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Nonasymptotic Convergence Rates for Cooperative Learning

Over Time-Varying Directed Graphs
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Abstract

We study the problem of distributed hypothesis testing wsithetwork of agents where some agents
repeatedly gain access to information about the correcotingsis. The group objective is to globally
agree on a joint hypothesis that best describes the obselaedat all the nodes. We assume that
the agents can interact with their neighbors in an unknovguesece of time-varying directed graphs.
Following the pioneering work of Jadbabaie, Molavi, Samilr@and Tahbaz-Salehi, we propose local
learning dynamics which combine Bayesian updates at eadd with a local aggregation rule of private
agent signals. We show that these learning dynamics drinagahts to the set of hypotheses which best
explain the data collected at all nodes as long as the sequhiaiterconnection graphs is uniformly
strongly connected. Our main result establishes a non4ai®fim, explicit, geometric convergence rate

for the learning dynamic.

. INTRODUCTION

Recent years have seen a considerable amount of work on #igsisnof distributed algorithms.
Nonetheless, the study of distributed decision making amdputation can be traced back to the classic
papers [1], [2], [3] from the 70s and 80s. Applications of lsadgorithms range from opinion dynamics
analysis, network learning and inference, cooperativetios, communication networks, to social as well
as sensor networks. It is the latter settings of social and@enetworks which is the focus of the current
paper.

Interactions among people produce exchange of ideas, om@iniobservations and experiences, on
which new ideas, opinions, and observations are generAtedyzing dynamic model of such processes

generates insight into human behavior and produce algaesithseful in the sensor networking context.
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We consider an agent network where agents repeatedly eetdgarmation from their neighbors and
private signals from an external source, which provide damfrom random variable with unknown
distribution. The agents would like to collectively agrae @ hypothesis (distribution) that best explains
the data.

Initial results on learning in social networks are desatibe[4], where local update rules are designed
such that it matches the Bayes’ Theorem. That is, given a prid new observations, the agent is able to
compute likelihood functions in order to generate a newegrast see [5]. Nevertheless, a fully Bayesian
approach might not be possible in general since full knogdeaf neither the network structure nor other
agents hypothesis might be available [6]. Fortunately-Bapesian methods have been shown successful
in learning as well. For example, in [7], the authors propaseodification of Bayes’ rule that accounts
for over-reactions or under-reactions to new information.

In a distributed setting, several groundbreaking papevs kdascribed ways agents achieve global be-
haviors by repeatedly aggregating local information in avoek [8], [9], [10]. For example, in distributed
hypothesis testing using belief propagation, convergamckedependence of the communication structure
were shown [10]. Later, extensions to finite capacity chémreacket losses, delayed communications
and tracking where developed [11], [12]. In [9], the authan@ved convergence in probability, asymptotic
normality of the distributed estimation and provided coiods under which the distributed estimation
is as good as a centralized one. Later in [8], almost sureargemce of a non-Bayesian rule based
on arithmetic mean was shown for fixed topology graphs. Bibtars to information heterogeneity and
asymptotic convergence rates have been derived as well fb8pwing [8], other methods to aggregate
Bayes estimates in a network have been explored. In [14jng&éc means are used for fixed topologies
as well, however the consensus and learning steps are sshafae work in [15] extends the results
of [8] to time-varying undirected graphs. In [16], local exgntial rates of convergence for undirected
gossip-like graphs are studied.

In this paper we propose a non-Bayesian learning rule, aealg consistency and derive a non-
asymptotic rate of convergence for time-varying directeaps. Our first result shows consistency: we
show that over time, the protocol learns the hypothesis ofskypotheses which better explain the data
collected by all the nodes. Moreover, our main result presid geometric, non-asymptotic, and explicit
characterization of the rate of convergence which immetjideads to finite-time bounds which scale
intelligibly with the number of nodes.

In a simultaneous independent effort, the authors in [118] proposed a similar non-Bayesian learning

algorithm where a local Bayes update is followed by a consessep. In [17], convergence result for
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fixed graphs is provided and large deviation convergenasrate given, proving the existence of a
random time after which the beliefs will concentrate expuiadly fast. In [18], similar probabilistic
bounds for the rate of convergence are derived for fixed gragtd comparisons with the centralized
version of the learning rule are provided.

This paper is organized as follows. In Sectidn Il we descititeemodel that we study and the proposed
update rule. In Sectiof Il we analyze the consistency of itiermation aggregation and estimation
models, while in Sectioh IV we establish non-asymptoticvesgence rates of the agent beliefs. Some
conclusions and future work directions are given in Sedidn

Notation: Upper case letters represent random variables (&.. and the corresponding lower case
letters for their realizations (e.gy). Subindex will generally indicate the time index. We Wrzite[Ak]ij
the i-th row andj-th column entry of matrix4,. We write A’ for the transpose of a matrid and 2’
for the transpose of a vectar. We usel for the identity matrix. Bold letters represent vectors ethi
are assumed to be column vectors. Thk entry of a vector will be denoted by a superscripi.e.,

Xp = [m}c,...,xz]'. We write 1,, to denote the all-ones vector of size For a sequence of matrices
{Ai}, we let Ay, 4, £ Ay, - Ay 1 Ay, forall £y > ¢; > 0.We terms "almost surely” and "independent

identically distributed” are abbreviated lays.andi.i.d. respectively.

Il. PROBLEM SETUP AND MAIN RESULTS

We consider a group ofi agents each of which observes a random variable at each tepe: s=
1,2,3,.... We useS} to denote the random variable whose samples are observegebyiaat time step
k. We denote the set of outcomes of the random varié’gf)lby S, and we assume that this set is finite,
ie., S ={sl,sh,...,sh, } forall i =1,... ,n. Furthermore, we assume that &}l are i.i.d. and drawn
according to some probability distributioff : S* — [0, 1]. For convenience, we stack up &li’s into a
single random vecto$y.

We assume there is a finite set of hypotheSiss {6, 0, ..., 6,,} and there is a probability distribution
l; (-|0) for each agent and hypothesig € ©. Intuitively, we think ofl;(-|¢) as the probability distribution
seen by agentif hypothesis) were true. Note that, it is not required for the agents to lmvlypothesis
that is exactly equal to the unknown distributigh The goal of the agents is to agree on an element of
O that fits all the observations in the network best (in a techinsense to be described soon).

Agents communicate with their neighbors, this communicaets modedeled as a graph = {V, E; }
composed of a node sét = {1,2,...,n} and a set of directed link&).

We will refer to probability distributions ove® as beliefsand assume that ageitbegins with an
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initial belief 1§, which we also refer to as itgrior distribution or prior belief
This paper focuses in the study of the group dynamics wheetitime k, each agent updates its
previous beliefu, to a new beliefy} , , as follows:
[T ()443 (514416)
Sy Tl 1 (0p) 0 1 (5}4416p)
with [A];; > 0 wheni receives information fromy at time &, and elsgA];; = 0.

Miﬂ-l (9) = (1)

The “weight matrices”4,. satisfy some technical connectivity conditions which haeen previously
used in convergence analysis of distributed averaging aner @onsensus algorithms [19], [20], [21].

The assumptions on the communication graph are presenktd ne

Assumption 1 The graph sequencfj,} and the matrix sequended;} are such that:
1) Ay is row-stochastic witfAy];; > 0 if (j,4) € Ej.
2) Ay has positive diagonal entrieg4y],; > 0.
3) If [A];; > 0 then[Ag];; > n for some positive constant
4) {Gy} is B-strongly connected, i.e., there is an integer> 1 such that the grapl{v UE’”,;}BB ! EZ}

is strongly connected for alt > 0 .

As a measure for the explanatory quality of the hypothesékearset® we use the Kullback-Leibler

divergence between two discrete probability distribusiprand q:

a(pla) = sz log (p)

Concretely, the quality of hypothesis for agent: is measured by the Kullback-Leibler divergence
d(f*(-)||i; (-|6;)) between the true distribution of the signals and the probability distributio(-|6;)
as seen by ageritif hypothesisf; were correct. We use the following assumption on the agdssst

hypotheses.

Assumption 2 The setO* defined a®d* £ N, ©;, where®; = argmind (f*(-) [|/; (:|¢)) for eachi,
9o

iS non-empty.

Assumption[R is satisfied if there is some “true state of theldtod € © such that each agent
sees distributions generated accordingtd.e., fi() = li('@. However, this need not be the case for
Assumptiol 2 to hold. Indeed, the assumption is considgnabbker as it merely requires that the set

of hypotheses, which provide the “best fits” for each ageatehat least a single element in common.
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We will further require the following assumptions on thetiadidistribution and the likelihood functions.

The first of these is sometimes referred to as the Zero Priitya®roperty [22].

Assumption 3 For all agentsi =1,...,n,

1) The prior beliefs on alb* € ©* are positive, i.euf (0*) > 0 for all §* € ©*.

2) There exists amv > 0 such thatl; (s’|¢) > o for all s € S" and§ € ©.

Assumptiori B.1 can be relaxed to a requirement that all jmédiefs are positive for som# € ©*. Both
of these conditions are equally complex to be satisfied. Tagybe satisfied by letting each agent have
a uniform prior belief, which is reasonable in the absencarof initial information about the goodness
of the hypotheses.

We now state our first result, which asserts that the dynami&s). (1) concentrate all agent’s believes

in the optimal hypothesis set. We provide its proof in Setiid

Theorem 1 Under Assumptions] L] 2, and 3, the update rule of Elg. (1) haddtowing property:

lim pf () =0 as. VO¢ O, i=1,...,n

k—o0 -
The result states that the agents’ beliefs will concentoatéhe set©* asymptotically ag — oc.

Our main result is a hon-asymptotic explicit convergende,rgiven in the following theorem, proven
in Section1V.

Theorem 2 Let Assumption§]112, arld 3 hold. Also, Jete (0,1) be a given error percentile (or
confidence value). Then, the update rule of Ed. (1) has thewfimlg property: there exists an integer
N (p) such that, with probabilityt — p, for all & > N (p) there holds that for any ¢ ©*,

, k
Mi: (Q)SGXp <_§72+’Yl> Vizla"'7n7

, 8(1og (@) log (1)
where N(p) = 5 +1,
72
p , C

A
= Imax
gL 0% co*
0ge*

5
a9 .
7= min IH (0) |1

[H (0)]; = d(f*()lIl(- 1 0)) = d (f () Il (167))

with o from Assumptiofl3.2.
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The constantg”, § and \ satisfy the following relations:
(1) For generalB-connected graph sequencgsy },

1

Wl

C=2 A<({1-9"P)7, 6>
(2) If every matrixAy is doubly stochastic,

C =2, A:<1—4—Z2>%, §=1.

(3) If eachgy, is an undirected graph and eachy, is the lazy Metropolis matrix, i.e. the stochastic matrix

which satisfies

1 .
[Ak]lj = 2max(d(z),d(j)) for all {17]} € Gk,
1
then C:\/i, )\Zl—m, (5:1

Note thatH (6) does not depend of* sinced (f*(-) ||I; (-|6*)) is the same for alb*.

In contrast to the previous literature, this convergent®isanot only geometric but also non-asymptotic
and explicit in the sense of immediately leading to boundikvkcale intelligible in terms of the number
of nodes. For example, in the case of doubly stochastic ceatriTheoreml2 immediately implies that, after
a transient time, which scales cubically in the numbef nodes, the network will achieve exponential
H(0)|1/n.

Now, consider the case when Assumpfidn 3.1 is relaxed todlf@nring requirementThe prior beliefs

decay to the correct answer with the exponeétming*e@*

on som&¥* € ©* are positive(i.e. i, (0*) > 0 for somed* € ©* and alli). Then, it can be seen that the
Theoren® is valid withmaxy-ce- andming.co- replaced, respectively, byax,. _s. andmax,. _g.,

where©* C ©* is the set of all¥* ¢ ©* for which all the agents priorg;, are positive.

[1l. CONSISTENCY OF THELEARNING RULE

In this section we prove Theordm 1, which provides a statémeout the consistency (see [23], [24])
of the distributed estimator given in Ed.J (1). Our analysifi ®quire some auxiliary results. First, we

will recall some results from [25] about the convergence gir@duct of row stochastic matrices.

Lemma 1 [25], [26] Under AssumptioriIl, for a graph sequen¢é.} and eacht > 0, there is a
stochastic vectory, (meaning its entries are nonnegative and sum to one) sudhfanaall 7,; and

k>t

‘[Akit]ij - Qﬁ‘ <CNT VE>t>0
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whereC' > 0 and A € (0, 1) satisfy the relations described in Theorem 2.

The proof of Lemmd&]l may be found in [25], with the exceptiortle# bounds orC, A for the lazy

Metropolis chains which we omit here due to space consgaint

Lemma 2 [25] Let the graph sequencfgj} satisfy Assumptionl 1. Define

§ £ inf < min [ﬂ%Ak:O]J . (2)

k>0 \ 1<i<n
Then,s > ™5, and if all A; are doubly stochastic, thefi = 1. Furthermore, the sequencg from

Lemmdl satisfie${ >d/nforallt>0,j=1,...,n

Next, we need a technical lemma regarding the weighted geeod random variables with a finite

variance.

Lemma 3 If assumption§]1[]12 and 3 hold. Then for a graph sequeithg we have for any ¢ ©*
and g* € ©*,

Jim ZAk L9+ kz 1,0/H (0) =0 a.s.
where£! is the random vector with coordinates given by

L(sile)
9 pr— 7t pr—
[ﬁt]i = log L (SHH*) Vi=1,...,n,

while the vectorH (#) has coordinates given byH (9)], = d(f*(-)[|L;(- | 8)) — d (f*(-)[|Li (-]6%)).

Proof: Adding and subtractinQZf_1 1,¢,LY yields

k? Z (Ak tﬁe + 1n¢t > k‘ Z Akt - 1n¢t ﬁe k‘z 1n¢t (ﬁe +H (9)> (3)

By Lemmall lim_,., Ay = 1 ¢} for all + > 0. Moreover, each of the entries 8f are upper bounded

by Assumptior R. Thus, the first term on the right hand side @f(B) goes to zero as we take the limit
over k — co. Regarding the second term in Egl (3), by the definition ofkhedivergence measure, we

have that

o Stw] if’ og. (53-!9)

Sz|9*
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=d (f'C)lIL (-107)) = d (f L (-10))
or equivalentlyE [£Y] = —H ().

Kolmogorov’s strong law of large numbers states thaf Xf;} is a sequence of independent random

variables with variances such that;® | Yo%) < o thenl S7_ X, — LS E[X;] - 0 as. Let
= ¢,L}. Then, by using Assumptiofi$ 1 aifl 3.2, it can be seensthgt., Var (X;) < occ.
The result follows by LemmBl1 and Kolmogorov’s strong law aifge numbers. |

With Lemmal3 in place, we are ready to prove Theofdm 1. Thefpoborheorem[l (and also

TheorenR) makes use of the following quantities: foriakt 1,...,n andk > 0,
4 i (0
i (0) £ log Lk ( *) for all 6 € ©, (4)
11z, (67)

defined for anyy* € ©* (dependence of* is suppressed). Proof: (Theoreni]l Dividing both sides
of @) by 1}, (¢*), then using the log function and the definitiongf(¢) we obtain:

Py (0) = Z [Ak]z'j ‘F’i (0) + log %
j=1 i(8k+1| )
Stacking up the valueazﬂ (0) over agentsi = 1,...,n, into a single vectorp,_ (¢), we can

compactly write the preceding relations, as follows:

Pri1 (0) = Apepp () + L1, 1, (5)

which implies that for allk > 0,

k

Prt1 (0) = Aropy (0) + Z Ak;tﬁ? + ﬁzH- (6)
t=1

We add and subtradCl_, 1,,¢,H (¢) in Eq. (8), then

Pry1(0) = Aropo (0) + Z (Ak LY + 1, H ) Li1 — Z 1.0 H

t=1
By using the lower bounds og; described in Lemm@l2 and the fact thEt(6, 6*) > 0, we obtain

k
0
Pir1(0) < Aop (0) + Z (Ak:tﬁz? + 1,0, H (9)) + L — ;k”H 0)[11n
t=1

Therefore, we have

k
1 . 1 19 1
Jim Ty (6) < Tim 3 Aoy (6) — [ (0) 1, Jim 220+ Tim E;(Akztzﬁﬂmgfr(e)).
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The first term of the right hand side of the preceding relattionverges to zero deterministically. The
third term goes to zero as well singd is bounded, and the fourth term converges to zero almoslysure

by LemmalB. Consequently,
1 §
lim =g (6) < <[ H6) 11, as. ™
Now if 6 ¢ ©*, then H(0,60*) > 0 and, thusp;, () — —oc almost surely. This implieg,, (¢) — 0

almost surely. [ |

IV. NON-AsYMPTOTIC RATE OF CONVERGENCE

In this section, we prove Theordrm 2, which states an exphtét of convergence for cooperative agent
learning process. Before proving the theorem, we will estat auxiliary lemma that provides a bound

for the expectation of the random variablgs(¢) as defined in Eq{4).

Lemma 4 Let §* € ©* be arbitrary, and considep (6) as defined in Eq). Then, for any) ¢ ©*

we have

E [¢}41(0)] <71 — (k+ 1)y, forall i andk >0,
wherev,; and~, are defined in Theoref 2.

Proof: The expected value of Ed.1(5) afiti[ £}, ;] = —H (6), gives
E [¢r11 (0)] = ALE [0, (0)] — H (0)
Therefore, by recursion we can see that forkalt 0,
k
E [¢ri1 ()] = Aropo(0) — Y A H (6) — H (6).

By adding and subtractlngjt 1 1,0, H (), we obtain

k
E [‘Pk—i-l (9)] = Ak:OSDO + Z n¢t Akt Z 1n¢t ( ) .
t=1

We removed the last term of the right hand side in the pregedétation sinceH () > 0. Moreover,
bounding the entries for the first two terms on the right haigg &ind using the fact thad,., is a

stochastic matrix, we have that

k
E [‘Pk+1 (9)] < llo(8)lloo1n Z 1,0 H (0) + Z 1?21?><(n‘¢g = [Ag:elis |1 H (0) 1115
t=1 — "~
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Next, we use the upper bound on terfé— [Aj.¢]i;| from Lemmall and the lower bound for the entries
in ¢; as given in Lemma&l2, and we arrive at the following relation:

k
_ )
E [¢p11(0)] < ll@o(®)looln + Y CNHH (6) 11, — k= H (6) [l11n
t=1

and the result follows. [ |
The proof of Theoreni]2 uses the McDiarmid’s inequality [2This will provide bounds on the

probability that the beliefs exceed a given valueMcDiarmid’s inequality is provided below.

Theorem 3 (McDiarmid’s inequality [27]) Let{Xt}f:1 = (Xy,..., X)) be a sequence of independent
random variables withX; € X. If a functiong : {Xt}le — R has bounded differences, i.e., for all
;il}g(---ath--)_Yifégg(“wyta-“) <c
then for anye > 0 and all & > 1,
—2¢2
(o (x05) -2 o (1301)] 2 ) <o (S22
Do Ci
Now, we are ready to prove Theorém 2.

Proof: (Theoreni?) First we will express the beligf; ,, () in terms of the variablep} , , (0).
This will allow us to use the McDiarmid’s inequality to oltaihe concentration bounds. By dynamics
of Eq. (1) and Assumptiof] 3.1, sing4, ., (¢*) € (0,1] for any §* € ©*, we have
:“Zﬂ (9)

o 07~ 0 (Pl @)

M1 (0) <

Therefore,

j —k , —k
P <lu§c+1 (9) > €xp < 272 + 71)) < P <80§g+1 (9) > 272 + ’71)

=P <<P§g+1 (0) —E [SDZH (9)} > —g’}’z +71—E [SOZH (9)]>

: : k
—P (ks 0 Elha 0] 2 52).
where the last equality follows from Lemrha 4.
We now view<,p}'erl () a function of the random vectors, ..., sk, sx+1, see Eq.[(6), where;, =

(sf,...,s%) € S for all t. Thus, for allt with 1 < ¢ < k, we have

max oy () — mingi, (6) = max Z} [Awilyy [£7]; — min Z} [Arel,; [£7],
j= j=
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l; (s§|9) n l; (s§|9)

y(sier) gleigjzl ralyloB 1 (st1e7)

= glgg Z [Ak:t]ij log
Jj=1
1 1
<log — +log —
« «
1
=2log —.
(6%
Similarly, from Eq. [®) we can see that

, , 1
max @} ) — min ¢} f) < 2log —.
o oS Ph+1 (0) o es Ph+1 (0) < g o

It follows that cpf;_H (0) has bounded variations and by McDiarmid’s inequality (Theea[3) we obtain

the following concentration inequality,

_1 2
P <<PZ+1 (6) — E [k (9)] > gV2> < exp (Zk 112 ) l)2>

Finally, for a given confidence level, in order to haveP (N?c () > exp (—% + ’yl)> < p the desired

result follows. [ |

V. SIMULATION RESULTS

In this section we show simulation results for a group of ageonnected over a time-varying directed
graph, shown in Figuriel 1, for some specific weighting masri€ach agent updates its beliefs according
to Eq. [2).

Note that the graph is such that the edge connecting agentl hgant 2 is switching on and off at

each time step. Agents 2-6 connecting edges are changirachttiene step as well.

October 14, 2018 DRAFT



12

()
/O
® Q?e \

\ ° /
O—0
°)e

Fig. 1. Time-Varying graph with a switching external agent

Every agent receives information from a binary random varialsie : Q — {0, 1} with probability
distribution f* (0) = 0.1 and f* (1) = 0.9 for all i’s. Moreover, every agent has two possible modgls
and#,. Agent 1 hypotheses have the following likelihood funcgioh (0/6,) = 0.2 and!; (1]6;) = 0.8
for hypothesig,; andi; (0/62) = 0.9 and!; (1]62) = 0.1 for hypothesi®),. Therefore, hypothes; is
closer to the true distribution. On the other hand, agents@Hhave uniformly distributed observationally
equivalent hypothesis for both and#,, that is, they are not able to differentiate between the thgxis
individually. Thusl; (s|f) = 0.5 for i = {2,...,6}, s ={0,1} andd = {6, 0-}.

Figure[2 shows the empirical mean over 5000 Monte Carlo sitimis of the beliefs on hypothesis
0, of agents 1, 4, 5 and 6. Results show that agent 1 is the fdstgsing agent, since is the one with
the correct model. Nevertheless, all other agents are ogingeto the correct parameter model as well,

even if they do not have differentiable models.

Agent 1
— — —Agent4
——Agent5
“““ Agent 6

Empirical Mean over
5000 Monte Carlo Simulations

o
-

25 30 35 40 45 50

Fig. 2. Simulation results for Agents 1, 4, 5 and 6
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VI. CONCLUSIONS ANDFUTURE WORK

We have studied the consistency and the rate of convergen@edistributed non-Bayesian learning
system. We have shown almost sure consistency and havaelpdolvbunds on the global exponential rate
of convergence. The novelty of our results is in the esthbient of convergence rate estimates that are
non-asymptotic, geometric, and explicit, in the sensettiabounds capture the quantities characterizing
the graph sequence properties as well as the agent learapapitities. This results were derived for
general time-varying directed graphs.

Our work suggests a number of open questions. It is naturatteanpt to extensions to continuous
spaces, on the number of agents, on the number of hypotledsisThis result can be extended to
tracking problems where the distribution of the observegichanges with time. When the number of
hypothesis is large, ideas from social sampling can alsadmporated in this framework [28]. Moreover,
the possibility of corrupted measurements or conflictinglele between the agents are also of interest,

especially in the setting of social networks.
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