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Persistently Exciting Tube MPC

Bernardo Hernandéznd Paul Trodden

Abstract— This paper presents a new approach to deal with assumption. Other authors have addressed the issue of sta-
the dual problem of system identification and regulation. Tke  bijlity by making suitable assumptions, such as in [1], [11],
main feature consists of breaking the control input to the 151 \where the response error produced by the uncertafty o
system into a regulator part and a persistently exciting pat. . . .

The former is used to regulate the plant using a robust the model is tregted asabom_mded disturbance, whlch gllows
MPC formulation, in which the latter is treated as a bounded for robust MPC implementations to be used. An additional
additive disturbance. The identification process is execetl by a assumption of a known bound on the initial estimates error
simple recursive least squares algorithm. In order to guaratee  js made in [11] and [1], where the approach is specifically
zgggingoﬁzﬁg?ﬁfg ::-cr)lrfotrT:Z d'%‘f/’;?f;ﬁzt'ogr’sg:‘eri?dg‘on.mé." ”0’1' tailored to non-linear parameter affine models. A novel
P y exciig part algorithm is developed in [2], where two models of the plant
are maintained by the controller; a nominal model is used to
. INTRODUCTION provide feasibility and stability guarantees, while theose,
The performance and optimality of a model predictiveadaptive’ model is used to impr_ove performance. However,
one of these approaches consider that closed-loop system

controller are limited by the accuracy of the model used

to make predictions [1], [2]. If the model is a poor relore|_dentification and regulation are conflicting objectivesile

sentation of reality, the resulting control actions WiIItnothe controller attempts to drive the plant to a steady staee,

be optimal for the latter, causing unexpected behaviodgentlflcanon scheme requires a proper level of excitatmn

. . o correctly estimate the system parameters [7].
Moreover, properties desirable for model predictive cointr ! -
(MPC) formulations, such as stability and feasibilty [pf), 1" "® MPC context, ihis has been adcressed in difierent
often require the computation of invariant sets, which arg@ys- n [13]-[16], an additional constraint over the inpu

model dependent [5]. Adaptive MPC, as a way to cope witls explicitly added to guarantee enough information on the

model uncertainty, has been receiving increasing amodnts?ompm' The receding horizon fashion of MPC (namely, the

attention from researchers in the last ten years, but it ilsna _act th"flt on_ly the first part of the optimised input sequence
alargely open problem [6]. Adaptive MPC attempts to couplés applied) is considered only in [16], where the additional

closed-loop system identification with regulation through constralr;] IS atp])pllte(ghto thz.ﬂtr.St e'IAelinentt_of Ithe TpUt tse-
MPC controller; an inherent difficulty of such design is thafluence throughout the prediction. Allernatively, a tweps

the two objectives are incompatible. This is referred to agptlmlzanon is performed in [17], [18]; the first step sadve

the dual control problemwhile the controller tries to steady 2x<s:it3:d%fh2<|/|iaoirl?(;0t?1leeg ;Iivnr*::!see(;hsee ngr?gg sttﬁiFe ?ddt"? an
the system, the identifier needs to excite it [7]. 9 P q ' ngy

A key challenge for adaptive MPC is how to maintain th the cost increase (reduced optimality). The concept of zone

stability and feasibility guarantees, particularly wheardh etracklng MPC is used in [19] to drive the state of the plant

constraints are considered. In [8] the model of an unconcz an invariant set, inside which a persistently excitingun

strained plant is updated through a modified recursive leagquence can be safely applied. In a recent implementation

. . 0], the MPC cost function is augmented with a term de-
squares (RLS) algorithm and a fuzzy supervisor attempts t0 .. . .
. .._pending on the covariance error of the estimated parameters
modify the controller parameters based on some arbitra - o
IN an attempt to force the optimiser to choose an exciting

performance criteria which include a numeric evaluation
input sequence.

of stability, but no proof is given. [9] uses a single value In this paper, the dual-problem of regulation and system

decomposition estimation algorithm to |de.znt|fy,. .onjllrm, identification is addressed within the frame of robust MPC;
state space model of the controlled system; stability isveho : . : .
the main feature of the present algorithm is the division

solely through numerical simulations. A set membersh|gf the input signal. The first part, called the persistently

identification scheme is used in [10], coupled with addition " . . .
S L exciting (PE) part, aims to generate enough information for
output constraints in the optimization problem. Theseaextr

. the identification process, while the second (regulator)ipa
constraints ensure boundedness of the system response 3nd : ) L .
. e . . designed following the main objective of regulating therpla
hence feasibility, but stability is considered as a stagdin . .
to the desired steady state. From the control perspechiee, t
1 Bernardo Hernandez is a PhD student at the Dept. of Autorgatirol ~ PE part of the input may be treated as a bounded disturbance,
and Systems Engineering, The University of Sheffield, S#leffiS1 4DW, hence a standard tube MPC formulation [21] represents a

UK baher nandezvi centel@heffi el d. ac. uk suitable selection for the regulation task. This allows &im
2Paul Trodden is with the Dept. of Automatic Control and Sys- . h dard f f the MPC Lo bl
tems Engineering, The University of Sheffield, Sheffield, &2W, UK tain the standard form of the optimization problem,
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asymptotic stability (a property that algorithms in [13]6] subject to:
do not possess). A standard RLS algorithm with forgetting

factor [22] is used for the identification process. In ordar f z(0) = "T_(Z) B (42)
this to be convergent, an additional constraint based on the z(k+1) = Az(k) + Bu(k) (4b)
persistence of excitation theory [7] is included. This easu z(k)eX, k=0,1,...,.N—1 (4c)
not only an accurate identification process but also that the u(k) € E=01.. . . N—-1 (4d)
PE input is automatically defined by the optimiser (contrary Y

z(N) € X FCX (4e)

to the approach in [19], where it must be computed off-line).

The PE constraint proposed in [16] is modified (tightenedyhere (@, R) are the state and input weight matrices. Once
so as to guarantee recursive feasibility while allowing fothe optimization is solved, the first part of the optimal ibpu

increased optimality. sequence is applied to the plant, a new state measurement is
The paper is organized as follows: Section Il states definggken, and the process is repeated.
the problem and required preliminaries. Section Il ddsesi It is well known that, under Assumptions 1 and 2, an ap-

the proposed persistently exciting tube MPC (PE-Tube MPGjropriate selection of the weight matrices, terminal dgst)
Stability and feasibility are established in Section IVc&&n  and terminal constrairk; provides closed-loop asymptotic
Section V contains numerical simulation results. stability of the origin [23] for the nominal system. In
Notationt The operator® denotes the Minkowski sum, particular, we use the following standard assumption:
defined asA ® B .= {a+b | a € A,b € B}. The
operatorS denotes the Pontryagin difference, defined a%ssiml)émn |§ écs);?l?]'ﬂgyuszsnudrpp(“or;) Thg Bng'gggﬁ vé
AO B = b € A, Vb € B}. The setls is the </ 20 7(0n) =
OB = alathe € B}. 20 | §em|def|n|te and? is positive definite. The sé{; is a closed

set of all the positive integers including 0. The zero vect irol ¢ set for th ; : th
and the identity matrix ilR™ are represented respectively byCon rol invariant set for the system, containing the origin
its interior, for which,

0, andr,.
Ju € Us.t.Vy(Az + Bu) + {(z,u) < Vi(z), Vo€ Xj

[I. PROBLEM STATEMENT AND PRELIMINARIES . e - o
Recursive feasibility is guaranteed by restricting théahi

The problem is to control a linear time invariant (LTI)State to belong to the feasible space (region of attraction)
system, subject to input and state constraints, for whidp ondefined by the constraints,
a nominal discrete time state space model is known. Define,
XN:{x(O)eX | 3 {u(k) € U sit.

e(k)eX, k=1,2,...,N—1 and:v(N)EXf}

(A, B) Nominal system. (1a)
(A B) Real system. (1b) B. Persistence of excitation
(A(i), B(i)) Identified system at time. (1c) For many reasons, the nominal model, B) may not

be an accurate representation of the real systemB).
The nominal state space model takes the following form, This could have a detrimental effect on the performance
and stability of the MPC controlled system; therefore, to

(i + 1) = Az(i) + Bu(i) (2a)  reduced model uncertainty, some form of closed-loop system
z(i) e X CR", Viels (2b) identification can be implemented. Note that any state space
u(i) € U C R™, Vi€ Isg (2c) model may be regarded as a set4ARX (1,1) models, for

which a predictor can be built for each component of the
in which z(7) andu(i) are the state and input vectors at timeState vector,

1. The following general assumptions are supposed to hold. 2;(5) = 6T (i—1)0 7( ), i=1,2...n (5a)
Assumption 1 (Stabilizability) The pairs (4, B), (A, B) ¢ () =[x T(') T(Z)] (5b)
and (A(i), B(i)) are stabilizablesi € 1. 6,(i) = [A,() B,())", j=1,2....n (50

Assumption 2 (Properties of constraint setsJhe setX is

. : - In 5), 1 represents the prediction of the state component
closed and the sdf is compact. Both contain the origin. (), 2;(7) rep P P

j, attimei, ¢(i) is the regressor vector aid,; (), B; (i ) are
_ the 7™ rows of the currently estimated matriced(; ) B(1)).
A. Standard MPC formulation A standard RLS algorithm with constant forgetting factor

The standard MPC optimization problem for the nominal22] is employed to identify a new model every time step.
system (2) with prediction horizofV at timei is Py (x(i)): ~ The recursion at time is computed as follows,

;i) = 0,(i = 1) + B ()9 () 3 ) 6
mmz( )+ uT (R)Ru(k)) + Vs (2(V)) (@) ST DRG- D] =12



Rip(i) = ARp(i — 1)+ (i)' (i), j=1,2,...,n (6b) constraintis non-convex. Also note that_; = [0,,(n,1)]

- . or any other steady value) violates (7a), which means that

A sufficient condition to guarantee. convergence of the eS](Jégulation to a steady state and persistence of excitation
mated parameters, under an RLS identification algorithm, |s, o+ e simultaneously attained.

that the regressor is strongly persistently exciting [7].

Definition 1 (Strongly persistently exciting sequencdhe lIl. TUBE MPC WITH PERSISTENCE OF EXCITATION

sequence{¢(i)} = ¢(0),¢(1),---,¢(), is said to be  The main contribution of this paper is presented in this
strongly persistently excitingf order N, at times, if there section. The underlying idea is to include a persistence

exists an integet, and real numberg, p; > 0 such that, of excitation constraint in a standard MPC formulation, to
-1 g?ahrantee enough informaticr)]n fordan a;f:curate idt:antifinatio |

T of the system parameters. This is done from a robust contro
pilingmn, > Z (gbi*jgbi*j) > Polintmn, perspective, where the excitation is treated as a bounded
/=0 o disturbance. The proposed approach uses tube MPC, which

Q_S(Z B 7) is a robust control technique with guaranteed stabilityarnd
b = oi—5—1) bounded additive uncertainties, but complexity similar to
td : conventional MPC [21], [23].

$(i—j— Np+1)
The variable N,, defines the length of a time window
that is going to be observed and the variablalefines the
number of time instants into the past that this window will b

observed. Definition 1 is identical to definition 3.4.A given
in [7] but after a time shift. The objective of the time shift

'S tg set thel cur(;erlttymg asdt_r:e upperbtlml:e I|m(|jt ("T' iue with model uncertainties as long as these cambentified
window IS placed at ime and It moves backwar s). In 'S i.e., treated as a bounded additive disturbance. This resg)ui
way, coupling with the receding horizon fashion of MPC is

] . . a certain insight on how different the real system (1a) and
achlevgd na stralgh'Fforyvard way. . prediction model (1c) may be. To account for this, the
Persstence_ .of excitation of the regressor vector is not llowing assumption is supposed to hold,
suitable condition to use as a constraint in the MPC context,
mainly because the state vector is not an explicit decisiofssumption 4(Size of parametric uncertaintyp setWyg :=
variable of the optimization (3)—(4). Within MPC framework {ws = (A— A(i))z+ (B—B(i))u | (z,u) € Xx U, Vie€
it is more convenient to focus on the input, which is thé>o} is known.

decision variable, anq how the persistence of excnat!on of Consider the model structure of (2). Henceforth, the input
propagates from the input to the regressor. To do this, the

concent of state reachability is emploved will be divided into a regulator part;, and a persistently
P y ployed. exciting part,w. The nominal model (2) is rewritten as,

A. Tube MPC for uncertain systems with partitioned input

Tube MPC solves the regulation problem for an undis-
turbed nominal model, while securing that the state of the
ncertain system will always be in a robust positive invatria
(RPI) set [5], centered around the nominal system trajgctor

This robust control technique is inherently capable of ideal

Definition 2 (State reachability) System (2) is said to be

state reachabldf, for any z € X, there exists an input (i +1) = Ax(i) + B(a(i) + w(i))  (8a)
sequencgu(j) € U}j—o.s<0o such that at time, z(s) = z. z(i) € X, Vi €lxo (8b)
Theorem 1 (Persistence of excitation of reachable systems) a(i) € U, Vielxo (8c)
The sequence{¢(i)} = ¢(0),(1), -, é(i), with ¢(-) w(i) €W, Vi€l (8d)
defined as in (5b), is said to strongly persistently exciting Buw(i) = w(i) € W = BW, Vi € Is (8e)

of order N, at timei if, the system (5a) is state reachable
and there exists an integéy and real numbergo, p1 > 0 Assumption 5 (Properties of the divided input constraint

such that, sets) The setsW andU are compact and contain the origin.
-1 AlsoUd W C U.
p1lmn, >Z (ui*ju;[j) > polmn, (7a) Assumption 5 implieslfj C U s W which must be non-
J=0 empty. Note thatW is a linear mapping oW therefore it
u(i— j) maintains compactness [25].
u(i—j—1) Within the tube MPC implementationi is treated as a
Wi—j = : (7b)  bounded additive disturbance. The undisturbed model takes
w(i—j— N, +1) the form,
Proof. This proof can be found in [24] (Theorem 2.1) M 2(i+1) = Az(i) + Bo(i) (9a)
z(i) € Z=X06S, Viecls (9b)

In [16] it is shown that the lower bound of inequality ) . _
(7a) characterizes the outside of an ellipsoid, hence the PE v(i) e V=U6 KS, Vi€l (9¢)



in which K, is any stabilizing gain fo 4, B), guaranteed C. Tube MPC with additional PE constraint
to exist in view of Assumption 1. The sétis an RPI set g gptimization problem of the proposed model predic-
for the dynamic model of the error between the trajectorieg,e controller. at time is Py (2(i)):

of the nominal and uncertain models,
N-—1

e(i) = (i) - 2(i) (102)  min > (2T (K)Qz(k)+dT (K)RA(K)) + V3 (2(N)) (14)
e(i+1) = (A+ BK;)e(i) + (i) + ws(i) (10b) - k=0

(i) € W, Vi €lsg (10c) Subject to:
ws (i) € Wg, Vi€lxo (10d) 2(0) = 2(i) € Zn (15a)
For a nominal solution to exists, the constraint space define z(k+1) = Az(k) + Bu(k) (15b)
by constraints (9b) and (9¢c) must be non-empty, z2(k)eZ, k=0,1,...,N -1 (15¢)
Assumption 6 (Allowable disturbance size for constraint v(k) €V, k=0,1,...,N 1 (15d)
satisfaction) The setS is such thaS c X and K,S c U. 2(N)eZy CZ (15e)
Assumption 6 it is not uncommon in robust control im- w(k) €W, k= (151)
plementations, it simply states the fact that it will not be w(k) =0m, k=1,...,N -1 (159)

possible to satisfy the constraints if the disturbanceda@ue M, >0 (15h)
large. After a standard MPC problem (section 1I-A) is solved

for the nominal system (9a) under tightened constraint} (9whereZN andZ; are the nominal equivalents fy andX;

: - . .
and (9c), the input to the uncertain system is computed froffSPECtively. The cost term’ (k)Rd(k) is a straight forward
the following control policy, augmentation of the usual input cost with,

d"(k) =" (k) w" k)], k=0,1,...,N -1 (16a)

(i) = v(i) + Ki(2(i) — 2(3)) (11)
R=| B Owm (16b)
B. Additional PE constraint O xm R
A=A(i) B=B() (16c)

Sincew is bounded (8d), the upper bound in Theorem 1
is trivially fulfilled [15], therefore the focus is placed on
achieving the lower bound. At timedefine,

IV. STABILITY AND FEASIBILITY

In this section stability and recursive feasibility proafe
_ = . derived for the PE-Tube MPC.
M(w(z)) =M, = Z (’wi,j’wi,j) —polmn, (12a)

j=0 A. Stability
U_’(i - 7) The objective of performing closed-loop system identifica-
w w(i—j—1) (12b) tion is to reduce model uncertainty and thereby improve the
i—j = .

performance of the MPC. Therefore it is safe to assume that
the initially known model (1a) will differ from the actual
plant being controlled (1b) and from any transitional model
That M; depends only on the past and current excitinglc) given by the recursive identification (6). This reprase
input makes the following a suitabfeersistence of excitation a considerable drawback, as one of the main requirements of
constraint within the receding horizon fashion of MPC tube MPC is to know an RPI set, which is model dependent.
Different approaches can be used to compute such a set; in
M;>0 (13)  [19] for example, Assumption 4 is bypassed by showing that,
o ) ) ~under a type of parametric affine model uncertainty, an RPI
Remark 1. The realisation of constraint (13), i.e. a persiSget computed for a certain model is also RPI for a family of
tently exciting behaviour ofv, does not necessarily imply models. The definition of a specific set of rules for computing
persistence of excitation in the absolute input signaThis g is out of the scope of this paper; for the examples shown

is because of the control policy (11), which tries to rejech; section V a suitable RPI set is computed on the basis of
disturbances. However, numerical simulations have show{ksumption 4 and the error dynamics (10).

that a proper selection of the linear galty secures that

the PE condition is transmitted to. The investigation of Theorem 2 (Stability of the PE-Tube MPC)If assumptions
conditions for gain selection is beyond the scope of thit—6 hold, then the set := Sx {0, } is asymptotically stable

paper, hence we require the fo”owing assumption' with a region of attractiomZN EBS) X ZN for the constrained
composite system,

w(—j—Np+1)

Assumption 7 (Persistence of excitation transmissiofpr , o _ o .
the linear gaink,, the persistence of excitation af is r(i+ 1) = Az(i) + Ba(i) + (i) + ws(i)
transmitted to the absolute input sequence 2(i+ 1) = Az(i) + Bo(i)



under the closed-loop control laws defined by (10) and (14)— V. SIMULATION RESULTS

(15) respectively. This section shows the behaviour of the proposed algo-
rithm through two numerical examples. The task is to per-
form closed-loop identification while regulating the staté

the following multi-variable system (taken from the exaewpl

Proof. Follows directly from the stability proofs in [23]. B

B. Recursive feasibility used in [19]):
Recursive feasibility of a standard tube MPC formulation - - 0.42 —0.28 —-0.6 —04
is provided by constraint (15a). In [16] an additional aspum Al0) = A+04 = [0.02 0.60} 0 [—0.6 —0.85} (182)
tion is used to provide a proof of recursive feasibility unde _ . 0.30 _0.2
the effects of the non-convex PE constraint (15h), B(0) =B +0B = {_0.40} +4 [ 0_4} (18b)

Assumption 8. A feasible solution is available at time- 1,  subject to the following constraints,
i.e., M;, 1>0

X={zeR®st |z;| <17, j=1,2} (19a)
Theorem 3 (Recursive feasibility: Trivial solution) If U={ucRst [u <4} (19b)
Assumption 8 holds, then there exists a feasible solution at -
time i for the persistently exciting tube MPC (14)—(15). W={weRst |[w] <0.2} (19¢)
|6] <0.15 (19d)
Proof. This theorem is proved in [16]. It is repeated here for ) ) )
clarifying purposes. From (12), Since no particular performance requirements are being
considered, the controller parameters are loosely sat to
M; :Mi71+wiw?—wifzpwj_lp 3, @ = Ixs and R = 1. The terminal costV;, and
W — ww! —w . w the terminal constraint se€t; are computed according to
oo =ity Assumption 3.A(9) is inherently stable for any following
- .. _ i (19d), this provides flexibility in choosing the linear gain
therefore, a s_ufﬂuent condition fOMZ > 0 IS that w . =z K; = [-0.112 0.354] which is stabilizing and complies
0. The proiof is completed by noticing thai(i) = w(i — i, Assumption 7. A sefWg following Assumption 6 is
lp) = w'=0. u defined for (18)-(19) and the corresponding RPI Seis
computed.

Theorem 3 provides recursive feasibility under the trivial Following the directions given in [7], the PE constraint
periodic repetition of a previous solution, but it does noparameters are set ¥, = 6 andl,, = 11; given the size of
analyse the effect of choosing a different one. In faeti) W a value ofp, = 0.05 is employed. To guarantee recursive
is a decision variable in the proposed optimization problemeasibility at initialization, a feasible PE sequence ofgth
(14), hence the optimiser isee to choosew(i) # w(i — N, 4 1, — 1 has to be compute available (Assumption 8).
lp) as long as constraints (15f) and (15h) are not violategiowever, this sequence is not explicitly used, it only asts a
Numerical simulations (conducted on the same system usgthuffer for feasibility purposes (which means that some of
as an example in [16]) show that recursive feasibility majts elements may indeed be used).
be lost if periodicity is broken, namely, if the optimizatio  For the RLS algorithm a forgetting factox = 0.97
algorithm lands in a solution such that(i) # w(i —1,) . is employed. The estimates vectéy is initialized at the
The observed behaviour can be summarised in, initially known values(A, B). The information matrixRp

) ) ) is initialized as the null matrix, therefore @seudeinverse
Fu(i) € W st, w(i) # w(i —1p) is computed for (5a) untiRp becomes invertible. Albeit a
AN M;>0, but M;1; <0 Vw(i+1) e W recursion is computed at every time instant, the prediction
model update (16c) is performed only every 3 time steps.
According to (12), the non-trivial optimised (i) remains ) o
in w; for N, — 1 time steps. To take this into account the™ Closed-loop identification capabilities
following constraint is proposed to replace (15h), An initial state z(0) = [0 0]" € Zy is considered
to assess the closed-loop identification capabilities ef th
M;,;>0,1=01,...,N,—1 (17a) proposed algorithm. This is done to avoid the additional
wi+1) =wi+1—1), l=1,...,N, — 1 (17b) |nforme_1t|on_that would be generated in the process of
regulation, in that way effect of the PE constraint can be
observed independently. Fig. 1 shows the optimised input

Assumption 8 holds, and the constraint (15h) is replaceﬂgnal_ generated by the PE-Tube MPC fpr both, _n(_)_mm)al (
by (17), then there exists a feasible, not necessarilyaffivi and d|stgrbe(_j1() systems. As expecte_d,_ given the Init lal state,
solution at timei for the PE-tube MPC (14)—(15). the nomlna! input remains at the origin while the input for
the uncertain system is, indeed, disturbed by the PEpart
Proof. This result is established by extending the proof foFig. 2 shows the evolution of the statesandz;. During the
Theorem 3 to covelV, — 1 time steps. B initial time steps, the algorithm optimises a PE sequence on

Theorem 4 (Recursive feasibility: Non-trivial solution)If
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2. Evolution of the first state for the nominal and dibed systems.

TABLE |
EVOLUTION OF ESTIMATED PARAMETERS ERROR%].

Parameter 1 =0 i =3 i =06 =9
A1p [ —17.6 —1.76 x 101 —2.83 x 10~ 1T —2.24 x 10~ 1%
A1 | —17.6 —1.76 x 101  1.25 x 10711 9.48 x 1012
Aoy | —81.8 —8.18 x 101 —5.09 x 10710 —4.04 x 10710
Agg | —17.5 —1.75x 101 —2.27 x 1011 —1.71 x 101
Bi11|—9.09 1.68 x 1071* —2.35x 10713 437 x 10713
Boy | —13.0 0 6.87x10713 —1.19 x 10712

10 I T T T
8 ; —O— Disturbed systemz Inital S‘a‘f ;
- - | — A— Nominal Systemz ——-" B
n 6 —
% L B
i o'r T ]
§ of 14
—2 = L
[ 0 0.08
_4 1 1 1 | 1 1 L

Fi

the basis of the feasible sequence initially supplied, Bencz
the transient behaviour observed on the uncertain system
(z). Feasibility is maintained during this period thanks tol

g.

First state:z1 and z

3. Evolution of the state for the nominal and disturbgstams.

the tighter constraint (17). An optimised periodic solatis
attained fairly fast.

Table | shows the error of the identified value (w.r.t. real el
value) for all the system parameters, at several time itstan
As expected, by cause of the persistence of excitation con-
straint, the RLS algorithm gets enough information and th%ol

true

values, within an acceptable tolerance, are reached.

B. Regulation capabilities

The regulation capabilities of the PE-Tube MPC are eval-
uated by initializing the scheme at0) = [8 8]T € Zy;
Fig. 3 shows the state evolution for both, nominal and real
system. As expected, given the stabilizing charactesistic
of the proposed algorithm, the nominal state shows an
asymptotic behaviour towards the origin. Due to the pedodi
PE disturbancev), the evolution of the disturbed state is
ultimately bounded to lie inside the s¢b,,} @ S.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a new way to approach the dual-problem of
system identification and regulation via a model predictive
controller has been presented. At each time instant, the inp
used to control the system is divided into a persistently
exciting (PE) part and a regulator part. The PE part is tceate
as a bounded disturbance and a tube MPC, enhanced with
a PE constraint, is used to regulate the plant. At the same
time, thanks to the PE constraint, enough information is
generated for the identification process. Under the proper
assumptions, the PE-Tube MPC has proved robust stability
and recursive feasibility. Future work will be focused oe th
analysis of the transmission of persistence of excitatiwh a
the implementation of on-line variation of the allowableesi
of perturbations with the objective of feasibility enlangent.
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