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Persistently Exciting Tube MPC

Bernardo Hernandez1 and Paul Trodden2

Abstract— This paper presents a new approach to deal with
the dual problem of system identification and regulation. The
main feature consists of breaking the control input to the
system into a regulator part and a persistently exciting part.
The former is used to regulate the plant using a robust
MPC formulation, in which the latter is treated as a bounded
additive disturbance. The identification process is executed by a
simple recursive least squares algorithm. In order to guarantee
sufficient excitation for the identification, an additional non-
convex constraint is enforced over the persistently exciting part.

I. I NTRODUCTION

The performance and optimality of a model predictive
controller are limited by the accuracy of the model used
to make predictions [1], [2]. If the model is a poor repre-
sentation of reality, the resulting control actions will not
be optimal for the latter, causing unexpected behaviour.
Moreover, properties desirable for model predictive control
(MPC) formulations, such as stability and feasibility [3],[4],
often require the computation of invariant sets, which are
model dependent [5]. Adaptive MPC, as a way to cope with
model uncertainty, has been receiving increasing amounts of
attention from researchers in the last ten years, but it remains
a largely open problem [6]. Adaptive MPC attempts to couple
closed-loop system identification with regulation througha
MPC controller; an inherent difficulty of such design is that
the two objectives are incompatible. This is referred to as
thedual control problem: while the controller tries to steady
the system, the identifier needs to excite it [7].

A key challenge for adaptive MPC is how to maintain the
stability and feasibility guarantees, particularly when hard
constraints are considered. In [8] the model of an uncon-
strained plant is updated through a modified recursive least
squares (RLS) algorithm and a fuzzy supervisor attempts to
modify the controller parameters based on some arbitrary
performance criteria which include a numeric evaluation
of stability, but no proof is given. [9] uses a single value
decomposition estimation algorithm to identify, on-line,a
state space model of the controlled system; stability is shown
solely through numerical simulations. A set membership
identification scheme is used in [10], coupled with additional
output constraints in the optimization problem. These extra
constraints ensure boundedness of the system response and
hence feasibility, but stability is considered as a standing
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assumption. Other authors have addressed the issue of sta-
bility by making suitable assumptions, such as in [1], [11],
[12], where the response error produced by the uncertainty of
the model is treated as a bounded disturbance, which allows
for robust MPC implementations to be used. An additional
assumption of a known bound on the initial estimates error
is made in [11] and [1], where the approach is specifically
tailored to non-linear parameter affine models. A novel
algorithm is developed in [2], where two models of the plant
are maintained by the controller; a nominal model is used to
provide feasibility and stability guarantees, while the second,
adaptive, model is used to improve performance. However,
none of these approaches consider that closed-loop system
identification and regulation are conflicting objectives: while
the controller attempts to drive the plant to a steady state,the
identification scheme requires a proper level of excitationto
correctly estimate the system parameters [7].

In the MPC context, this has been addressed in different
ways. In [13]–[16], an additional constraint over the input
is explicitly added to guarantee enough information on the
output. The receding horizon fashion of MPC (namely, the
fact that only the first part of the optimised input sequence
is applied) is considered only in [16], where the additional
constraint is applied to the first element of the input se-
quence throughout the prediction. Alternatively, a two-step
optimization is performed in [17], [18]; the first step solves
a standard MPC problem while the second step adds an
exciting behaviour to the optimised sequence, while limiting
the cost increase (reduced optimality). The concept of zone-
tracking MPC is used in [19] to drive the state of the plant
to an invariant set, inside which a persistently exciting input
sequence can be safely applied. In a recent implementation
[20], the MPC cost function is augmented with a term de-
pending on the covariance error of the estimated parameters,
in an attempt to force the optimiser to choose an exciting
input sequence.

In this paper, the dual-problem of regulation and system
identification is addressed within the frame of robust MPC;
the main feature of the present algorithm is the division
of the input signal. The first part, called the persistently
exciting (PE) part, aims to generate enough information for
the identification process, while the second (regulator) part is
designed following the main objective of regulating the plant
to the desired steady state. From the control perspective, the
PE part of the input may be treated as a bounded disturbance,
hence a standard tube MPC formulation [21] represents a
suitable selection for the regulation task. This allows to main-
tain the standard form of the MPC optimization problem,
unlike [17], [18], [20], and also helps to establish guaranteed
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asymptotic stability (a property that algorithms in [13]–[16]
do not possess). A standard RLS algorithm with forgetting
factor [22] is used for the identification process. In order for
this to be convergent, an additional constraint based on the
persistence of excitation theory [7] is included. This ensures
not only an accurate identification process but also that the
PE input is automatically defined by the optimiser (contrary
to the approach in [19], where it must be computed off-line).
The PE constraint proposed in [16] is modified (tightened)
so as to guarantee recursive feasibility while allowing for
increased optimality.

The paper is organized as follows: Section II states defines
the problem and required preliminaries. Section III describes
the proposed persistently exciting tube MPC (PE-Tube MPC).
Stability and feasibility are established in Section IV. Section
Section V contains numerical simulation results.

Notation: The operator⊕ denotes the Minkowski sum,
defined asA ⊕ B :=

{

a + b | a ∈ A, b ∈ B
}

. The
operator⊖ denotes the Pontryagin difference, defined as
A ⊖ B :=

{

a | a + b ∈ A, ∀b ∈ B
}

. The setI≥0 is the
set of all the positive integers including 0. The zero vector
and the identity matrix inRn are represented respectively by
0n andIn.

II. PROBLEM STATEMENT AND PRELIMINARIES

The problem is to control a linear time invariant (LTI)
system, subject to input and state constraints, for which only
a nominal discrete time state space model is known. Define,

(Ā, B̄) Nominal system. (1a)

(A,B) Real system. (1b)
(

Ã(i), B̃(i)
)

Identified system at timei. (1c)

The nominal state space model takes the following form,

x(i + 1) = Āx(i) + B̄u(i) (2a)

x(i) ∈ X ⊂ R
n, ∀i ∈ I≥0 (2b)

u(i) ∈ U ⊂ R
m, ∀i ∈ I≥0 (2c)

in whichx(i) andu(i) are the state and input vectors at time
i. The following general assumptions are supposed to hold.

Assumption 1 (Stabilizability). The pairs(A,B), (Ā, B̄)
and

(

Ã(i), B̃(i)
)

are stabilizable∀i ∈ I≥0.

Assumption 2 (Properties of constraint sets). The setX is
closed and the setU is compact. Both contain the origin.

A. Standard MPC formulation

The standard MPC optimization problem for the nominal
system (2) with prediction horizonN at timei is PN

(

x(i)
)

:

min
u

N−1
∑

k=0

(

x⊤(k)Qx(k) + u⊤(k)Ru(k)
)

+ Vf

(

x(N)
)

(3)

subject to:

x(0) = x(i) (4a)

x(k + 1) = Āx(k) + B̄u(k) (4b)

x(k) ∈ X, k = 0, 1, . . . , N − 1 (4c)

u(k) ∈ U, k = 0, 1, . . . , N − 1 (4d)

x(N) ∈ Xf ⊆ X (4e)

where(Q,R) are the state and input weight matrices. Once
the optimization is solved, the first part of the optimal input
sequence is applied to the plant, a new state measurement is
taken, and the process is repeated.

It is well known that, under Assumptions 1 and 2, an ap-
propriate selection of the weight matrices, terminal costVf (·)
and terminal constraintXf provides closed-loop asymptotic
stability of the origin [23] for the nominal system. In
particular, we use the following standard assumption:

Assumption 3 (Stability assumption). The functionVf :
Xf → R≥0 is continuous andVf (0n) = 0. Q is positive
semidefinite andR is positive definite. The setXf is a closed
control invariant set for the system, containing the originin
its interior, for which,

∃u ∈ U s.t.Vf

(

Āx+ B̄u
)

+ ℓ(x, u) ≤ Vf (x), ∀x ∈ Xf

Recursive feasibility is guaranteed by restricting the initial
state to belong to the feasible space (region of attraction)
defined by the constraints,

XN =
{

x(0) ∈ X | ∃ {u(k) ∈ U}N−1
k=0 s.t.

x(k) ∈ X, k = 1, 2, . . . , N − 1 and x(N) ∈ Xf

}

B. Persistence of excitation

For many reasons, the nominal model(Ā, B̄) may not
be an accurate representation of the real system(A,B).
This could have a detrimental effect on the performance
and stability of the MPC controlled system; therefore, to
reduced model uncertainty, some form of closed-loop system
identification can be implemented. Note that any state space
model may be regarded as a set ofARX(1, 1) models, for
which a predictor can be built for each component of the
state vector,

x̂j(i) = φ⊤(i− 1)θ̃j(i), j = 1, 2, . . . , n (5a)

φ⊤(i) = [x⊤(i) u⊤(i)] (5b)

θ̃j(i) = [Ãj(i) B̃j(i)]
⊤, j = 1, 2, . . . , n (5c)

In (5), x̂j(i) represents the prediction of the state component
j, at timei, φ(i) is the regressor vector and(Ãj(i), B̃j(i)) are
thej th rows of the currently estimated matrices(Ã(i), B̃(i)).
A standard RLS algorithm with constant forgetting factorλ

[22] is employed to identify a new model every time step.
The recursion at timei is computed as follows,

θ̃j(i) = θ̃j(i− 1) +R−1
ID (i)φ(i)

[

xj(i)

− φ⊤(i− 1)θ̃j(i− 1)
]

, j = 1, 2, . . . , n
(6a)



RID(i) = λRID(i− 1) + φ(i)φ⊤(i), j = 1, 2, . . . , n (6b)

A sufficient condition to guarantee convergence of the esti-
mated parameters, under an RLS identification algorithm, is
that the regressor is strongly persistently exciting [7].

Definition 1 (Strongly persistently exciting sequence). The
sequence{φ(i)} = φ(0), φ(1), · · · , φ(i), is said to be
strongly persistently excitingof orderNp at time i, if there
exists an integerlp and real numbersρ0, ρ1 > 0 such that,

ρ1I(n+m)Np
>

lp−1
∑

j=0

(

φi−jφ
⊤
i−j

)

> ρ0I(n+m)Np

φi−j =











φ(i− j)
φ(i − j − 1)

...
φ(i− j −Np+ 1)











The variableNp defines the length of a time window
that is going to be observed and the variablelp defines the
number of time instants into the past that this window will be
observed. Definition 1 is identical to definition 3.4.A given
in [7] but after a time shift. The objective of the time shift
is to set the current timei as the upper time limit (i.e. the
window is placed at timei and it moves backwards). In this
way, coupling with the receding horizon fashion of MPC is
achieved in a straightforward way.

Persistence of excitation of the regressor vector is not a
suitable condition to use as a constraint in the MPC context,
mainly because the state vector is not an explicit decision
variable of the optimization (3)–(4). Within MPC framework,
it is more convenient to focus on the input, which is the
decision variable, and how the persistence of excitation of
propagates from the input to the regressor. To do this, the
concept of state reachability is employed.

Definition 2 (State reachability). System (2) is said to be
state reachableif, for any x ∈ X, there exists an input
sequence{u(j) ∈ U}j=0:s<∞ such that at times, x(s) = x.

Theorem 1 (Persistence of excitation of reachable systems).
The sequence{φ(i)} = φ(0), φ(1), · · · , φ(i), with φ(·)
defined as in (5b), is said to bestrongly persistently exciting
of orderNp at time i if, the system (5a) is state reachable
and there exists an integerlp and real numbersρ0, ρ1 > 0
such that,

ρ1ImNp
>

l−1
∑

j=0

(

ui−ju
⊤
i−j

)

> ρ0ImNp
(7a)

ui−j =











u(i− j)
u(i− j − 1)

...
u(i− j −Np + 1)











(7b)

Proof. This proof can be found in [24] (Theorem 2.1).�

In [16] it is shown that the lower bound of inequality
(7a) characterizes the outside of an ellipsoid, hence the PE

constraint is non-convex. Also note thatui−j =
[

0m(Np−1)

]

(or any other steady value) violates (7a), which means that
regulation to a steady state and persistence of excitation
cannot be simultaneously attained.

III. T UBE MPC WITH PERSISTENCE OF EXCITATION

The main contribution of this paper is presented in this
section. The underlying idea is to include a persistence
of excitation constraint in a standard MPC formulation, to
guarantee enough information for an accurate identification
of the system parameters. This is done from a robust control
perspective, where the excitation is treated as a bounded
disturbance. The proposed approach uses tube MPC, which
is a robust control technique with guaranteed stability under
bounded additive uncertainties, but complexity similar to
conventional MPC [21], [23].

A. Tube MPC for uncertain systems with partitioned input

Tube MPC solves the regulation problem for an undis-
turbed nominal model, while securing that the state of the
uncertain system will always be in a robust positive invariant
(RPI) set [5], centered around the nominal system trajectory.
This robust control technique is inherently capable of dealing
with model uncertainties as long as these can bequantified,
i.e., treated as a bounded additive disturbance. This requires
a certain insight on how different the real system (1a) and
prediction model (1c) may be. To account for this, the
following assumption is supposed to hold,

Assumption 4(Size of parametric uncertainty). A setWS :=
{

wS = (A− Ã(i))x+(B− B̃(i))u | (x, u) ∈ X×U, ∀i ∈
I≥0

}

is known.

Consider the model structure of (2). Henceforth, the input
will be divided into a regulator part,̂u, and a persistently
exciting part,w. The nominal model (2) is rewritten as,

x(i + 1) = Āx(i) + B̄
(

û(i) + w(i)
)

(8a)

x(i) ∈ X, ∀i ∈ I≥0 (8b)

û(i) ∈ Û, ∀i ∈ I≥0 (8c)

w(i) ∈ W, ∀i ∈ I≥0 (8d)

B̄w(i) = ŵ(i) ∈ Ŵ = B̄W, ∀i ∈ I≥0 (8e)

Assumption 5 (Properties of the divided input constraint
sets). The setsW andÛ are compact and contain the origin.
Also Û⊕W ⊆ U.

Assumption 5 implieŝU ⊆ U ⊖ W which must be non-
empty. Note thatŴ is a linear mapping ofW therefore it
maintains compactness [25].

Within the tube MPC implementation,̂w is treated as a
bounded additive disturbance. The undisturbed model takes
the form,

z(i+ 1) = Āz(i) + B̄v(i) (9a)

z(i) ∈ Z = X⊖ S, ∀i ∈ I≥0 (9b)

v(i) ∈ V = Û⊖KtS, ∀i ∈ I≥0 (9c)



in which Kt is any stabilizing gain for(Ā, B̄), guaranteed
to exist in view of Assumption 1. The setS is an RPI set
for the dynamic model of the error between the trajectories
of the nominal and uncertain models,

e(i) = x(i)− z(i) (10a)

e(i+ 1) = (Ā+ B̄Kt)e(i) + ŵ(i) + wS(i) (10b)

ŵ(i) ∈ Ŵ, ∀i ∈ I≥0 (10c)

wS(i) ∈ WS , ∀i ∈ I≥0 (10d)

For a nominal solution to exists, the constraint space defined
by constraints (9b) and (9c) must be non-empty,

Assumption 6 (Allowable disturbance size for constraint
satisfaction). The setS is such thatS ⊂ X andKtS ⊂ Û.

Assumption 6 it is not uncommon in robust control im-
plementations, it simply states the fact that it will not be
possible to satisfy the constraints if the disturbances aretoo
large. After a standard MPC problem (section II-A) is solved
for the nominal system (9a) under tightened constraints (9b)
and (9c), the input to the uncertain system is computed from
the following control policy,

û(i) = v(i) +Kt(x(i) − z(i)) (11)

B. Additional PE constraint

Sincew is bounded (8d), the upper bound in Theorem 1
is trivially fulfilled [15], therefore the focus is placed on
achieving the lower bound. At timei define,

M
(

w(i)
)

= M i =

l−1
∑

j=0

(

wi−jw
⊤
i−j

)

− ρ0ImNp
(12a)

wi−j =











w(i − j)
w(i − j − 1)

...
w(i − j −Np + 1)











(12b)

That M i depends only on the past and current exciting
input makes the following a suitablepersistence of excitation
constraint within the receding horizon fashion of MPC

M i > 0 (13)

Remark 1. The realisation of constraint (13), i.e. a persis-
tently exciting behaviour ofw, does not necessarily imply
persistence of excitation in the absolute input signalu. This
is because of the control policy (11), which tries to reject
disturbances. However, numerical simulations have shown
that a proper selection of the linear gainKt secures that
the PE condition is transmitted tou. The investigation of
conditions for gain selection is beyond the scope of this
paper, hence we require the following assumption.

Assumption 7 (Persistence of excitation transmission). For
the linear gainKt, the persistence of excitation ofw is
transmitted to the absolute input sequenceu.

C. Tube MPC with additional PE constraint

The optimization problem of the proposed model predic-
tive controller, at timei is, PN

(

z(i)
)

:

min
v,w

N−1
∑

k=0

(

z⊤(k)Qz(k)+ d⊤(k)Rd(k)
)

+Vf

(

z(N)
)

(14)

subject to:

z(0) = z(i) ∈ ZN (15a)

z(k + 1) = Āz(k) + B̄v(k) (15b)

z(k) ∈ Z, k = 0, 1, . . . , N − 1 (15c)

v(k) ∈ V, k = 0, 1, . . . , N − 1 (15d)

z(N) ∈ Zf ⊆ Z (15e)

w(k) ∈ W, k = 0 (15f)

w(k) = 0m, k = 1, . . . , N − 1 (15g)

M i > 0 (15h)

whereZN andZf are the nominal equivalents ofXN andXf

respectively. The cost termd⊤(k)Rd(k) is a straight forward
augmentation of the usual input cost with,

d⊤(k) = [v⊤(k) w⊤(k)], k = 0, 1, . . . , N − 1 (16a)

R =

[

R 0m×m

0m×m R

]

(16b)

Ā = Ã(i) B̄ = B̃(i) (16c)

IV. STABILITY AND FEASIBILITY

In this section stability and recursive feasibility proofsare
derived for the PE-Tube MPC.

A. Stability

The objective of performing closed-loop system identifica-
tion is to reduce model uncertainty and thereby improve the
performance of the MPC. Therefore it is safe to assume that
the initially known model (1a) will differ from the actual
plant being controlled (1b) and from any transitional model
(1c) given by the recursive identification (6). This represents
a considerable drawback, as one of the main requirements of
tube MPC is to know an RPI set, which is model dependent.
Different approaches can be used to compute such a set; in
[19] for example, Assumption 4 is bypassed by showing that,
under a type of parametric affine model uncertainty, an RPI
set computed for a certain model is also RPI for a family of
models. The definition of a specific set of rules for computing
S is out of the scope of this paper; for the examples shown
in Section V a suitable RPI set is computed on the basis of
Assumption 4 and the error dynamics (10).

Theorem 2 (Stability of the PE-Tube MPC). If assumptions
1–6 hold, then the setA := S×{0n} is asymptotically stable
with a region of attraction

(

ZN⊕S
)

×ZN for the constrained
composite system,

x(i + 1) = Āx(i) + B̄û(i) + ŵ(i) + wS(i)

z(i+ 1) = Āz(i) + B̄v(i)



under the closed-loop control laws defined by (10) and (14)–
(15) respectively.

Proof. Follows directly from the stability proofs in [23].�

B. Recursive feasibility

Recursive feasibility of a standard tube MPC formulation
is provided by constraint (15a). In [16] an additional assump-
tion is used to provide a proof of recursive feasibility under
the effects of the non-convex PE constraint (15h),

Assumption 8. A feasible solution is available at timei− 1,
i.e., M i−1 > 0

Theorem 3 (Recursive feasibility: Trivial solution). If
Assumption 8 holds, then there exists a feasible solution at
time i for the persistently exciting tube MPC (14)–(15).

Proof. This theorem is proved in [16]. It is repeated here for
clarifying purposes. From (12),

M i = M i−1 +wiw
⊤
i −wi−lpw

⊤
i−lp

wi = wiw
⊤
i −wi−lpw

⊤
i−lp

therefore, a sufficient condition forM i > 0 is that wi ≥
0. The proof is completed by noticing thatw(i) = w(i −
lp) =⇒ wi = 0. �

Theorem 3 provides recursive feasibility under the trivial
periodic repetition of a previous solution, but it does not
analyse the effect of choosing a different one. In fact,w(i)
is a decision variable in the proposed optimization problem
(14), hence the optimiser isfree to choosew(i) 6= w(i −
lp) as long as constraints (15f) and (15h) are not violated.
Numerical simulations (conducted on the same system used
as an example in [16]) show that recursive feasibility may
be lost if periodicity is broken, namely, if the optimization
algorithm lands in a solution such thatw(i) 6= w(i − lp) .
The observed behaviour can be summarised in,

∃w(i) ∈ W s.t., w(i) 6= w(i − lp)

∧ M i > 0, but M i+1 ≤ 0 ∀w(i + 1) ∈ W

According to (12), the non-trivial optimisedw(i) remains
in wi for Np − 1 time steps. To take this into account the
following constraint is proposed to replace (15h),

M i+l > 0, l = 0, 1, . . . , Np − 1 (17a)

w(i + l) = w(i + l − lp), l = 1, . . . , Np − 1 (17b)

Theorem 4 (Recursive feasibility: Non-trivial solution). If
Assumption 8 holds, and the constraint (15h) is replaced
by (17), then there exists a feasible, not necessarily trivial,
solution at timei for the PE-tube MPC (14)–(15).

Proof. This result is established by extending the proof for
Theorem 3 to coverNp − 1 time steps. �

V. SIMULATION RESULTS

This section shows the behaviour of the proposed algo-
rithm through two numerical examples. The task is to per-
form closed-loop identification while regulating the states of
the following multi-variable system (taken from the examples
used in [19]):

A(δ) = Ā+ δÂ =

[

0.42−0.28
0.02 0.60

]

+ δ

[

−0.6 −0.4
−0.6−0.85

]

(18a)

B(δ) = B̄ + δB̂ =

[

0.30
−0.40

]

+ δ

[

−0.2
0.4

]

(18b)

subject to the following constraints,

X = {x ∈ R
2 s.t, |xj | ≤ 17, j = 1, 2} (19a)

U = {u ∈ R s.t, |u| ≤ 4} (19b)

W = {w ∈ R s.t, |w| ≤ 0.2} (19c)

|δ| ≤ 0.15 (19d)

Since no particular performance requirements are being
considered, the controller parameters are loosely set toN =
3, Q = I2×2 and R = 1. The terminal costVf , and
the terminal constraint setZf are computed according to
Assumption 3.A(δ) is inherently stable for anyδ following
(19d), this provides flexibility in choosing the linear gain
Kt = [−0.112 0.354] which is stabilizing and complies
with Assumption 7. A setWS following Assumption 6 is
defined for (18)–(19) and the corresponding RPI setS is
computed.

Following the directions given in [7], the PE constraint
parameters are set toNp = 6 and lp = 11; given the size of
W a value ofρ0 = 0.05 is employed. To guarantee recursive
feasibility at initialization, a feasible PE sequence of length
Np + lp − 1 has to be compute available (Assumption 8).
However, this sequence is not explicitly used, it only acts as
a buffer for feasibility purposes (which means that some of
its elements may indeed be used).

For the RLS algorithm a forgetting factorλ = 0.97
is employed. The estimates vectorθ̃j is initialized at the
initially known values(Ā, B̄). The information matrixRID

is initialized as the null matrix, therefore apseudo-inverse
is computed for (5a) untilRID becomes invertible. Albeit a
recursion is computed at every time instant, the prediction
model update (16c) is performed only every 3 time steps.

A. Closed-loop identification capabilities

An initial state x(0) = [0 0]⊤ ∈ ZN is considered
to assess the closed-loop identification capabilities of the
proposed algorithm. This is done to avoid the additional
information that would be generated in the process of
regulation, in that way effect of the PE constraint can be
observed independently. Fig. 1 shows the optimised input
signal generated by the PE-Tube MPC for both, nominal (v)
and disturbed (u) systems. As expected, given the initial state,
the nominal input remains at the origin while the input for
the uncertain system is, indeed, disturbed by the PE partw.
Fig. 2 shows the evolution of the statesx1 andz1. During the
initial time steps, the algorithm optimises a PE sequence on
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TABLE I

EVOLUTION OF ESTIMATED PARAMETERS ERROR[%].

Parameter i = 0 i = 3 i = 6 i = 9

A11 −17.6 −1.76× 10
1

−2.83× 10
−11

−2.24× 10
−11

A12 −17.6 −1.76× 101 1.25× 10−11 9.48× 10−12

A21 −81.8 −8.18× 101 −5.09× 10−10
−4.04× 10−10

A22 −17.5 −1.75× 101 −2.27× 10−11
−1.71× 10−11

B11 −9.09 1.68× 10−14
−2.35× 10−13 4.37× 10−13

B21 −13.0 0 6.87× 10−13
−1.19× 10−12
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the basis of the feasible sequence initially supplied, hence
the transient behaviour observed on the uncertain system
(x). Feasibility is maintained during this period thanks to
the tighter constraint (17). An optimised periodic solution is
attained fairly fast.

Table I shows the error of the identified value (w.r.t. real
value) for all the system parameters, at several time instants.
As expected, by cause of the persistence of excitation con-
straint, the RLS algorithm gets enough information and the
true values, within an acceptable tolerance, are reached.

B. Regulation capabilities

The regulation capabilities of the PE-Tube MPC are eval-
uated by initializing the scheme atx(0) = [8 8]⊤ ∈ ZN ;
Fig. 3 shows the state evolution for both, nominal and real
system. As expected, given the stabilizing characteristics
of the proposed algorithm, the nominal state shows an
asymptotic behaviour towards the origin. Due to the periodic
PE disturbance (w), the evolution of the disturbed state is
ultimately bounded to lie inside the set{0n} ⊕ S.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a new way to approach the dual-problem of
system identification and regulation via a model predictive
controller has been presented. At each time instant, the input
used to control the system is divided into a persistently
exciting (PE) part and a regulator part. The PE part is treated
as a bounded disturbance and a tube MPC, enhanced with
a PE constraint, is used to regulate the plant. At the same
time, thanks to the PE constraint, enough information is
generated for the identification process. Under the proper
assumptions, the PE-Tube MPC has proved robust stability
and recursive feasibility. Future work will be focused on the
analysis of the transmission of persistence of excitation and
the implementation of on-line variation of the allowable size
of perturbations with the objective of feasibility enlargement.
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