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Abstract— We consider the problem of optimal input design
for estimating uncertain parameters in a discrete-time linear
state space model, subject to simultaneous amplitude and `1/`2-
norm constraints on the admissible inputs. We formulate this
problem as the maximization of a (non-concave) quadratic
function over the space of inputs, and use semidefinite relax-
ation techniques to efficiently find the global solution or to
provide an upper bound. This investigation is motivated by a
problem in medical imaging, specifically designing a substrate
injection profile for in vivo metabolic parameter mapping
using magnetic resonance imaging (MRI) with hyperpolarized
carbon-13 pyruvate. In the `2-norm-constrained case, we show
that the relaxation is tight, allowing us to efficiently compute
a globally optimal injection profile. In the `1-norm-constrained
case the relaxation is no longer tight, but can be used to prove
that the boxcar injection currently used in practice achieves at
least 98.7% of the global optimum.

I. INTRODUCTION

A. Optimal experiment design

In this paper we consider the problem of estimating un-
certain parameters in a state space model from noisy output
data. For such a system, the reliability of the parameter
estimates depends on the choice of input used to excite the
system, as some inputs provide greater information about
the parameters than others. The problem of designing an
input that is maximally informative is known as optimal
experiment design and much work has been done on this
problem in the last 50 years [1]–[4].

Historically, most work on optimal experiment design
for dynamic systems has focused on frequency domain
techniques, where an optimal input is designed based on
its power spectrum. Here, we approach this problem in the
time domain, allowing us to impose amplitude (`∞) and `1
constraints on the admissible inputs. Amplitude-constrained
optimal experiment design is NP-hard in general [5], but
semidefinite relaxation techniques can be used to generate
approximate solutions and to bound the suboptimality of such
solutions [5], [6]. In contrast with [5], [6], in this paper we
restrict our attention to linear measures of the information
allowing us to 1) write the objective function as a quadratic
function of the input sequence and 2) apply an exactness
result for quadratically constrained quadratic programming
to give sufficient conditions under which the semidefinite
relaxation recovers the global solution. We also present the
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results in terms of a state space model enabling us to model
uncertainty in the initial state.

B. Metabolic MRI using hyperpolarized substrates

We are motivated by a problem in metabolic magnetic
resonance imaging (MRI) using hyperpolarized substrates.
Hyperpolarized carbon-13 MRI has enabled the real-time
observation of perfusion and metabolism in preclinical and
clinical studies [7]–[12]. This technology is made possible
by techniques for dynamic nuclear polarization (DNP) that
have led to signal-to-noise ratio (SNR) increases of four to
five orders of magnitude compared with endogenous signal
in dissolved 13C-labelled molecules [13], [14]. Injected [1-
13C] pyruvate is frequently used as a substrate in metabolism
experiments and its rate of conversion to [1-13C] lactate has
been shown to distinguish between healthy and cancerous
tissues in animal [8], and recently human [10], studies.

The goal of a metabolic MRI experiment is to learn the
spatial distribution of metabolic rates, as this indicates the
regions of the body where a particular metabolic pathway is
active. Noise in the observed image data leads to uncertainty
in estimates of metabolic rate parameters, but the amount of
uncertainty can be mitigated with experiment design.

The problem of optimally designing an image acquisi-
tion sequence is considered in [15], [16]. In this paper
we investigate optimal substrate injection profiles. After
hyperpolarization the substrate must be injected into the test
subject, where metabolism occurs and a sequence of images
are acquired. Greater injection volumes lead to better signal-
to-noise ratio, but for safety reasons the injection profile is
limited by the rate at which substrate can be injected and
by the total amount of fluid injected. Thus determining the
optimal injection profile is of clinical interest.

C. Outline

We begin in Section II by introducing the time domain
optimal experiment design problem for linear systems, and
discuss relevant relaxations from the literature. Then in Sec-
tion III we present a mathematical model of hyperpolarized
MRI and use semidefinite relaxation techniques to design
optimal injection inputs for hyperpolarized substrates. We
constrain the total amount of fluid injected using the `2 or
`1 norms of the input signal. In the `2-constrained case, the
relaxation is tight and we are able to recover a globally op-
timal solution to the original problem. In the `1-constrained
case we do not recover a solution from the relaxation, but
the objective value of the relaxation can be used to bound
the optimality gap and show that a simple boxcar injection
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achieves at least 98.7% of the global optimum. Matlab
code to reproduce the results in this paper is available at
https://github.com/maidens/ACC-2016.

II. SEMIDEFINITE RELAXATIONS IN OPTIMAL
EXPERIMENT DESIGN

Consider a discrete-time linear system

xt+1 = A(θ)xt +B(θ)ut

yt = Cxt

Yt ∼ N(yt,Σ)

(1)

over a horizon 0 ≤ t ≤ N where the initial state x0 and
time-invariant state dynamics matrices A ∈ Rn×n and B ∈
Rn×nu are dependent on some unknown parameter vector
θ ∈ Rp. We wish to choose an input sequence u to maximize
some measure of the Fisher information matrix

I(θ) =

N∑
t=0

(∇θxt)TCTΣ−1C(∇θxt) (2)

about the parameter vector θ contained in the data Y . The
Fisher information is a positive semidefinite matrix that is
used in experiment design for parameter estimation as a
measure of the informativeness of an experiment [4], [17].
The inverse of the information gives an upper bound on
the covariance of an arbitrary unbiased estimator θ via the
Cramer-Rao inequality. See [18] for a derivation of (2).

A. Quadratic objective function

We consider nonnegative, linear information metrics of the
form

ϕ
(
I(θ)

)
= trace

(
KI(θ)

)
(3)

where K � 0 is positive semidefinite. Particular cases
include the T-optimal design criterion (where K is the
p×p identity matrix) [17] and the c-optimal design criterion
(where K = ccT ) which is optimal for the scalar parameter
cT θ [19].

To formulate the problem of choosing the sequence uk
for k = 0, . . . , N − 1 we define the stacked vector u =
[uT0 . . . u

T
N−1]T and denote its components u(j,k) where

(j, k) = knu + j defines a reverse lexicographic ordering,
j ranges over the input index from 1 to nu and k ranges
over the time index from 0 to N − 1. With this notation
established, we can state the following result.

Proposition 1: The objective (3) is a quadratic function

ϕ
(
I(θ)

)
= uTQ(θ)u + 2q(θ)Tu + q0(θ)

of the design variable u. The entries of the matrices appear-
ing in the objective function are computed as

Q(θ)(j′,k′)(j,k) =

N∑
t=max{k,k′}+1

n∑
h,h′=1

p∑
i,i′=1

Kii′Mh′

k′i′j′(t)Shh′Mh
kij(t)

q(θ)(j,k) =

N∑
t=k+1

n∑
h,h′=1

p∑
i,i′=1

Kii′mh′

i′ (t)Shh′Mh
kij(t)

q0(θ) =

N∑
t=0

n∑
h,h′=1

p∑
i,i′=1

Kii′mh′

i′ (t)Shh′mh
i (t)

where Shh′ is the hh′-th entry of CTΣ−1C, mh
i (t) is the

h-th entry of the vector

At
∂x0

∂θi
+

t−1∑
`=0

At−`−1 ∂A

∂θi
A`x0

and Mh
kij(t) is the h, j-th entry of the matrix

At−k−1 ∂B

∂θi
+

t−1∑
`=k+1

At−`−1 ∂A

∂θi
A`−k−1B.

We see that for a linear dynamical system with Gaussian-
distributed measurements, optimal experiment design is a
nonconvex quadratic programming problem. If there are no
constraints on the admissible inputs the optimal value is
infinite, as by choosing u∗ as an eigenvector of Q(θ) that
corresponds to a nonzero eigenvalue, letting u = αu∗ for
α > 0, we can make uTQ(θ)u+2q(θ)Tu+q0(θ) arbitrarily
large.

Constrained quadratic programming is NP-hard in gen-
eral [20]. But certain quadratic programming problems lend
themselves to polynomial-time approximation algorithms us-
ing a semidefinite programming relaxation [21], [22]. We
first give a proof of Proposition 1, before moving on to
semidefinite relaxations of the optimal experiment design
problem.

Proof: Unrolling the recursion relation (1), we can write

xt = Atx0 +

t−1∑
k=0

At−k−1Buk.

Applying the chain rule to (1) we get a recursion relation
for the sensitivities

∂

∂θi
xt+1 = A

∂

∂θi
xt +

∂A

∂θi
xt +

∂B

∂θi
ut

which can be unrolled as

∂

∂θi
xt = At

∂x0

∂θi
+

t−1∑
`=0

At−`−1

[
∂A

∂θi
x` +

∂B

∂θi
u`

]
.

= At
∂x0

∂θi
+

t−1∑
`=0

At−`−1

[
∂A

∂θi

(
A`x0 +

`−1∑
k=0

A`−k−1Buk

)
+
∂B

∂θi
u`

]

=

(
At
∂x0

∂θi
+

t−1∑
`=0

At−`−1 ∂A

∂θi
A`x0

)

+
t−1∑
k=0

(
At−k−1 ∂B

∂θi
+

t−1∑
`=k+1

At−`−1 ∂A

∂θi
A`−k−1B

)
uk

To simplify notation, from this point forward we will use
the Einstein summation convention, where upper and lower
repeated indices denotes an implicit summation over those
indices. In this notation, we see that the sensitivity matrix
∇θxt has entries

(∇θxt)hi = Mh
kij(t)u

jk +mh
i (t)

where M and m are defined as in the statement of the
proposition and the index k runs from 0 to t − 1. Thus the

https://github.com/maidens/ACC-2016


objective function is expressed as

trace
(
KI(θ)

)
= Kii′I(θ)ii′

= Kii′
N∑
t=0

(∇θxt)h
′

i′ Shh′(∇θxt)hi

= Kii′
N∑
t=0

(
Mh′

k′i′j′(t)u
j′k′ +mh′

i′ (t)
)
Shh′

(
Mh
kij(t)u

jk +mh
i (t)

)

=
N−1∑
k,k′=0

uj
′k′

 N∑
t=max{k,k′}+1

Kii′Mh′

k′i′j′(t)Shh′Mh
kij(t)

ujk

+ 2
N−1∑
k=0

(
N∑

t=k+1

Kii′mh′

i′ (t)Shh′Mh
kij(t)

)
ujk

+
N∑
t=0

Kii′mh′

i′ (t)Shh′mh
i (t)

= uTQ(θ)u + 2q(θ)Tu + q0(θ)

B. Semidefinite relaxation of quadratic programs

Semidefinite relaxations of indefinite quadratic program-
ming problems have been the subject of considerable study
over the past two decades [21]–[26]. The essential idea is to
take a quadratic program

maximize uTQu+ 2qTu+ q0

subject to u ∈ P ⊆ Rd
(4)

over a linear vector space and transform it to a linear problem
over a quadratic space

maximize trace

([
Q q
qT q0

] [
U u
uT 1

])
subject to

[
U u
uT 1

]
∈ P̃ ⊆ R(d+1)×(d+1)

U = uuT

(5)

by introducing a rank 1 semidefinite variable U = uuT and
translating the constraint set P from the the linear vector
space to a convex constraint set P̃ in the semidefinite matrix
space. The problem (5) in non convex, but the equality con-
straint U = uuT can be relaxed to the inequality U � uuT

then transformed to semidefinite constraint
[
U u
uT 1

]
� 0

via Schur complement. Thus (5) can be relaxed to the convex
problem

maximize trace

([
Q q
qT q0

] [
U u
uT 1

])
subject to

[
U u
uT 1

]
∈ P̃[

U u
uT 1

]
� 0.

(6)

The value of the convex program (6) can then be used as
an upper bound on the solution to (4). Further if a solution[
U∗ u∗

u∗T 1

]
to (6) happens to have rank 1 then u∗ is a

global solution to (4).

To translate constraints u ∈ P ⊆ Rd on u to constraints
U ∈ P̃ ⊆ Rd×d on U there are a number of methods.
• Quadratic constraints on u of the form

P = {u : uTRu+ 2rTu+ r0 ≤ 0}

are translated to constraints of the form

P̃ = {U : trace

([
R r
rT r0

] [
U u
uT 1

])
≤ 0}.

For example, the `2 constraint ‖u‖2 ≤ c becomes
trace(U) ≤ c2.

• Amplitude constraints on u of the form P = {u : |ut| ≤
ct t = 1, . . . , d} for particular constants ct are modelled
as d homogeneous quadratic constraints P = {u : u2

t ≤
c2t t = 1, . . . , d} which correspond to P̃ = {U : Utt ≤
c2t t = 1, . . . , d}.

• Box constraints of the form P = {u : 0 ≤ ut ≤ ct} can
be translated as P̃ = {U : Utt ≤ c2t t = 1, . . . , d ∧
Ust ≥ 0 s, t = 1, . . . , d}.

• For u normalized such that 0 ≤ ut ≤ 1, the relaxation
can be tightened by noting that u2

i ≤ ui. Thus the
constraints Uii ≤ ui i = 1, . . . , d can be added to
tighten the relaxation.

• If ut ≥ 0 and a is a vector with at ≥ 0 then the linear
constraint P = {u : aTu ≤ b} can be translated by
noting that 0 ≤ aTu ≤ b implies that trace(aaTU) =
trace(aTUa) = aTuuTa = (aTu)2 ≤ b2. This results
in a tighter approximation than adding the constraint
aTu ≤ b (see Lemma 1 of [27]). In particular, if we
denote the d× d matrix of ones by E then the `1-norm
constraint ‖u‖1 ≤ b can be translated as trace(EU) ≤
b2.

C. A result on exact recovery from semidefinite relaxation

For a vector u ∈ Rd let u2 denote the vector obtained
by squaring the entries of u component-wise and consider a
problem of the form

maximize uTQu+ 2qTu+ q0

subject to u2 ∈ F .
(7)

The following result gives sufficient conditions for the
semidefinite relaxation

maximize trace

([
Q q
qT q0

] [
U u
uT 1

])
subject to diag(U) ∈ F[

U u
uT 1

]
� 0

(8)

to recover the global solution of (7).
Proposition 2 (Adapted from Theorem 2 of [26]): If

Qij ≥ 0 for all i 6= j, qi ≥ 0 for all i and F ⊆ Rd is a
closed convex set then the values of (7) and (8) coincide.
Moreover, if Ũ∗ is a solution of (8) then

√
diag(Ũ∗) is a

solution of (7).
Thus if u ∈ P can be expressed in the form u2 ∈ F for

some convex F , and the entries of Q and q are nonnegative,
we can globally solve (4) via the convex relaxation.



III. INFUSION INPUT DESIGN FOR SUBSTRATE INJECTION
IN HYPERPOLARIZED CARBON-13 MRI

We consider a linear model of magnetization exchange
resulting from the injection of a hyperpolarized substrate,
observed using a flip angle sequence αk,t [28]:

dx
dt (t) =

[
−kPL −R1P − 1−cos(α1,t)

∆t 0

kPL −R1L − 1−cos(α2,t)
∆t

]
x(t) +

[
kTRANS

0

]
AIF (t)

(9)
where AIF (t) is an arterial input function. The result of a
bolus (impulse) injection of substrate is often modelled as
the arterial input function is of the form [29]

AIF (t) = A0t
γe−t/β .

In the case γ = 2 the samples of this AIF can be modelled
as the impulse response of the γ + 1 = 3rd order system

zt+1 =

 3e−(∆t)/β −3e−2(∆t)/β e−3(∆t)/β

1 0 0
0 1 0

 zt +

 1
0
0

ut
AIFt = A0

[
e−(∆t)/β e−2(∆t)/β 0

]
zt.

(10)

We discretize (9) with step ∆t = 2 s assuming a zero-order
hold on the AIF, yielding a model

x̄t+1 = Ā x̄t + B̄ AIFt

yt =

[
0 0 0 sin(α1,t) 0
0 0 0 0 sin(α2,t)

]
x̄t.

(11)

Combining (10) and (11), we get a model of the full system
(12) mapping the infusion input u to the observed signals.

We now solve an example instance of this system with
model parameters taken from [16] which are shown in Table
I , along with noise covariance matrix Σ = I , horizon of
N = 30 samples and a constant flip angle sequence αk,t =
15◦. Computation times for solving this problem are given
in Table II.

R1P R1L kPL kTRANS t0 γ β A0

1/10 1/10 0.07 0.055 3.2596 2.1430 3.4658 1.0411 ×104

TABLE I: Nominal parameter values used

A. `2 constrained input
The substrate injection is constrained to limit the rate of

injection to |ut| ≤ 1 and to limit the `2 norm of the injection
to ‖u‖2 ≤ 4. Thus we wish to solve the quadratically-
constrained quadratic program

maximize uTQ(θ)u

subject to u2
t ≤ 1
N−1∑
t=0

u2
t ≤ 16.

(13)

The matrix Q is nonnegative and the constraints are of the
form u2 ∈ F where F is a closed convex set. Therefore this
problem yields a semidefinite relaxation

maximize trace
(
Q(θ)U

)
subject to Utt ≤ 1

trace(U) ≤ 16.

(14)

whose solution has rank 1 (by Proposition 2). So we can
extract a globally optimal solution to (13) from its semidef-
inite relaxation. The resulting optimal input trajectory and
the corresponding output trajectories are shown in Fig. 1.
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Fig. 1: Optimal solution to (13) computed using semidefinite
relaxation.

B. `1 constrained input

We now replace the `2-norm constraint with an `1-norm
constraint ‖u‖1 ≤ 8 that limits the total amount of substrate
injected. This constraint is more clinically relevant than the
`2-norm constraint, as the total substrate than can be injected
is often limited due to safety-related concerns. This leads to
a linearly-constrained QP of the form

maximize uTQ(θ)u

subject to 0 ≤ ut ≤ 1
N−1∑
t=0

ut ≤ 8.

(15)

This QP can be relaxed to the semidefinite program

maximize trace
(
Q(θ)U

)
subject to

[
U u
uT 1

]
� 0

Utt ≤ ut
trace

(
EU

)
≤ 64

Ust ≥ 0

(16)



xt+1 =


3e−(∆t)/β −3e−2(∆t)/β e−3(∆t)/β 0 0

1 0 0 0 0
0 1 0 0 0

A0e
−(∆t)/βB̄1 A0e

−2(∆t)/βB̄1 0 Ā11 Ā12

A0e
−(∆t)/βB̄2 A0e

−2(∆t)/βB̄2 0 Ā21 Ā22

xt +


1
0
0
0
0

ut
yt =

[
0 0 0 sin(α1,t) 0
0 0 0 0 sin(α2,t)

]
xt

(12)

problem time to generate SDP SDP decision variable size number of SDP constraints time to solve SDP
`2 constrained 12.0 s 30 × 30 symmetric 31 0.58 s
`1 constrained 31 × 31 symmetric 497 5.51 s

TABLE II: Computation time to solve semidefinite programming relaxations. The SDP was solved using CVX [30] with the
SeDuMi backend in MATLAB v8.4.0 running on a Macbook laptop (2.3 GHz quad-core Intel Core i7 Ivy Bridge processor,
8GB memory).

where both U and u are decision variables and E is the
N×N matrix of ones. In this case, the constraint set is more
complex than in the `2-norm constrained case. Therefore the
solution to the semidefinite program does not have rank 1,
so we cannot extract the solution to (15). But the optimal
value of (16) is an upper bound on the optimal value of
(15), so given a proposed solution of (15) we can bound the
optimality gap using the value of (16).

We conjecture that the global solution of (15) is the boxcar
shown in Fig. 2. This input is what is currently used in
practice: the substrate is injected at the maximum rate until
the total allowable volume has been injected. Comparing
the optimal value 1.2888 × 1010 of the relaxation with the
objective value 1.2724 × 1010 we see that the boxcar input
achieves a value of a factor of at least 0.9873 the optimal
value. Thus even if our conjecture is incorrect and the boxcar
is not optimal, the improvement that may be achieved by the
optimal input is negligible. This observation helps to validate
the current practice in hyperpolarized MRI.

IV. CONCLUSIONS

We have found that semidefinite relaxation can be used to
compute an optimal hyperpolarized substrate infusion input
profile for estimating uncertain metabolic rate parameters
in metabolic MRI. Future work will focus on investigating
the relationship between the rank 1 recovery that we see in
the `2-norm-constrained case and properties of the dynamic
system such as positivity and passivity, and attempting to
extend these results to nonlinear measures of the information
such as the D- E- and A-optimality criteria used in [6].
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