that are connected using directed graphs. Additionally, the
approach shown here provides asymptotic consensus with guar-
anteed positive inter-event time intervals. This event-triggered
control method is also used in the case where communication
delays are present. For the communication delay case we also
show that the agents achieve consensus asymptotically and
that, for every agent, the time intervals between consecutive
transmissions is lower-bounded by a positive constant.

I. I NTRODUCTION

Cooperative control of multi-agent systems is an active
research area with broad and relevant applications in com-
mercial, academic and military areas [1]. The design of
decentralized and scalable control algorithms provides the
necessary coordination for a group of agents to outperform
a single or a number of systems operating independently.
In general, agents use a limited bandwidth communication
channel to broadcast information. Thus, continuous com-
munication among agents is not possible to implement.
Further, periodic communication schemes require global
synchronization of sample periods and broadcasting time
instants which are difficult to achieve in a decentralized
setting. On the other hand, event-based communication offers
a highly decentralized way to determine broadcasting time
instants, that is, each agent is able to decide when to transmit
measurements based only on locally available information.

In the present paper we address the event-triggered con-
sensus problem where agents are described by general lin-
ear dynamics and are connected using directed graphs. In
addition, we consider the case where communication among
agents is subject to communication delays. Different from pe-
riodic (or time-triggered) implementations, in the context of
event-triggered control, information or measurements arenot
transmitted periodically in time but they are triggered by the
occurrence of certain events. In event-triggered broadcasting
[2], [3], [4], [5], and [6], a subsystem sends its local stateto
the network only when it is necessary, that is, only when a
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measure of the local subsystem state error is above a spec-
ified threshold. Event-triggered control strategies have been
used for stabilization of multiple coupled subsystems as in
[7], [8], and [9]. Consensus problems have also been studied
using these techniques [10], [11], [12], [13], [14], [15], [16].
Event-triggered control provides a more robust and efficient
use of network bandwidth. Its implementation in multi-agent
systems also provides a highly decentralized way to schedule
transmission instants which does not require synchronization
compared to periodic sampled-data approaches.

Consensus problems where all agents are described by
general linear models have been considered by different
authors [17], [18], [19], [20], [21], [22], [23], and [24]. In
these papers it is assumed that continuous communication
between agents is possible. The work in [25] considers the
consensus problem of agents with linear dynamics under
communication constraints. Specifically, the authors consider
the existence of continuous communication among agents for
finite intervals of time and the total absence of communica-
tion among agents for other time intervals, and the minimum
rate of continuous communication to no communication is
given.

Event-triggered consensus of agents with linear dynamics
and limited communication was recently explored in [26]
and [27]. In our previous work [28] we proposed a novel
approach in which each agent implements models of the
decoupled dynamics of each one of its neighbors and uses
the model states to compute the local control input. This
approach offered better performance than the Zero-Order-
Hold (ZOH) approach used in [26] and [27] where the
updates from neighbors are kept constant by the local agent.
A similar model-based framework was proposed in [29]
where only constant thresholds were used. One of the main
limitations of the ZOH approach [26], [27] is that it is not
capable to keep up with unstable trajectories and updates
need to be generated more frequently. In consensus with
general linear dynamics, unstable systems are one of the most
interesting cases to analyze. On the other hand the model-
based approach in [28] provides better estimates of neighbors
and reduces generation of events as agents converge to
similar unstable trajectories.

The present paper describes a method for designing event
thresholds that offers two important advantages with respect
to [28]. First, the results in this paper extend the work in
[28] to consider linear multi-agent systems that are inter-
connected using directed graphs in contrast to the less
general case studied in those papers where only undirected
graphs were considered. Second, the event-triggered control
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strategy in this paper provides asymptotic consensus, while
guaranteeing positive inter-event time intervals, compared to
the results in [28] where the difference between any two
states can only be bounded but asymptotic convergence is
not guaranteed. In addition, we extend the event-triggered
consensus approach proposed here to consider the case
where transmission of information among agents is subject
to communication delays. Concerning the event-based con-
sensus problem of linear systems, the paper [30] considered
communication delays but, similar to [28], the results only
addressed undirected graphs and only bounded consensus
could be obtained.

The remainder of this paper is organized as follows.
Section II provides a short background on graph theory and
describes the problem. An event-triggered control strategy
that achieves asymptotic consensus of multi-agent systems
which are represented by general linear dynamics and con-
nected by means of directed graphs is presented in Section
III. Section IV provides similar results for the case of
communication delays. An illustrative example is shown in
Section V. Section VI concludes the paper.

II. PRELIMINARIES

Notation. Let In represent an identity matrix of sizen.
The notations1n and 0n represent column vectors of all
ones and all zeros, respectively.R andC denote the set of
real numbers and the set of complex numbers, respectively.
For any s ∈ C, Re(s) represents the real part ofs. The
symbol⊗ denotes the Kronecker product.Jλ

µ represents a
Jordan block of sizeµ corresponding to eigenvalueλ.

A. Graph Theory

For a team ofn agents, the communication among them
can be described by a directed graphG = {V , E}, where
V = {1, . . . , N} denotes the agent set andE ⊆ V×V denotes
the edge set. An edge(i, j) in the setE denotes that agentj
can obtain information from agenti, but not necessarilyvice
versa. For an edge(i, j) ∈ E , agenti is a neighbor of agent
j. The setNj is called the set of neighbors of agentj, and
Nj is its cardinality. A directed path from agenti to agent
j is a sequence of edges in a directed graph of the form
(i, p1), (p1, p2), . . . , (pκ−1, pκ)(pκ, j), wherepℓ ∈ V , ∀ℓ =
1, · · · , κ. A directed graph isstrongly connectedif there is
a directed path from every agent to every other agent. A
directed graph hasa directed spanning treeif there exists at
least one agent with directed paths to all other agents.

The adjacency matrixA ∈ Rn×n of a directed graphG is
defined byaij = 1 if (j, i) ∈ E andaij = 0 otherwise. The
Laplacian matrixL of G is defined asL = D −A, whereD
represents the degree matrix which is a diagonal matrix with
entriesdii =

∑

j∈Ni
aij . If a directed graph has a directed

spanning tree, then the corresponding Laplacian matrix has
only one eigenvalue equal to zero,λ1 = 0, and the following
holds for the remaining eigenvalues:Re {λi} > 0, for i =
2, ..., N .

B. Problem Statement

We consider the consensus problem with agents described
by linear dynamics and with limited communication con-
straints where information from neighbors is not available
continuously but only at some time instants. Event-triggered
control implementations typically use a ZOH [6] to compute
the control input and the state error in problems where con-
tinuous feedback is not available. Model-based approaches
have been used more recently and it has been shown that
they offer better performance by providing an estimate of
the real state of a system between update intervals [31], [5].
The model-based approach generalizes the traditional ZOH
event-triggered control strategy. In ZOH strategies the agents
that receive information from agenti maintain a piece-wise
constant model of the statexi(t). The ZOH case is equivalent
to implementing models whenA = 0 in (3) below. However,
the choice of ZOH is not suitable when considering general
linear dynamics as it was in the case of single integrators
[10], [11]. Since trajectories can be unstable in general, a
ZOH is not able to reduce communication as trajectories
grow. In this case sensors need to generate events more
frequently since the errors grow very quickly after each
update. This situation increases communication and Zeno
behavior may not be avoided. In contrast, the models are
able to produce better estimates of real states than the ZOH
and it is possible to show that Zeno behavior does not occur.
Note that, in contrast to [10], the focus of this work is in
reducing the number of transmissions instead of reducing
actuation updates as it was discussed in that reference.

Consider a group ofN agents with fixed and directed
communication graphs and fixed weights. Each agent can be
described by the following:

ẋi(t) = Axi(t) +Bui(t), i = 1, ..., N (1)

with

ui(t) = cF
∑

j∈Ni

(yi(t)− yj(t)), i = 1, ..., N (2)

wherexi ∈ Rn, ui ∈ Rm. The variablesyi ∈ Rn represent a
model of theith agent’s state using the decoupled dynamics:

ẏi(t) = Ayi(t), t ∈ [tki
, tki+1) (3)

yi(tki
) = xi(tki

),

for i = 1, ..., N . Define the local errorsei(t) = yi(t)−xi(t).
Every agent in the network implements a model of itselfyi(t)
and also models of its neighborsyj(t). Local events for agent
i are triggered by the occurrence of the event

‖ei(t)‖ = βe−λt. (4)

When agenti triggers an event at timetki
, it will transmit

its current statexi(tki
) to its neighbors and agenti and its

neighbors will update their local modelsyi(t). Since agenti
and its neighbors use the same measurements to update the
models and the model dynamics (3) represent the decoupled
dynamics where all agents use the same state matrix, then
the model statesyi(t) implemented by agenti and by its
neighbors are the same. The model update process is similar
for all agentsi = 1, ..., N . In the presence of communication



delays the previous statement will not hold and we will
differentiate betweenyi(t), the model state of agenti as seen
by agenti, or the model with no delays; andydi (t), the model
state of agenti as seen by agentsj, such thati ∈ Nj , or
the delayed model. More details concerning communication
delays are presented in Section IV.

The local control input (2) is decentralized since it only
depends on local information, that is, on the model states
of the local agent and its neighbors. Note that the difference
between the agent dynamics (1) and our proposed models (3)
is given by the input term in (1) and this input decreases as
the agents approach a consensus state. It can also be seen
that in the particular case when systems (1) represent single
integrator dynamics, then our models degenerate to ZOH
models as in [10], [11].

III. E VENT-TRIGGERED CONSENSUS WITH DIRECTED

GRAPHS

Let us start by defining the vectorsx(t) =
[

x1(t)
T . . . xN (t)T

]T
, y(t) =

[

y1(t)
T . . . yN(t)T

]T
,

ande(t) =
[

e1(t)
T . . . eN(t)T

]T
. Then, the dynamics of the

overall system can be written as follows:

ẋ = Āx+ B̄y = (Ā+ B̄)x+ B̄e. (5)

where Ā = IN ⊗ A, B̄ = cL ⊗ BF . Assume that the
pair (A,B) is controllable. Then, forα > 0 there exists
a (independent of the communication graph) symmetric and
positive definite solutionP to

PA+ATP − 2PBBTP + 2αP < 0. (6)

Let

F = −BTP (7)

c ≥ 1/Re(λ2). (8)

By selection of these controller gains we have that the matrix
Â, defined in the following theorem, is a Hurwitz matrix.

Also, there exists a similarity transformationSL such that
LJ = S−1

L LSL is in Jordan canonical form. DefineS =
SL⊗In andx̂ = S−1x. Thus, we can obtain the transformed
system dynamics

˙̂x = S−1ẋ
= S−1(Ā+ B̄)x+ S−1B̄e
= (Ā+ cLJ ⊗BF )x̂+ (cLJ ⊗BF )S−1e

(9)

Sinceλ1(L) = 0 we have

LJ =

[

0 0TN−1

0N−1 J2:N

]

.

where the matrixJ2:N ∈ C(N−1)×(N−1) contains Jordan
blocks corresponding to the eigenvaluesλ2(L), ..., λN (L).

Theorem 1:Assume that the communication graph has a
spanning tree and that the pair (A,B) is controllable. Define
F andc as in (7) and (8). Then agents (1) with decentralized
control inputs (2) based on models (3) achieve consensus
asymptotically when the local thresholds are defined as in
(4), whereβ > 0 and 0 < λ < λ̂. The parameter̂λ is
such that

∥

∥

∥
eÂt

∥

∥

∥
≤ β̂e−λ̂t, for β̂ > 0 where Â = Ā2:N +

cJ2:N ⊗ BF . Furthermore, the agents do not exhibit Zeno

behavior and the inter-event timestki+1−tki
for every agent

i = 1, ..., N are bounded by thepositivetime τ , that is

τ ≤ tki+1 − tki
(10)

where

τ =
ln(1 + β/K3)

‖A‖+ λ̂
(11)

and the positive parameterK3 is defined in (29) below.
Proof. Note that because of threshold (4), the errorei is

reset to zero at the event instantstki
, that is, ei(tki

) = 0.
Thus, the errorei satisfies‖ei(t)‖ ≤ βe−λt and we have
that ‖e(t)‖ ≤

√
Nβe−λt.

Note that
(cLJ ⊗BF )S−1 = (cLJ ⊗BF )(S−1

L ⊗ In)
= LJS

−1
L ⊗ cBF

=

[

0TN
∆

]

⊗ cBF.

where∆ ∈ C(N−1)×N is given by∆ = [0N−1 J2:N ]S−1
L .

Therefore, we have that the transformed dynamics can be
written as follows

˙̂x1 = Ax̂1 (12)

and
˙̂x2:N = Âx̂2:N + B̂e (13)

whereB̂ = c∆⊗BF . Matrix Â is Hurwitz, then, there exist
β̂ and λ̂ both greater than zero such that

∥

∥

∥
eÂt

∥

∥

∥
≤ β̂e−λ̂t.

The consensus problem has been transformed into the
stabilization problem of system (13). The response of (13)
can be bounded as follows

‖x̂2:N (t)‖
=

∥

∥

∥
eÂtx̂2:N (0) +

∫ t

0
eÂ(t−s)B̂e(s)ds

∥

∥

∥

≤ β̂x̂0e−λ̂t +
∫ t

0 β̂e−λ̂(t−s)
∥

∥

∥
B̂
∥

∥

∥

√
Nβe−λsds

≤ β̂x̂0e−λ̂t +
√
Nββ̂‖B̂‖
λ̂−λ

(

e−λt − e−λ̂t
)

(14)

where, by abuse of notation, we denotex̂0 = ‖x̂2:N (0)‖.
Note that

lim
t→∞

‖x̂2:N (t)‖ = 0 (15)

that is, the transformed stateŝx2:N (t) are asymptotically
stable.

In order to show that the same condition guarantees
asymptotic consensus we use the similarity transformation
S. Note thatlimt→∞ x̂(t) =

[

limt→∞ x̂1(t)
T 0 ... 0

]T
.

Use the transformationS = SL⊗In to obtain the original
statex from the stateŝx. Note that the first column ofSL

contains the right eigenvector ofL associated withλ1 = 0.
Let SL2:N denote the remaining columns ofSL, then we can
write

lim
t→∞

x(t) = S lim
t→∞

x̂(t) = α











limt→∞ x̂1(t)
limt→∞ x̂1(t)

...
limt→∞ x̂1(t)











(16)

and the agents achieve consensus asymptotically.
Note that for given controller parameters (7) and (8) the

convergence rate of the event-triggered consensus algorithm



is proportional to the selection of parametersβ andλ as it
can be seen in (14).

In order to establish a positive lower-bound on the inter-
event times (as a function of the selected convergence rate
parametersβ andλ) for each agenti = 1, ..., N , we study
the dynamics of the errorsei, i = 1, ..., N .

ėi = ẏi − ẋi = Aei −Bui = Aei − cBFzi (17)

for t ∈ [tki
, tki+1), where

zi =
∑

j∈Ni

(yi(t)− yj(t)). (18)

For the termzi the following holds

‖zi‖ ≤ ‖z‖
≤ ‖Lnx‖ + ‖Ln‖ ‖e‖ (19)

whereLn = L ⊗ In. Also, we have that

Lnx = LnSx̂ = (L ⊗ In)(SL ⊗ In)x̂
= (LSL ⊗ In)x̂ = (SLLJ ⊗ In)x̂

(20)

Note that

SLLJ = SL

[

0 0TN−1

0N−1 J2:N

]

=
[

0N Θ
]

whereΘ ∈ CN×(N−1) is given byΘ = SL

[

0TN−1

J2:N

]

. Then,

we can write the following

‖Lnx‖ =
∥

∥(
[

0N Θ
]

⊗ In)x̂
∥

∥

= ‖(Θ ⊗ In)x̂2:N‖
≤ Θ̂ ‖x̂2:N‖

(21)

whereΘ̂ = ‖Θ‖. From (17), (19), and (21) we obtain
d
dt

‖ei‖ ≤ ‖A‖ ‖ei‖+ ‖cBF‖ (‖Lnx‖ + ‖L‖ ‖e‖)
≤ ‖A‖ ‖ei‖+ ‖cBF‖

(

Θ̂
(

β̂x̂0e−λ̂t

+
√
Nββ̂‖B̂‖
λ̂−λ

(e−λt − e−λ̂t)
)

+ ‖L‖
√
Nβe−λt

)

(22)

for t ∈ [tki
, tki+1), with ei(tki

) = 0. The error response
during the time intervalt ∈ [tki

, tki+1) can be bounded as
follows

‖ei(t)‖ ≤
∫ t

tki
e‖A‖(t−s) ‖cBF‖

(

K1e−λ̂s +K2e−λs
)

ds

≤
(

e‖A‖τ − e−λ̂τ
)

K1‖cBF‖
‖A‖+λ̂

e−λ̂tki

+
(

e‖A‖τ − e−λτ
)

K2‖cBF‖
‖A‖+λ

e−λtki

(23)

whereτ = t− tki
and

K1 = Θ̂
(

β̂x̂0 −
√
Nββ̂‖B̂‖
λ̂−λ

)

K2 = Θ̂
√
Nββ̂‖B̂‖
λ̂−λ

+ ‖L‖
√
Nβ

Thus, the timeτ > 0 that it takes for the last expression in
(23) to grow from zero, at timetki

, to reach the threshold
βe−λt = βe−λ(tki+τ) is less or equal than the time it takes
the error‖ei(t)‖ to grow from zero, at timetki

, to reach
the same threshold and generate the following event at time

tki+1, that is,0 < τ ≤ tki+1 − tki
. Thus, we wish to find a

lower-boundτ > 0 such that the following holds
(

e‖A‖τ − e−λ̂τ
)

K1‖cBF‖
‖A‖+λ̂

e−λ̂tki

+
(

e‖A‖τ − e−λτ
)

K2‖cBF‖
‖A‖+λ

e−λtki ≤ βe−λ(tki+τ)

(24)
which can also be written as

(

e‖A‖τ − e−λ̂τ
)

K1‖cBF‖
‖A‖+λ̂

e(λ−λ̂)tki

+
(

e‖A‖τ − e−λτ
)

K2‖cBF‖
‖A‖+λ

≤ βe−λτ
(25)

An explicit solution τ > 0 that guarantees (25) can be
found as follows. Let̄λ = λ̂ > λ, then, the following two
inequalities hold for anyτ ≥ 0:

(

e‖A‖τ − e−λ̂τ
)

K1‖cBF‖
‖A‖+λ̂

e(λ−λ̂)tki

+
(

e‖A‖τ − e−λτ
)

K2‖cBF‖
‖A‖+λ

≤
(

e‖A‖τ − e−λ̂τ
)

K1‖cBF‖
‖A‖+λ̂

e(λ−λ̂)tki

+
(

e‖A‖τ − e−λ̄τ
)

K2‖cBF‖
‖A‖+λ

(26)

and

βe−λ̄τ ≤ βe−λτ (27)

Then, the solutionτ > 0 of
(

e‖A‖τ − e−λ̂τ
)

K1‖cBF‖
‖A‖+λ̂

e(λ−λ̂)tki

+
(

e‖A‖τ − e−λ̄τ
)

K2‖cBF‖
‖A‖+λ

= βe−λ̄τ
(28)

guarantees that inequality (25) holds. Such solution is given
by (11) where

K3 = ‖cBF‖
(K1e(λ−λ̂)tki

‖A‖+ λ̂
+

K2

‖A‖+ λ

)

. (29)

By the selection̂λ > λ, we have thate(λ−λ̂)tki ≤ 1 for any
tki

≥ 0, and the termK3 remains bounded for anytki
≥ 0,

ensuring thatτ > 0. �
Remark 1:Note that the parametersβ andλ do not need

to be the same for all agentsi = 1, ..., N . In general, each
agent can use anyβi > 0 and0 < λi < λ̂ and the consensus
result follows by definingβ = maxi βi andλ = mini λi.

Remark 2: It can be seen that ifλ > λ̂ then the second
term in (14) remains positive and asymptotic consensus
is obtained. However, by making this selection, we try to
impose a fast convergence of the state error with respect
to the closed-loop response. By making this choice the
inter-event time intervals will go to zero and continuous
communication cannot be avoided. This can be clearly seen
in the exponential term in (29) that will makeK3 to grow
unbounded as time goes to infinity.

Remark 3:The parameterŝβ and λ̂ are related to the
response of the closed-loop consensus protocol, which in
turn is determined by the local matricesA, B, andF . These
parameters also depend on the communication graph, in
particular, on the second smallest eigenvalue of the Lapla-
cian matrixλ2(L). As with many consensus algorithms, an
estimate of the second smallest eigenvalue of the Laplacian
matrix is required; this is the only global information needed
by the agents. Algorithms for distributed estimation of the
second eigenvalue of the Laplacian have been presented in
[32], [33]. Readers are referred to these papers for details.



Remark 4:The convergence rate of the event-triggered
algorithm is slower, as expected, compared to the case when
continuous communication is possible. Such convergence
rate is given only by the first term in (14) where the
parameterŝβ andλ̂ depend only on the system dynamics, the
communication graph, and the chosen controller parameters.
The selection of parametersβ and λ provide a tradeoff
between convergence rate and reduction of communication
as measured by the minimum inter-event time intervals.

IV. EVENT-TRIGGERED CONSENSUS WITH DIRECTED

GRAPHS AND COMMUNICATION DELAYS

In this section we consider constant communication delays
d. Since the measurement updates will be delayed, the agents
that receive information from agenti will have a version of
agenti’s model state that it is different than agenti’s version.
Thus, it is necessary to distinguish between the model state
as seen by the local agent and as seen by agentsj, for i ∈ Nj .
Define the dynamics and update law of the model state of
agenti as seen by agenti as

ẏi(t) = Ayi(t), yi(tki
) = xi(tki

). (30)

for t ∈ [tki
, tki+1). The measurementxi(tki

) is transmitted
by agenti at time tki

and will arrive to agentsj, such that
i ∈ Nj , at timetki

+d. Let ydi denote the state of the model
of agenti as seen by agentsj (the delayed model state of
agenti), i ∈ Nj . Define the dynamics and update law ofydi
as

ẏdi (t) = Aydi (t),
ydi (tki

+ d) = fd(xi(tki
), d)

(31)

for t ∈ [tki
+ d, tki+1 + d). Since both,yi and ydi , use

the same state matrix for their continuous evolution between
their corresponding update instants, then we define

fd(xi(tki
), d) = eAdxi(tki

). (32)

In the presence of communication delays every agenti =
1, ..., N will implement an additional model of itself. The
first model is similar to the one used in the previous section
and is represented byyi(t). The model stateyi(t) is used by
the local agent to compute the local error and to determine
the local event time instants. The second model is represented
by ydi (t) which is a delayed model, equivalent to the models
that other agents implement of agenti. The second model is
updated at time instantstki

+ d using the update law in (31)
and (32). The state of this model is used (along with model
statesydj , j ∈ Ni) to compute the local control inputs.

The agent dynamics are given by (1) and the control inputs
are now defined as follows

ui(t) = cF
∑

j∈Ni

(ydi (t)− ydj (t)), i = 1, ..., N. (33)

Define the state errors

ei(t) = yi(t)− xi(t), (34)

edi (t) = ydi (t)− xi(t). (35)

Note thatei(tki
) = 0. The dynamics of the overall system

can be written as follows:

ẋ = Āx+ B̄yd = (Ā+ B̄)x+ B̄ed (36)

where yd(t) =
[

yd1(t)
T . . . ydN (t)T

]T
, and ed(t) =

[

ed1(t)
T . . . edN (t)T

]T
.

Theorem 2:Assume that the communication graph has a
spanning tree and that the pair (A,B) is controllable. Define
F andc as in (7) and (8). Then, there exists anǫ > 0 such
that for constant communication delays in the ranged ∈
[0, ǫ) the agents (1) with decentralized control inputs (33)
based on models (3) achieve consensus asymptotically when
the local thresholds are defined as in (4) fori = 1, ..., N ,
whereβ > 0 and0 < λ < λ̂. The parameter̂λ is such that
∥

∥

∥
eÂt

∥

∥

∥
≤ β̂e−λ̂t, for β̂ > 0 whereÂ = Ā2:N + cJ2:N ⊗BF .

Furthermore, the agents do not exhibit Zeno behavior and
the inter-event timestki+1− tki

for every agenti = 1, ..., N
are bounded by thepositivetime τ , that is

τ ≤ tki+1 − tki

where

τ =
ln(1 + β/H3)

‖A‖+ λ̂
(37)

and the positive parameterH3 is defined in (54) below.
Proof. The error ei is used to trigger events. The time-
dependent threshold is still given by (4). Then, there exist
admissible delaysd ∈ [0, ǫ) (whereǫ will be determined later
in this proof) such that

∥

∥edi (t)
∥

∥ ≤ γe−λt (38)

for i = 1, ..., N , γ > β, and t ∈ [tki
, tki

+ d). Note that
because of the bound (38) we have that‖ed‖ ≤

√
Nγe−λt.

Using the similarity transformationS we can obtain the
transformed system dynamics

˙̂x = S−1ẋ
= (Ā+ cLJ ⊗BF )x̂+ (cLJ ⊗BF )S−1ed

(39)

Following similar steps as in Section III we can write the
transformed system dynamics as in (12) and

˙̂x2:N = Âx̂2:N + B̂ed. (40)

Recall thatÂ is Hurwitz and
∥

∥

∥
eÂt

∥

∥

∥
≤ β̂e−λ̂t holds forβ̂ > 0

and λ̂ > 0.
The response of (40) is now bounded as a function of the

parameterγ as follows

‖x̂2:N (t)‖ ≤ β̂x̂0e−λ̂t +
√
Nγβ̂‖B̂‖
λ̂−λ

(

e−λt − e−λ̂t
)

(41)

where0 < λ < λ̂. Therefore the transformed statesx̂2:N (t)
are asymptotically stable which means that asymptotic con-
sensus is obtained for the real statesx(t) as it was shown in
(16).

Note that once the local controller is specified (eqs. (7) and
(8)) the convergence rate of the event-triggered consensus
algorithm with communication delays is dictated by the
selection of parametersβ, γ, andλ.

Now, in order to determine the parameterǫ > 0 (for given
convergence rate parameters) such that for any constant delay
in the ranged ∈ [0, ǫ) the expression (38) holds for a given
delayd ∈ [0, ǫ), let us establish a bound on the response of
the erroredi (t). Here, we consider the general case where the



delay can be larger than the inter-event time intervals. The
error dynamics are given by

ėdi = ẏdi − ẋi = Aedi −Bui = Aedi − cBFzdi (42)

for t ∈ [tki
+ d, tki+1 + d), wherezdi is given by

zdi =
∑

j∈Ni

(ydi (t)− ydj (t)). (43)

For the termzdi the following holds
∥

∥zdi
∥

∥ ≤ ‖z‖
≤ ‖Lnx‖ + ‖Ln‖ ‖ed‖ (44)

Then, we can write the following

‖Lnx‖ ≤ Θ̂ ‖x̂2:N‖
The error edi (t) is piece-wise continuous during the time
interval t ∈ [tki−1 + d, tki

+ d). However, the response of
the erroredi (t) during that time interval depends on the value
of the errorei(t

−
ki
) at time t−ki

(just before the event time at
time tki

), as expected, since the delayed model stateydi is
updated using the update law (31)-(32) with the information
xi(tki

) obtained at timetki
.

Define the auxiliary model state variablẽydi (t) with dy-
namics given by

˙̃ydi (t) = Aỹdi (t),
ỹdi (tki

) = xi(tki
)

(45)

for t ∈ [tki
, tki

+ d). Note that this model variable is not
really implemented by the local agent but it is only used for
the analysis to show convergence in the presence of delays.
Because of the update law (31)-(32) we have thatỹdi (t) =
ydi (t) for t ∈ [tki−1 + d, tki

+ d). Define the auxiliary error
variable ẽdi (t) = ỹdi (t) − xi(t). Similarly, ẽdi (t) = edi (t) for
t ∈ [tki−1+ d, tki

+ d). These relationships are illustrated in
Fig. 1. Thus, by bounding the response of the errorẽdi (t) for
the time intervalt ∈ [tki

, tki
+ d) we are also establishing a

bound on the response of the erroredi (t) for the time interval
t ∈ [tki−1 + d, tki

+ d).
The auxiliary error dynamics are bounded by

d
dt

∥

∥ẽdi
∥

∥ ≤ ‖A‖
∥

∥ẽdi
∥

∥+ ‖cBF‖
(

Θ̂
(

β̂x̂0e−λ̂t

+
√
Nγβ̂‖B̂‖
λ̂−λ

(e−λt − e−λ̂t)
)

+ ‖L‖
√
Nγe−λt

)

(46)

for t ∈ [tki
, tki

+ d) with
∥

∥ẽdi (tki
)
∥

∥ =
∥

∥ei(t
−
ki
)
∥

∥ = βe−λtki .
The initial condition in this expression represents the fact
that a local event has been generated at timetki

.
The auxiliary error response during the time intervalt ∈

[tki
, tki

+ d), with initial conditions
∥

∥ẽdi (tki
)
∥

∥ = βe−λtki

can be bounded as follows
∥

∥ẽdi (t)
∥

∥≤ βe‖A‖(t−tki )e−λtki

+
∫ t

tki
e‖A‖(t−s) ‖cBF‖

(

H1e−λ̂s+H2e−λs
)

ds

≤ βe‖A‖de−λtki

+
(

e‖A‖d − e−λ̂d
)

H1‖cBF‖
‖A‖+λ̂

e−λ̂tki

+
(

e‖A‖d − e−λd
)

H2‖cBF‖
‖A‖+λ

e−λtki

(47)
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Fig. 2. Relation between statexi, model statesyi, yid , and corresponding
errorseii, eid when the delay is smaller than the inter-event time intervals.

whered = t− tki
and

H1 = Θ̂
(

β̂x̂0 −
√
Nγβ̂‖B̂‖
λ̂−λ

)

H2 = Θ̂
√
Nγβ̂‖B̂‖
λ̂−λ

+ ‖L‖
√
Nγ

Note that if the delay is less than the minimum inter-event
time intervals, there is no need for the auxiliary error variable
since edi is continuous fort ∈ [tki

, tki
+ d) and the same

bound applies. This case is illustrated in Fig. 2

In order to guarantee that (38) holds for some desired
convergence rate defined by the parametersλ andγ > β we
need to find the range of values ofd such that the following
inequality holds

βe‖A‖de−λtki

+
(

e‖A‖d − e−λ̂d
)

H1‖cBF‖
‖A‖+λ̂

e−λ̂tki

+
(

e‖A‖d − e−λd
)

H2‖cBF‖
‖A‖+λ

e−λtki ≤ γe−λ(tki+d)

(48)



which can also be written as

βe‖A‖d+
(

e‖A‖d−e−λ̂d
)

H1‖cBF‖
‖A‖+λ̂

e(λ−λ̂)tki

+
(

e‖A‖d − e−λd
)

H2‖cBF‖
‖A‖+λ

≤ γe−λd

(49)

where0 < λ < λ̂. The expression in (49) can be used to
find the range of values ofd that ensure that (38) holds. In
other words, we aim to find the maximum admissible delay
ǫ. First note that ford = 0 the expression (49) reduces to
β ≤ γ, which is true by design. Since both sides of (49) are
continuous functions ofd, then, there exist anǫ > 0 such
that for d ∈ [0, ǫ) the inequality (49) holds.

An explicit, more conservative, solutionǫ > 0 that
guarantees (49) can be found as follows. Letλ̄ = λ̂ > λ,
then, the following two inequalities hold for anyd ≥ 0:

βe‖A‖d+
(

e‖A‖d−e−λ̂d
)

H1‖cBF‖
‖A‖+λ̂

e(λ−λ̂)tki

+
(

e‖A‖d − e−λd
)

H2‖cBF‖
‖A‖+λ

≤ βe‖A‖d+
(

e‖A‖d−e−λ̂d
)

H1‖cBF‖
‖A‖+λ̂

e(λ−λ̂)tki

+
(

e‖A‖d − e−λ̄d
)

H2‖cBF‖
‖A‖+λ

(50)

and

γe−λ̄τ ≤ γe−λτ (51)

Then, the solutionǫ > 0 of

βe‖A‖d+
(

e‖A‖d−e−λ̂d
)

H1‖cBF‖
‖A‖+λ̂

e(λ−λ̂)tki

+
(

e‖A‖d − e−λ̄d
)

H2‖cBF‖
‖A‖+λ

= γe−λ̄τ

(52)

guarantees that inequality (49) holds. Such solution is given
by

ǫ =
ln
(

γ+H3

β+H3

)

‖A‖+ λ̂
(53)

where

H3 = ‖cBF‖
(H1e(λ−λ̂)tki

‖A‖+ λ̂
+

H2

‖A‖+ λ

)

(54)

By the selection̂λ > λ, we have thate(λ−λ̂)tki ≤ 1 for any
tki

≥ 0, and the termH3 remains bounded for any triggering
time instanttki

> 0, ensuring thatǫ > 0.
Finally, we can show that the minimum inter-event time

intervals are strictly positive by following a similar treatment
to the one shown in the proof of Theorem 1. For this task we
need to analyze the response of the errorei(t) (the error used
to trigger events) during the time intervalst ∈ [tki

, tki+1).
The response ofei(t) can be bounded as follows

‖ei(t)‖ ≤
∫ t

tki
e‖A‖(t−s) ‖cBF‖

(

H1e−λ̂s +H2e−λs
)

ds

≤
(

e‖A‖τ − e−λ̂τ
)

H1‖cBF‖
‖A‖+λ̂

e−λ̂tki

+
(

e‖A‖τ − e−λτ
)

H2‖cBF‖
‖A‖+λ

e−λtki

(55)

for t ∈ [tki
, tki+1), whereτ = t−tki

. Following similar steps
to (24)-(28) we can prove that the inter-event time intervals
are lower-bounded byτ , that is,0 < τ < tki+1 − tki

, where
τ is now given by (37).�
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V. EXAMPLE

Consider six agents described by (1) with

A =

[

0.192 −0.439
0.431 0.108

]

, B =

[

−1.45
0.93

]

.

The solution of the LMI in (6) is given by the following
positive definite matrix

P =

[

0.6174 0.1385
0.1385 0.2754

]

The agents are interconnected using a directed communi-
cation graph with adjacency matrix given by

A =

















0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 0 0
0 1 0 0 0 1
0 1 0 0 0 0

















,

For the system response parametersλ̂ = 0.24, and β̂ = 2
we select the following parameters:λ = 0.03, β = 3, and
γ = 12. Both, ǫ in (53) andτ in (37), depend on the current
value of the triggering instanttki

because the termH3 is a
function of this time instants.

Fig. 3 shows the values of these variables for different val-
ues oftki

≥ 0. It can be seen that theH3 → ‖cBF‖ H2

‖A‖+λ

astki
→ ∞. Then, we have thatǫ andτ converge to constant

values around0.004 seconds and0.001 seconds, respectively.
Fig. 4 shows the response of the six agents, for communi-

cation delayd = 0.004 seconds, where each element of the
states of the agents converge to the same trajectory. Fig. 5
shows the transmission periods for every agent where it can
be seen that no agent transmits information faster than the
lower-boundτ = 0.001 seconds.

VI. CONCLUSIONS

Consensus of multi-agent systems with general linear dy-
namics was discussed in this paper. In this work, agents were
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not able to communicate continuously and the implementa-
tion of decentralized broadcasting strategies was addressed.
An event-triggered control technique was presented and it
was shown that agents achieve consensus asymptotically.
This result applies to the general case where agents’ inter-
connection is represented by a directed graph. Asymptotic
consensus of multi-agent systems under directed graphs and
subject to communication delays was also shown in this
paper.
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