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Nonasymptotic Convergence Rates for Cooperative Learning

Over Time-Varying Directed Graphs

Angelia Nedić, Alex Olshevsky and César A. Uribe

Abstract

We study the problem of distributed hypothesis testing witha network of agents where some agents

repeatedly gain access to information about the correct hypothesis. The group objective is to globally

agree on a joint hypothesis that best describes the observeddata at all the nodes. We assume that

the agents can interact with their neighbors in an unknown sequence of time-varying directed graphs.

Following the pioneering work of Jadbabaie, Molavi, Sandroni, and Tahbaz-Salehi, we propose local

learning dynamics which combine Bayesian updates at each node with a local aggregation rule of private

agent signals. We show that these learning dynamics drive all agents to the set of hypotheses which best

explain the data collected at all nodes as long as the sequence of interconnection graphs is uniformly

strongly connected. Our main result establishes a non-asymptotic, explicit, geometric convergence rate

for the learning dynamic.

I. INTRODUCTION

Recent years have seen a considerable amount of work on the analysis of distributed algorithms.

Nonetheless, the study of distributed decision making and computation can be traced back to the classic

papers [1], [2], [3] from the 70s and 80s. Applications of such algorithms range from opinion dynamics

analysis, network learning and inference, cooperative robotics, communication networks, to social as well

as sensor networks. It is the latter settings of social and sensor networks which is the focus of the current

paper.

Interactions among people produce exchange of ideas, opinions, observations and experiences, on

which new ideas, opinions, and observations are generated.Analyzing dynamic model of such processes

generates insight into human behavior and produce algorithms useful in the sensor networking context.
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We consider an agent network where agents repeatedly receive information from their neighbors and

private signals from an external source, which provide samples from random variable with unknown

distribution. The agents would like to collectively agree on a hypothesis (distribution) that best explains

the data.

Initial results on learning in social networks are described in [4], where local update rules are designed

such that it matches the Bayes’ Theorem. That is, given a prior and new observations, the agent is able to

compute likelihood functions in order to generate a new posterior, see [5]. Nevertheless, a fully Bayesian

approach might not be possible in general since full knowledge of neither the network structure nor other

agents hypothesis might be available [6]. Fortunately, non-Bayesian methods have been shown successful

in learning as well. For example, in [7], the authors proposea modification of Bayes’ rule that accounts

for over-reactions or under-reactions to new information.

In a distributed setting, several groundbreaking papers have described ways agents achieve global be-

haviors by repeatedly aggregating local information in a network [8], [9], [10]. For example, in distributed

hypothesis testing using belief propagation, convergenceand dependence of the communication structure

were shown [10]. Later, extensions to finite capacity channels, packet losses, delayed communications

and tracking where developed [11], [12]. In [9], the authorsproved convergence in probability, asymptotic

normality of the distributed estimation and provided conditions under which the distributed estimation

is as good as a centralized one. Later in [8], almost sure convergence of a non-Bayesian rule based

on arithmetic mean was shown for fixed topology graphs. Extensions to information heterogeneity and

asymptotic convergence rates have been derived as well [13]. Following [8], other methods to aggregate

Bayes estimates in a network have been explored. In [14], geometric means are used for fixed topologies

as well, however the consensus and learning steps are separated. The work in [15] extends the results

of [8] to time-varying undirected graphs. In [16], local exponential rates of convergence for undirected

gossip-like graphs are studied.

In this paper we propose a non-Bayesian learning rule, analyze its consistency and derive a non-

asymptotic rate of convergence for time-varying directed graphs. Our first result shows consistency: we

show that over time, the protocol learns the hypothesis or set of hypotheses which better explain the data

collected by all the nodes. Moreover, our main result provides a geometric, non-asymptotic, and explicit

characterization of the rate of convergence which immediately leads to finite-time bounds which scale

intelligibly with the number of nodes.

In a simultaneous independent effort, the authors in [17], [18] proposed a similar non-Bayesian learning

algorithm where a local Bayes update is followed by a consensus step. In [17], convergence result for
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fixed graphs is provided and large deviation convergence rates are given, proving the existence of a

random time after which the beliefs will concentrate exponentially fast. In [18], similar probabilistic

bounds for the rate of convergence are derived for fixed graphs and comparisons with the centralized

version of the learning rule are provided.

This paper is organized as follows. In Section II we describethe model that we study and the proposed

update rule. In Section III we analyze the consistency of theinformation aggregation and estimation

models, while in Section IV we establish non-asymptotic convergence rates of the agent beliefs. Some

conclusions and future work directions are given in SectionVI.

Notation: Upper case letters represent random variables (e.g.Xk), and the corresponding lower case

letters for their realizations (e.g.xk). Subindex will generally indicate the time index. We writeas[Ak]ij

the i-th row andj-th column entry of matrixAk. We write A′ for the transpose of a matrixA andx′

for the transpose of a vectorx. We useI for the identity matrix. Bold letters represent vectors which

are assumed to be column vectors. Thei’th entry of a vector will be denoted by a superscripti, i.e.,

xk =
[
x1k, . . . , x

n
k

]′
. We write 1n to denote the all-ones vector of sizen. For a sequence of matrices

{At}, we letAtf :ti , Atf · · ·Ati+1Ati for all tf ≥ ti ≥ 0.We terms ”almost surely” and ”independent

identically distributed” are abbreviated bya.s.and i.i.d. respectively.

II. PROBLEM SETUP AND MAIN RESULTS

We consider a group ofn agents each of which observes a random variable at each time step k =

1, 2, 3, . . .. We useSi
k to denote the random variable whose samples are observed by agenti at time step

k. We denote the set of outcomes of the random variableSi
k by Si, and we assume that this set is finite,

i.e., Si = {si1, si2, . . . , simi
} for all i = 1, . . . , n. Furthermore, we assume that allSi

k are i.i.d. and drawn

according to some probability distributionf i : Si → [0, 1]. For convenience, we stack up allSi
k’s into a

single random vectorSk.

We assume there is a finite set of hypothesis,Θ = {θ1, θ2, . . . , θm} and there is a probability distribution

li (·|θ) for each agenti and hypothesisθ ∈ Θ. Intuitively, we think ofli(·|θ) as the probability distribution

seen by agenti if hypothesisθ were true. Note that, it is not required for the agents to havean hypothesis

that is exactly equal to the unknown distributionf i. The goal of the agents is to agree on an element of

Θ that fits all the observations in the network best (in a technical sense to be described soon).

Agents communicate with their neighbors, this communication is modedeled as a graphGk = {V,Ek}
composed of a node setV = {1, 2, . . . , n} and a set of directed linksEk.

We will refer to probability distributions overΘ as beliefs and assume that agenti begins with an
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initial belief µi
0, which we also refer to as itsprior distribution or prior belief.

This paper focuses in the study of the group dynamics wherein, at time k, each agenti updates its

previous beliefµi
k to a new beliefµi

k+1 as follows:

µi
k+1 (θ) =

∏n
j=1 µ

j
k (θ)

[Ak]ij li
(
sik+1|θ

)
∑m

p=1

∏n
j=1 µ

j
k (θp)

[Ak]ij li
(
sik+1|θp

) , (1)

with [Ak]ij > 0 when i receives information fromj at timek, and else[Ak]ij = 0.

The “weight matrices”Ak satisfy some technical connectivity conditions which havebeen previously

used in convergence analysis of distributed averaging and other consensus algorithms [19], [20], [21].

The assumptions on the communication graph are presented next.

Assumption 1 The graph sequence{Gk} and the matrix sequence{Ak} are such that:

1) Ak is row-stochastic with[Ak]ij > 0 if (j, i) ∈ Ek.

2) Ak has positive diagonal entries,[Ak]ii > 0.

3) If [Ak]ij > 0 then [Ak]ij > η for some positive constantη.

4) {Gk} isB-strongly connected, i.e., there is an integerB ≥ 1 such that the graph
{
V,
⋃(k+1)B−1

i=kB Ei

}

is strongly connected for allk ≥ 0 .

As a measure for the explanatory quality of the hypotheses inthe setΘ we use the Kullback-Leibler

divergence between two discrete probability distributions p andq:

d (p‖q) =
n∑

i=1

pi log

(
pi
qi

)
.

Concretely, the quality of hypothesisθj for agent i is measured by the Kullback-Leibler divergence

d
(
f i (·) ‖li (·|θj)

)
between the true distribution of the signalsSi

k and the probability distributionli(·|θj)
as seen by agenti if hypothesisθj were correct. We use the following assumption on the agents’best

hypotheses.

Assumption 2 The setΘ∗ defined asΘ∗ ,
⋂n

i=1Θi, whereΘi = argmin
θ∈Θ

d
(
f i (·) ‖li (·|θ)

)
for eachi,

is non-empty.

Assumption 2 is satisfied if there is some “true state of the world” θ̂ ∈ Θ such that each agenti

sees distributions generated according toθ̂, i.e., f i(·) = li(·|θ̂). However, this need not be the case for

Assumption 2 to hold. Indeed, the assumption is considerably weaker as it merely requires that the set

of hypotheses, which provide the “best fits” for each agent, have at least a single element in common.

October 14, 2018 DRAFT
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We will further require the following assumptions on the initial distribution and the likelihood functions.

The first of these is sometimes referred to as the Zero Probability Property [22].

Assumption 3 For all agentsi = 1, . . . , n,

1) The prior beliefs on allθ∗ ∈ Θ∗ are positive, i.e.µi
0 (θ

∗) > 0 for all θ∗ ∈ Θ∗.

2) There exists anα > 0 such thatli
(
si|θ
)
> α for all si ∈ Si and θ ∈ Θ.

Assumption 3.1 can be relaxed to a requirement that all priorbeliefs are positive for someθ∗ ∈ Θ∗. Both

of these conditions are equally complex to be satisfied. Theycan be satisfied by letting each agent have

a uniform prior belief, which is reasonable in the absence ofany initial information about the goodness

of the hypotheses.

We now state our first result, which asserts that the dynamicsin Eq. (1) concentrate all agent’s believes

in the optimal hypothesis set. We provide its proof in Section III.

Theorem 1 Under Assumptions 1, 2, and 3, the update rule of Eq. (1) has the following property:

lim
k→∞

µi
k (θ) = 0 a.s. ∀θ /∈ Θ∗, i = 1, . . . , n.

The result states that the agents’ beliefs will concentrateon the setΘ∗ asymptotically ask → ∞.

Our main result is a non-asymptotic explicit convergence rate, given in the following theorem, proven

in Section IV.

Theorem 2 Let Assumptions 1, 2, and 3 hold. Also, letρ ∈ (0, 1) be a given error percentile (or

confidence value). Then, the update rule of Eq. (1) has the following property: there exists an integer

N (ρ) such that, with probability1− ρ, for all k ≥ N (ρ) there holds that for anyθ 6∈ Θ∗,

µi
k (θ) ≤ exp

(
−k

2
γ2 + γ1

)
∀i = 1, . . . , n,

where N (ρ) ,
8 (log (α))2 log

(
1
ρ

)

γ22
+ 1,

γ1 , max
θ∗∈Θ∗

θ/∈Θ∗

{
max
1≤i≤n

log
µi
0(θ)

µi
0(θ

∗)
+

C

1− λ
‖H (θ) ‖1

}
,

γ2 ,
δ

n
min
θ/∈Θ∗

‖H (θ) ‖1

[H (θ)]i = d(f i(·)||li(· | θ))− d
(
f i (·) ‖li (·|θ∗)

)
,

with α from Assumption 3.2.

October 14, 2018 DRAFT
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The constantsC, δ and λ satisfy the following relations:

(1) For generalB-connected graph sequences{Gk},

C = 2, λ ≤
(
1− ηnB

) 1

B , δ ≥ 1

ηnB
.

(2) If every matrixAk is doubly stochastic,

C =
√
2, λ =

(
1− η

4n2

) 1

B

, δ = 1.

(3) If eachGk is an undirected graph and eachAk is the lazy Metropolis matrix, i.e. the stochastic matrix

which satisfies

[Ak]ij =
1

2max(d(i), d(j))
for all {i, j} ∈ Gk,

then C =
√
2, λ = 1− 1

O(n2)
, δ = 1.

Note thatH (θ) does not depend onθ∗ sinced
(
f i (·) ‖li (·|θ∗)

)
is the same for allθ∗.

In contrast to the previous literature, this convergence rate is not only geometric but also non-asymptotic

and explicit in the sense of immediately leading to bounds which scale intelligible in terms of the number

of nodes. For example, in the case of doubly stochastic matrices, Theorem 2 immediately implies that, after

a transient time, which scales cubically in the numbern of nodes, the network will achieve exponential

decay to the correct answer with the exponent−1
2 minθ∗∈Θ∗ ‖H(θ)‖1/n.

Now, consider the case when Assumption 3.1 is relaxed to the following requirement:The prior beliefs

on someθ∗ ∈ Θ∗ are positive(i.e. µi
0 (θ

∗) > 0 for someθ∗ ∈ Θ∗ and alli). Then, it can be seen that the

Theorem 2 is valid withmaxθ∗∈Θ∗ andminθ∗∈Θ∗ replaced, respectively, bymaxθ∗∈Θ̃∗ andmaxθ∗∈Θ̃∗ ,

whereΘ̃∗ ⊆ Θ∗ is the set of allθ∗ ∈ Θ∗ for which all the agents priorsµi
0 are positive.

III. C ONSISTENCY OF THELEARNING RULE

In this section we prove Theorem 1, which provides a statement about the consistency (see [23], [24])

of the distributed estimator given in Eq. (1). Our analysis will require some auxiliary results. First, we

will recall some results from [25] about the convergence of aproduct of row stochastic matrices.

Lemma 1 [25], [26] Under Assumption 1, for a graph sequence{Gk} and eacht ≥ 0, there is a

stochastic vectorφt (meaning its entries are nonnegative and sum to one) such that for all i, j and

k ≥ t,
∣∣∣[Ak:t]ij − φj

t

∣∣∣ ≤ Cλk−t ∀ k ≥ t ≥ 0

October 14, 2018 DRAFT
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whereC > 0 and λ ∈ (0, 1) satisfy the relations described in Theorem 2.

The proof of Lemma 1 may be found in [25], with the exception ofthe bounds onC, λ for the lazy

Metropolis chains which we omit here due to space constraints.

Lemma 2 [25] Let the graph sequence{Gk} satisfy Assumption 1. Define

δ , inf
k≥0

(
min
1≤i≤n

[
1
′
nAk:0

]
i

)
. (2)

Then,δ ≥ ηnB , and if all Ak are doubly stochastic, thenδ = 1. Furthermore, the sequenceφt from

Lemma 1 satisfiesφj
t ≥ δ/n for all t ≥ 0, j = 1, . . . , n.

Next, we need a technical lemma regarding the weighted average of random variables with a finite

variance.

Lemma 3 If assumptions 1, 2 and 3 hold. Then for a graph sequence{Gk} we have for anyθ /∈ Θ∗

and θ∗ ∈ Θ∗,

lim
k→∞

1

k

k∑

t=1

Ak:tLθ
t +

1

k

k∑

t=1

1nφ
′
tH (θ) = 0 a.s.

whereLθ
t is the random vector with coordinates given by

[
Lθ
t

]
i
= log

li
(
Si
t |θ
)

li
(
Si
t |θ∗
) ∀i = 1, . . . , n,

while the vectorH (θ) has coordinates given by[H (θ)]i = d(f i(·)||li(· | θ))− d
(
f i(·)‖li (·|θ∗)

)
.

Proof: Adding and subtracting1k
∑k

t=1 1nφ
′
tLθ

t yields

1

k

k∑

t=1

(
Ak:tLθ

t + 1nφ
′
tH (θ)

)
=

1

k

k∑

t=1

(
Ak:t − 1nφ

′
t

)
Lθ
t +

1

k

k∑

t=1

1nφ
′
t

(
Lθ
t +H (θ)

)
. (3)

By Lemma 1,limk→∞Ak:t = 1φ′
t for all t ≥ 0. Moreover, each of the entries ofLθ

t are upper bounded

by Assumption 2. Thus, the first term on the right hand side of Eq. (3) goes to zero as we take the limit

overk → ∞. Regarding the second term in Eq. (3), by the definition of theKL divergence measure, we

have that

E

[
log

li
(
Si
t |θ
)

li
(
Si
t |θ∗
)
]
=

mi∑

j=1

f i
(
sij
)
log

li

(
sij|θ

)

li

(
sij|θ∗

)

=

mi∑

j=1

f i
(
sij
)
log




li

(
sij|θ

)

li

(
sij|θ∗

)
f i
(
sij

)

f i
(
sij

)
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= d
(
f i(·)‖li (·|θ∗)

)
− d

(
f i(·)‖li (·|θ)

)

or equivalentlyE
[
Lθ
t

]
= −H(θ).

Kolmogorov’s strong law of large numbers states that if{Xt} is a sequence of independent random

variables with variances such that
∑∞

k=1
Var(Xk)

k2 < ∞, then 1
n

∑n
k=1Xk − 1

n

∑n
k=1 E [Xk] → 0 a.s. Let

Xt = φ′
tLθ

t . Then, by using Assumptions 1 and 3.2, it can be seen thatsupt≥0 Var(Xt) < ∞.

The result follows by Lemma 1 and Kolmogorov’s strong law of large numbers.

With Lemma 3 in place, we are ready to prove Theorem 1. The proof of Theorem 1 (and also

Theorem 2) makes use of the following quantities: for alli = 1, . . . , n andk ≥ 0,

ϕi
k(θ) , log

µi
k (θ)

µi
k (θ

∗)
for all θ ∈ Θ, (4)

defined for anyθ∗ ∈ Θ∗ (dependence onθ∗ is suppressed). Proof: (Theorem 1) Dividing both sides

of (1) by µi
k+1 (θ

∗), then using the log function and the definition ofϕi
k(θ) we obtain:

ϕi
k+1 (θ) =

n∑

j=1

[Ak]ij ϕ
j
k (θ) + log

li
(
sik+1|θ

)

li
(
sik+1|θ∗

) .

Stacking up the valuesϕi
k+1 (θ) over agentsi = 1, . . . , n, into a single vectorϕk+1 (θ), we can

compactly write the preceding relations, as follows:

ϕk+1 (θ) = Akϕk (θ) + Lθ
k+1, (5)

which implies that for allk ≥ 0,

ϕk+1 (θ) = Ak:0ϕ0 (θ) +

k∑

t=1

Ak:tLθ
t + Lθ

k+1. (6)

We add and subtract
∑k

t=1 1nφ
′
tH (θ) in Eq. (6), then

ϕk+1 (θ) = Ak:0ϕ0 (θ) +

k∑

t=1

(
Ak:tLθ

t + 1nφ
′
tH (θ)

)
+ Lθ

k+1 −
k∑

t=1

1nφ
′
tH (θ) .

By using the lower bounds onφt described in Lemma 2 and the fact thatH(θ, θ∗) ≥ 0, we obtain

ϕk+1 (θ) ≤ Ak:0ϕ0 (θ) +

k∑

t=1

(
Ak:tLθ

t + 1nφ
′
tH (θ)

)
+ Lθ

k+1 −
δ

n
k‖H (θ) ‖11n.

Therefore, we have

lim
k→∞

1

k
ϕk+1 (θ) ≤ lim

k→∞

1

k
Ak:0ϕ0 (θ)−

δ

n
‖H (θ) ‖11n+ lim

k→∞

1

k
Lθ
k+1 + lim

k→∞

1

k

k∑

t=1

(
Ak:tLθ

t + 1nφ
′
tH (θ)

)
.
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The first term of the right hand side of the preceding relationconverges to zero deterministically. The

third term goes to zero as well sinceLθ
t is bounded, and the fourth term converges to zero almost surely

by Lemma 3. Consequently,

lim
k→∞

1

k
ϕk+1 (θ) ≤ − δ

n
‖H (θ) ‖11n a.s. (7)

Now if θ /∈ Θ∗, thenH(θ, θ∗) > 0 and, thus,ϕk (θ) → −∞ almost surely. This impliesµk (θ) → 0

almost surely.

IV. N ON-ASYMPTOTIC RATE OF CONVERGENCE

In this section, we prove Theorem 2, which states an explicitrate of convergence for cooperative agent

learning process. Before proving the theorem, we will estate an auxiliary lemma that provides a bound

for the expectation of the random variablesϕi
k (θ) as defined in Eq. (4).

Lemma 4 Let θ∗ ∈ Θ∗ be arbitrary, and considerϕi
k (θ) as defined in Eq.(4). Then, for anyθ 6∈ Θ∗

we have

E
[
ϕi
k+1 (θ)

]
≤ γ1 − (k + 1)γ2 for all i and k ≥ 0,

whereγ1 and γ2 are defined in Theorem 2.

Proof: The expected value of Eq. (5) andE
[
Lθ
k+1

]
= −H (θ), gives

E
[
ϕk+1 (θ)

]
= AkE [ϕk (θ)]−H (θ)

Therefore, by recursion we can see that for allk ≥ 0,

E
[
ϕk+1 (θ)

]
= Ak:0ϕ0(θ)−

k∑

t=1

Ak:tH (θ)−H (θ) .

By adding and subtracting
∑k

t=1 1nφ
′
tH (θ), we obtain

E
[
ϕk+1 (θ)

]
= Ak:0ϕ0(θ) +

k∑

t=1

(
1nφ

′
t −Ak:t

)
H (θ)−

k∑

t=1

1nφ
′
tH (θ)−H (θ) .

We removed the last term of the right hand side in the preceding relation sinceH (θ) ≥ 0. Moreover,

bounding the entries for the first two terms on the right hand side and using the fact thatAk:0 is a

stochastic matrix, we have that

E
[
ϕk+1 (θ)

]
≤ ‖ϕ0(θ)‖∞1n −

k∑

t=1

1nφ
′
tH (θ) +

k∑

t=1

max
1≤i,j≤n

|φj
t − [Ak:t]ij |‖H (θ) ‖11n
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Next, we use the upper bound on terms|φj
t − [Ak:t]ij| from Lemma 1 and the lower bound for the entries

in φt as given in Lemma 2, and we arrive at the following relation:

E
[
ϕk+1 (θ)

]
≤ ‖ϕ0(θ)‖∞1n +

k∑

t=1

Cλk−t‖H (θ) ‖11n − k
δ

n
‖H (θ) ‖11n

and the result follows.

The proof of Theorem 2 uses the McDiarmid’s inequality [27].This will provide bounds on the

probability that the beliefs exceed a given valueǫ. McDiarmid’s inequality is provided below.

Theorem 3 (McDiarmid’s inequality [27]) Let{Xt}kt=1 = (X1, . . . ,Xk) be a sequence of independent

random variables withXt ∈ X . If a functiong : {Xt}kt=1 → R has bounded differences, i.e., for allt,

sup
Xt∈X

g (. . . ,Xt, . . .)− inf
Yt∈X

g (. . . , Yt, . . .) ≤ ct

then for anyǫ > 0 and all k ≥ 1,

P

(
g
(
{Xt}kt=1

)
− E

[
g
(
{Xt}kt=1

)]
≥ ǫ
)
≤ exp

(
−2ǫ2
∑k

t=1
c2t

)

Now, we are ready to prove Theorem 2.

Proof: (Theorem2) First we will express the beliefµi
k+1 (θ) in terms of the variableϕi

k+1 (θ).

This will allow us to use the McDiarmid’s inequality to obtain the concentration bounds. By dynamics

of Eq. (1) and Assumption 3.1, sinceµi
k+1 (θ

∗) ∈ (0, 1] for any θ∗ ∈ Θ∗, we have

µi
k+1 (θ) ≤

µi
k+1 (θ)

µi
k+1 (θ

∗)
= exp

(
ϕi
k+1(θ)

)

Therefore,

P

(
µi
k+1 (θ) ≥ exp

(−kγ2
2

+ γ1

))
≤ P

(
ϕi
k+1 (θ) ≥

−kγ2
2

+ γ1

)

= P

(
ϕi
k+1 (θ)− E

[
ϕi
k+1 (θ)

]
≥ −k

2
γ2 + γ1 − E

[
ϕi
k+1 (θ)

])

= P

(
ϕi
k+1 (θ)− E

[
ϕi
k+1 (θ)

]
≥ k

2
γ2

)
,

where the last equality follows from Lemma 4.

We now viewϕi
k+1 (θ) a function of the random vectorss1, . . . , sk, sk+1, see Eq. (6), wherest =

(s1t , . . . , s
n
t ) ∈ S for all t. Thus, for allt with 1 ≤ t ≤ k, we have

max
st∈S

ϕi
k+1 (θ)−min

st∈S
ϕi
k+1 (θ) = max

st∈S

n∑

j=1

[Ak:t]ij
[
Lθ
t

]
j
−min

st∈S

n∑

j=1

[Ak:t]ij
[
Lθ
t

]
j

October 14, 2018 DRAFT
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= max
st∈S

n∑

j=1

[Ak:t]ij log
lj

(
sjt |θ

)

lj

(
sjt |θ∗

) −min
st∈S

n∑

j=1

[Ak:t]ij log
lj

(
sjt |θ

)

lj

(
sjt |θ∗

)

≤ log
1

α
+ log

1

α

= 2 log
1

α
.

Similarly, from Eq. (6) we can see that

max
sk+1∈S

ϕi
k+1 (θ)− min

sk+1∈S
ϕi
k+1 (θ) ≤ 2 log

1

α
.

It follows that ϕi
k+1 (θ) has bounded variations and by McDiarmid’s inequality (Theorem 3) we obtain

the following concentration inequality,

P

(
ϕi
k+1 (θ)− E

[
ϕi
k+1 (θ)

]
≥ k

2
γ2

)
≤ exp

(
−1

2 (kγ2)
2

∑k+1
t=1

(
2 log 1

α

)2

)

= exp

(
− (kγ2)

2

8(k + 1)
(
log 1

α

)2

)

≤ exp

(
−(k − 1)γ22
8 (logα)2

)

Finally, for a given confidence levelρ, in order to haveP
(
µi
k (θ) ≥ exp

(
−kγ2

2 + γ1

))
≤ ρ the desired

result follows.

V. SIMULATION RESULTS

In this section we show simulation results for a group of agents connected over a time-varying directed

graph, shown in Figure 1, for some specific weighting matrices. Each agent updates its beliefs according

to Eq. (1).

Note that the graph is such that the edge connecting agent 1 and agent 2 is switching on and off at

each time step. Agents 2-6 connecting edges are changing at each time step as well.
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Fig. 1. Time-Varying graph with a switching external agent

Every agenti receives information from a binary random variableSi
k : Ω → {0, 1} with probability

distributionf i (0) = 0.1 andf i (1) = 0.9 for all i’s. Moreover, every agent has two possible modelsθ1

andθ2. Agent 1 hypotheses have the following likelihood functions: l1 (0|θ1) = 0.2 and l1 (1|θ1) = 0.8

for hypothesisθ1; and l1 (0|θ2) = 0.9 and l1 (1|θ2) = 0.1 for hypothesisθ2. Therefore, hypothesisθ1 is

closer to the true distribution. On the other hand, agents 2 to 6 have uniformly distributed observationally

equivalent hypothesis for bothθ1 andθ2, that is, they are not able to differentiate between the hypothesis

individually. Thusli (s|θ) = 0.5 for i = {2, . . . , 6}, s = {0, 1} andθ = {θ1, θ2}.

Figure 2 shows the empirical mean over 5000 Monte Carlo simulations of the beliefs on hypothesis

θ2 of agents 1, 4, 5 and 6. Results show that agent 1 is the fastestlearning agent, since is the one with

the correct model. Nevertheless, all other agents are converging to the correct parameter model as well,

even if they do not have differentiable models.

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
m

pi
ric

al
 M

ea
n 

ov
er

50
00

 M
on

te
 C

ar
lo

 S
im

ul
at

io
ns

 

 

Agent 1

Agent 4

Agent 5

Agent 6

Fig. 2. Simulation results for Agents 1, 4, 5 and 6
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VI. CONCLUSIONS AND FUTURE WORK

We have studied the consistency and the rate of convergence for a distributed non-Bayesian learning

system. We have shown almost sure consistency and have provided bounds on the global exponential rate

of convergence. The novelty of our results is in the establishment of convergence rate estimates that are

non-asymptotic, geometric, and explicit, in the sense thatthe bounds capture the quantities characterizing

the graph sequence properties as well as the agent learning capabilities. This results were derived for

general time-varying directed graphs.

Our work suggests a number of open questions. It is natural toattempt to extensions to continuous

spaces, on the number of agents, on the number of hypothesis,etc. This result can be extended to

tracking problems where the distribution of the observations changes with time. When the number of

hypothesis is large, ideas from social sampling can also be incorporated in this framework [28]. Moreover,

the possibility of corrupted measurements or conflicting models between the agents are also of interest,

especially in the setting of social networks.
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