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Abstract— This paper investigates transient performance of
inverter-based microgrids in terms of the resistive power losses
incurred in regulating frequency under persistent stochastic
disturbances. We model the inverters as second-order oscil-
lators and compare two algorithms for frequency regulation:
the standard frequency droop controller and a distributed
proportional-integral (PI) controller. The transient power losses
can be quantified using an input-output H2 norm. We show
that the distributed PI-controller, which has previously been
proposed for secondary frequency control (the elimination of
static errors), also has the potential to significantly improve
performance by reducing transient power losses. This loss
reduction is shown to be larger in a loosely interconnected net-
work than in a highly interconnected one, whereas losses do not
depend on connectivity if standard droop control is employed.
Moreover, our results indicate that there is an optimal tuning
of the distributed PI-controller for loss reduction. Overall, our
results provide an additional argument in favor of distributed
algorithms for secondary frequency control in microgrids.

I. INTRODUCTION

Driven by environmental concerns and several economic
factors, the electric power system is moving from a central-
ized generation paradigm towards a more distributed one.
Local, small-scale generation resources are expected to be-
come prevalent in future power networks, as the penetration
of renewable energy sources increases [1], [2]. The microgrid
concept has gained popularity as a key strategy to facilitate
this transition [3], [4]. Microgrids are networks composed of
distributed generation (DG) units, loads and energy storage
elements which can either connect to a larger power grid, or
operate independently from it, in “islanded” mode.

The DG units within the microgrid are typically interfaced
with the AC network via DC/AC or AC/AC power converters,
or inverters. The network’s stability, synchronization and
power balance depend on control actions taken in these
inverters [5], [6]. The standard control scheme employed
to stabilize the system and achieve active power sharing,
i.e., a desired steady-state distribution of power injections of
inverter units, is droop control, effectively a decentralized
proportional controller. While droop control, under reason-
able conditions (see e.g. [7]), is successful at stabilizing
the network, it typically causes the steady-state network
frequency to deviate from its nominal value [5].

This deficiency motivates so-called secondary control, the
goal of which is to eliminate the static error. In order to
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achieve this goal, control architectures with various degrees
of centralization have been proposed. Unless carefully tuned,
completely decentralized secondary controllers destroy the
power sharing properties established by droop control, and
may lead to a violation of generation constraints [8], [9].
Conversely, centralized control requires a dense communica-
tion architecture and conflicts with the microgrid paradigm of
autonomous management and scalability. This has motivated
the development of distributed control algorithms which
simultaneously eliminate frequency errors and maintain the
optimality properties of droop control [7], [8], [10], [11].

In this paper, we study one such control algorithm, which
builds on the droop controller and combines it with integral
control and distributed averaging algorithms. Stability and
power sharing properties of such distributed PI-controllers
have been studied in [7], [10] for first-order inverter mod-
els, and in [8], [12] for synchronous generator networks
represented by second-order oscillators. Here, we model an
inverter-based network with second-order dynamics. How-
ever, the novel aspect of the present paper lies in the analysis
of transient performance, not in stability analysis.

We consider performance in terms of the resistive power
losses incurred in regulating frequency under persistent small
disturbances caused by, for example, variations in generation
and loads. These losses are associated with power flows
that arise from fluctuating phase angle differences, and
can be regarded as a measure of control effort. The total
transient power losses can be quantified through theH2 norm
of an input-output system describing the coupled inverter
dynamics, with an appropriately defined output.
H2−based performance bounds have previously been used

in [13] to derive fundamental performance limits for large-
scale vehicular platoons and consensus networks with spa-
tial invariance. By exploiting spatial invariance properties,
similar bounds for voltage regulation in DC power networks
were derived in [14]. For general coupled oscillator networks,
robustness with respect to disturbances was studied in [15]
and methods to reduce inter-nodal interactions due to distur-
bances were proposed by [16].

The present work adheres to [17], [18], where performance
in terms of power losses was evaluated for synchronous
generator networks, and to [19], where droop-controlled
microgrids with variable voltage dynamics were studied.
These works showed that under the assumption of uniform
generator parameters, the losses associated with frequency
synchronization will scale unboundedly with the network
size, but not depend on the network’s connectivity. While
this scaling of losses with network size appears to be a

ar
X

iv
:1

60
1.

08
01

7v
2 

 [
m

at
h.

O
C

] 
 2

0 
M

ar
 2

01
6



fundamental performance limit (cf. [13]), the main result of
this work is that these losses can be significantly decreased
by applying distributed secondary PI-control. Surprisingly,
we also find that the performance improvement over droop
control is larger in a sparsely connected network than in a
highly connected one. This stands in contrast to synchro-
nization results in complex networks and power systems,
which instead predict that densely connected networks are
easier to synchronize [20], [21], are more coherent [13],
and display faster rates of convergence [22]. Our result
therefore indicates that there is a fundamental trade-off
between network coherency and transient power losses, in
that additional power lines which strengthen synchronization
also incur additional losses.

Moreover, we find that there is an optimal tuning for
the distributed PI-controller which minimizes the transient
resistive losses. Numerically, we find that the optimal gain
for the distributed averaging in the controller is often quite
small, indicating that only only low-gain distributed feedback
between controllers is needed to optimize transient perfor-
mance.

The remainder of this paper is organized as follows. We
introduce the models for the inverters and the control strate-
gies in Section II. In Section III, we evaluate performance
and discuss network topology dependencies. In Section IV,
optimal tuning of the distributed PI-controller is discussed,
before we conclude in Section V.

II. PROBLEM SETUP

Consider a network G = {V, E}, where V = {1, . . . , N}
is the set of nodes and E = {eij} represents the set of
edges, or network lines. Each network line is represented
by a constant (complex) admittance yij = gij − jbij , where
gij , bij > 0. Throughout this paper, we will assume a
Kron-reduced network model (see e.g. [23], [24]), where the
reduction procedure eliminates the constant-impedance loads
and absorbs their effects into the network lines E , along with
any phase-shifting transformers. Consequently, every node
i ∈ V represents a generation unit with a power inverter as
its grid interface. Each node has an associated phase angle
θi and voltage magnitude |Vi|.

In this paper, we will focus on how frequency control
impacts the performance in terms of resistive losses; see [19]
for the impact of voltage droop control.

A. Inverter and droop control model

We first introduce the model for standard frequency droop
controller. We assume the inverters at nodes i ∈ V to be AC
voltage sources, whose frequency output can be regulated
according to:

θ̇i = ui, (1)

where ui is the control signal. The droop controller balances
the active power demand through simple proportional control

ui = ω∗ −mi(P̂i − P ∗i ), (2)

where the controller gain mi > 0 is called the droop
coefficient, ω∗ and P ∗i are the frequency and active power

setpoints, and P̂i is the measured active power. Following
[21], we assume measurement delay dynamics where P̂i is
measured and processed through a low-pass filter as

τi
˙̂
Pi = −P̂i + Pi , (3)

where τi > 0 is the time constant of the filter and Pi is the
actual power injection at node i (Section II-C).

Now, we substitute (2) into (1) and introduce the inverter
frequency ωi = θ̇i to obtain

ωi = ω∗ −mi(P̂i − P ∗i ). (4)

Taking the time derivative of (4) gives ω̇i = −mi
˙̂
Pi and by

(3) we have that ω̇i = mi
τi

(P̂i − Pi). Now, we can substitute
P̂i using (4) and obtain the frequency control dynamics as

θ̇i = ωi

τiω̇i = −ωi + ω∗ −mi(Pi − P ∗i ).
(5)

Remark 1: The second-order frequency droop control
model (5) for inverter-based networks is analogous to the
classical machine model for synchronous generators. The
models are equivalent with respect to the performance mea-
sure considered here, see [18], [19]. We regard the param-
eters τi,mi in (5) as design parameters and thus assume
inverter-based networks throughout, although the setting can
easily be extended to networks with both inverters and
synchronous generators. We refer to [8] for a discussion on
distributed PI control in synchronous generator networks.

B. Distributed averaging proportional integral (DAPI) con-
troller

The droop controller (2) is completely decentralized, re-
quiring only local measurements of active power for im-
plementation. Under reasonable conditions, (2) guarantees
the desired power sharing, and synchronizes the inverter
network to a common steady-state frequency ωss; see [7]
for an analysis. However, as droop control is effectively
proportional control, it typically leads to static deviations of
the steady-state frequency ωss from the nominal frequency
ω∗. This deficiency motivates so-called secondary integral
control, the goal of which is to eliminate the static error.

Following [7], [8], in this paper we consider a distributed
integral control strategy which we refer to as distributed
averaging proportional integral (DAPI) control. For this
purpose, assume that the inverters in the physical network, as
described by G = {V, E}, have access to a communication
network represented by the graph GC = {V, EC}. Let NC

i

denote the neighbor set of node i in GC . The controller takes
the form

θ̇i = ωi (6a)
τiω̇i = −ωi + ω∗ −mi(Pi − P ∗i ) + Ωi (6b)

kiΩ̇i = −ωi + ω∗ −
∑
j∈NCi

cij(Ωi − Ωj), (6c)

where Ωi is the secondary control variable and ki > 0 and
cij = cji > 0, i ∈ V, j ∈ NC

i are controller parameters.



Notice that equations (6a) - (6b) are the droop controller
dynamics (5), but with the additional secondary control input
Ωi. Hence, (6c) can be thought of as a distributed integral
controller appended to (6a) - (6b).

As shown in [7], if the communication network GC among
the inverters is connected, the distributed controller (6)
restores the network frequency to ω∗ while maintaining an
optimal steady-state distribution of power injections among
the inverters established by droop control. When all gains
cij are zero, (6c) degenerates into a decentralized integral
controller, and in this case (6) possesses a large subspace
of undesirable equilibria [9, Lemma 4.1]. In practice, such a
control design destabilizes the network unless the controllers
have access to accurate phasor measurements units (PMUs).
We refer to [12] for an elaboration.

To simplify upcoming notation, we define the weighted
Laplacian matrix LC ∈ RN×N of the communication graph
GC by (LC,ij denotes the element at row i and column j):

LC,ij =


−cij if j ∈ NC

i , j 6= i∑
k∈NCi cik if j = i

0 otherwise

(7)

Remark 2: The models (5) and (6) reduce to the first-order
inverter models considered in [10] if τi = 0 for all i ∈ V .

C. Power flow

Introducing θij = (θi − θj) as the phase angle difference
between neighboring nodes, we can write the active power
injected to the grid at node i ∈ V as

Pi = ḡi|Vi|2 +
∑
j∈Ni

|Vi||Vj |(gij cos θij + bij sin θij). (8)

Here, Ni denotes the neighbor set of node i in G. gij and bij
are respectively the conductance and susceptance associated
with the line eij , and ḡi is the shunt conductance of node i.
As per convention in power flow analysis, we assume that all
quantities in (8) have been normalized by system constants
and are measured in per unit (p.u.).

In what follows, we will use a simplified model in which
we consider small deviations from a stable operating point.
We can therefore approximate the power flows using the
standard linear power flow assumption:

Pi ≈
∑
j∈Ni

bij(θi − θj). (9)

See e.g. [25] for a general analysis of the applicability of
this assumption and [19] for an error estimate with respect
to the performance measure of interest.

In upcoming notation, we will use the network admittance
matrix Y ∈ CN×N , with elements given by Yii = ḡi +∑
k∈Ni yik, Yij = −yij if j ∈ Ni, j 6= i and zero otherwise.

The matrix Y can be partitioned into a real and an imaginary
part:

Y = LG + diag{ḡ} − j(LB), (10)

where LG denotes the network’s conductance matrix and LB
its susceptance matrix. By definition, the matrices LB and

LG are weighted graph Laplacians of G, with edge weights
respectively defined by bij and gij .

Substituting the power flow equation (9) into, respectively,
the dynamics (5) and (6), we notice that an equilibrium is
given by ω = ω∗, θ = L†BP

∗ and Ω = 0 († denotes the
Moore-Penrose pseudo inverse). Without loss of generality,
we translate this operating point to the origin through a
change of variables.

Further, we assume that the system is subject to small
disturbances or persistent small amplitude noise, representing
e.g. generation and load fluctuations, which we model as a
distributed disturbance input w acting on the inverters. We
can then summarize the system dynamics as follows:
Standard droop control:[

θ̇
ω̇

]
=

[
0 I

−MT−1LB −T−1
] [

θ
ω

]
+

[
0
T−1

]
w (11)

=: Astdψstd +Bstdw,

DAPI control: θ̇ω̇
Ω̇

 =

 0 I 0
−MT−1LB −T−1 T−1

0 −K−1 −K−1LC

θω
Ω


+

 0
T−1

0

w =: ADAPIψDAPI +BDAPIw. (12)

Here, we have introduced the column vectors θ, ω, Ω
containing the translated system states, with total state vec-
tors ψstd = (θ, ω)T and ψDAPI = (θ, ω,Ω)T . The system
parameters are given by M = diag{mi}, T = diag{τi},
and K = diag{ki}.

D. System performance

In this paper, we are concerned with the performance
of the systems (11) - (12) in terms of the resistive power
losses incurred in returning the system to a synchronous state
following a small transient event, or in maintaining this state
under persistent stochastic disturbances w. These losses are
associated with the power flows that arise from fluctuating
phase angle differences, and can be regarded as the control
effort required to drive the system to a steady state with
desired active power sharing.

To define the relevant performance measure, we adopt the
approach first presented in [17]. Consider the real power loss
over the edge eij , given by Ohm’s law as P loss

ij = gij |Vi −
Vj |2. If we enforce the linear power flow assumptions and
retain only the terms that are quadratic in the state variables,
standard trigonometric methods give that P loss

ij ≈ gij(θi −
θj)

2. Since θi represents deviations from an operating point,
this is equivalent to the power loss over the edge during the
transient. The total instantaneous losses over the network are
then approximately

Ploss =
∑
eij∈E

gij(θi − θj)2, (13)

which we can write as the quadratic form Ploss = θTLGθ.
Since LG is a positive semidefinite graph Laplacian, it



has a unique positive semidefinite square-root L1/2
G . We

can therefore define outputs of the systems (11) - (12)
respectively as

y =
[
L
1/2
G 0

]
ψstd =: Cstdψstd (14)

y =
[
L
1/2
G 0 0

]
ψDAPI =: CDAPIψDAPI (15)

which both give that Ploss = yT y. We now have two input-
output mappings from w to y: Hstd given by (5), (14)
and HDAPI given by (6), (15), which are linear-quadratic
approximations of the full nonlinear problems.

We have just established that the instantaneous resistive
losses incurred in the transient can be approximated by the
(squared) Euclidean norm of the output y. The losses due to
a white noise disturbance input can thus be evaluated as the
system’s H2 norm, which is

||H||22 = lim
t→∞

E{yT (t)y(t)}.

The use of the H2 norm to quantify power losses can also
be motivated under other input scenarios, see [18].

Remark 3: The systems (11) - (12) represent linearized
control dynamics in which line resistances are not present
in the first approximation, having been assumed small com-
pared to the line reactances. The outputs (14) - (15) represent
quadratic approximations of the power losses and mea-
sure the effect of non-zero line resistances, given the state
trajectories arising from the control dynamics. A rigorous
justification for these assumptions are given in [19].

III. PERFORMANCE ANALYSIS

In this section, we derive closed-form expressions for the
performance of the systems (11) - (12) with respect to the
outputs (14) - (15), under the following Assumptions:

(i) Identical inverters. All inverters have identical param-
eter settings and low-pass filters, i.e., M = diag{m},
T = diag{τ}, K = diag{k}.

(ii) Uniform resistance-to-reactance ratios. The ratio of
resistance to reactance, equivalently conductance to
susceptance, of all lines are uniform and constant, i.e.,

α :=
gij
bij
, (16)

for all eij ∈ E . This implies LG = αLB .
(iii) Communication network topology. The topology of the

communication network GC is identical to that of the
physical network G. We also assume

LC = γLB , (17)

i.e., γ =
cij
bij

, with γ ≥ 0, for all eij ∈ E = EC .
Assumption (ii), which is also applied in e.g. [9], [26],
can be motivated first by a uniformity in the physical line
properties in a microgrid (i.e., materials and dimensions).
Kron reduction of a network also increases its uniformity
in node degrees [27]. This makes the line properties more
uniform in an effective network model.

Assumption (iii) implies that the secondary control layer
is set up along the physical network lines, and is shown

in [8] to constitute a sufficient criterion for load sharing
with minimized generation costs. The assumption (17) says
that the gain on the averaging term Ωi − Ωj is set in
proportion to the line susceptance bij , and will help us to
obtain explicit analytic expressions for the H2 norms. In
Section V, we discuss possible implications of a relaxation
of that assumption.

A. Input-output analysis

The susceptance matrix LB is a weighted graph Laplacian
and as such, it has a well-known eigenvalue at zero with the
associated eigenvector 1 = (1, 1, . . . , 1)T , that is, LB1 = 0.
The system matrices Astd in (11) and ADAPI in (12) inherit
this zero eigenvalue, which corresponds to a uniform drift of
all phase angles θ. This mode is, however, unobservable from
the outputs, keeping the systems Hstd and HDAPI input-
output stable under the given assumptions.

The derivation of our main result relies on a unitary state
transformation that divides the systems Hstd and HDAPI into
N decoupled subsystems, each associated with an eigenvalue
λn of LB , for n = 1, . . . , N . The H2 norm of the subsystem
corresponding to the zero mode vanishes. Therefore, the full
system’s squared H2 norm becomes the sum of that of N−1
subsystems. The details of the derivation are outlined in the
appendix.

Theorem 3.1: Under Assumptions (i) - (iii), the squared
H2 norm of the input-output mapping Hstd is

||Hstd||22 =
α

2m
(N − 1). (18)

The corresponding norm of the mapping HDAPI is

||HDAPI||22 =
α

2m

N∑
n=2

1

1 + γτλn+k
γλn(γτλn+k)+k2mλn

. (19)

These expressions represent the expected power losses due
to a white noise disturbance input w.

Proof: See appendix.
The result in (18) is the same as was obtained for networks

of synchronous generators in [17], identifying the droop
coefficient m with the generator damping. These power
losses scale linearly with the number of nodes N , a fact
which seems to be a fundamental limitation to performance
in networks where power flows are the mechanism by which
the system regulates frequency, as proposed in [18]. When a
secondary control layer is added through the DAPI control,
the losses (19) still grow with the number of nodes, but
they are smaller in absolute terms. Consider the following
Corollary to Theorem 3.1:

Corollary 3.2: For all m, k, τ, γ > 0,

||HDAPI||22 < ||Hstd||22,

i.e., the expected power losses due to the disturbance w are
smaller with the DAPI control strategy than with the standard
droop control.
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Fig. 1: H2 norms in (18) - (19) for sample networks of size
N with line graph and complete graph topologies. Note that
||Hstd||22 in (18) is topology-independent. Here, k = γ =
m = 1, line susceptances bij are uniformly distributed on
[0.5, 1.5].

Proof: Notice that 1 + γτλn+k
γλn(γτλn+k)+k2mλn

> 1, since
all terms are positive. Hence, ||HDAPI||22 < α

2m

∑N
n=2 1 =

α
2m (N − 1) = ||Hstd||22.

We note that the norms (18) and (19) both scale linearly
with network’s resistance-to-reactance ratio α, and hence that
the ratio of the norms is independent of α. This suggests
that, to first order, the relative performance improvement of
distributed PI-control over droop control does not deteriorate
as grid resistances increase.

B. Losses’ dependence on network connectivity
It is interesting to note that while the losses under standard

droop control (18) are entirely independent of network
topology, the losses that are incurred under DAPI control
(19) depend on network topology through the eigenvalues λn
of LB . In fact, the expression is monotonically increasing
in λn, implying that losses grow with increasing network
connectivity. This in particular implies that the relative per-
formance improvement of DAPI control over droop control
will be largest for sparse network topologies, such as those
found in standard distribution networks and microgrids. The
best performance can be expected to be achieved for a line
graph topology. In Fig. 1 we compare such a topology to a
complete graph with respect to the results in Theorem 3.1.
Although losses for both topologies grow with the network
size, as discussed in the previous section, the comparison
confirms the lower losses obtained in the line graph case.

The fact that a loosely interconnected network may outper-
form a highly interconnected network by incurring smaller
power losses in maintaining synchrony is surprising in light
of typical notions of power system stability. For example, the
connectivity of a network is directly related to its ability to
synchronize [20], [21], [28] as well as its damping and rate of
convergence [22]. Our results show that, although additional
network lines may improve phase coherence and stability,
they also lead to additional power flows that incur losses.
Hence, there is a trade-off between performance objectives.

IV. CONTROL DESIGN FOR LOSS REDUCTION

In the previous section, we established that the DAPI
control strategy improves performance in terms of transient

0 1 2 3 4
4.2

4.4

4.6

4.8

5

γ

||H
||2 2

Standard droop control
DAPI, τ = 0

DAPI, τ = 1

DAPI, τ = 4

Fig. 2: H2 norms in (19) as a function of γ for a complete
graph with N = 50 nodes. Here, k = m = 1, and the filter
time constant τ ∈ {0, 1, 4}. For τ = 0, the system (12)
reduces to a first order model, and the optimal γ∗ = 0.

power losses for droop-controlled microgrids. We now turn to
the question of optimal tuning of this controller. That is, how
should the integral action k in (6) and the communication
gain parameter γ in (17) be chosen to minimize transient
losses, with respect to a given droop-controlled network.

A. Communication gain

As discussed in Section II, distributed PI control re-
quires a communication network through which inverters can
communicate their secondary control variables Ωi. While
any non-zero gains cij for the distributed averaging will
guarantee that the control objectives are reached [10], an
important design question is how to choose these gains to
optimize the transient performance considered herein. In our
case, this choice is reflected through the parameter γ in (17).

Fig. 2 displays the transient power losses associated with
the DAPI control, as given by (19), as a function of γ for
a sample network with a complete graph structure. As the
figure indicates, it turns out that there exists a distinct optimal
value for γ ≥ 0:

Lemma 4.1: For a given network with DAPI control (12)
and under Assumptions (i) - (iii) of Section III, there is a
unique communication gain ratio γ∗ which minimizes the
H2 norm (19).

Proof: The optimum is given by the positive root of the
equation d

dγ ||HDAPI||22
∣∣
γ=γ∗ = 0. If there is no such root,

γ∗ = 0. The details are omitted due to space limitations.
The value of γ∗ is strongly dependent on the network
parameters, but once these are given, it is easy to find the
optimal tuning. We note that the optimal γ∗ is often very
small, in particular if the time constant τ is small. In the
limit where τ = 0, we have γ∗ = 0. However, we cannot
choose a design where γ = 0 without causing an undesirable
drift in the system, which in practice causes instabilities (see
Section II-B). If γ, on the other hand, is set too large, the
distributed averaging term of (6) converges too fast compared
to the phase angles, and deteriorates the damping effect of
the secondary control. A simulation of this case is shown in
Fig. 3.

For complete graphs, the potential for performance im-
provement is smaller than for more sparsely connected
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Fig. 3: Simulation of the system (12) on a 20-node line network, with associated power losses (13). Here, m = k = τ = 1
and γ = 0.1 (upper panel) and γ = 10 (lower panel).

networks. An optimized controller tuning is therefore par-
ticularly relevant. For this case, we provide a closed-form
expression for γ∗:

Corollary 4.2: If the graph underlying the network G is
complete and the line susceptances bij = b for all eij ∈ E ,
then γ∗ is given by

γ∗ =
k

Nbτ

(√
Nbmτ − 1

)
(20)

if Nbmτ > 1. Otherwise, γ∗ = 0

Proof: When edge weights b are uniform, the N − 1
non-zero eigenvalues of the complete graph Laplacian LB ∈
RN×N are all given by Nb. It then suffices to evaluate
d
dγ

1
1+ γτNb+k

γNb(γτNb+k)+k2mNb

= 0 and the result follows.

B. Integral action

Now, consider the parameter k in (6), which reflects the
amount of integral action in the DAPI controller. First,
notice that in the limit where k → ∞ the integral action
vanishes and the standard droop control dynamics (5) are
retrieved, with the associated H2 norm (18). It is easy to
show based on (19) that as k then decreases, losses are
reduced monotonically and at an increasing rate. On the other
hand, in the theoretical limit of an infinitely large integral
gain (k = 0), the system can become arbitrarily well damped
and losses minimized. Fig. 4 displays the relative perfor-
mance improvement achieved through the DAPI strategy as
a function of k, for a hypothetical network based on the IEEE
57-bus benchmark system topology [29].

Our results also indicate that the importance of the dis-
tributed averaging term in (6) increases as the integral action
decreases. That is, the optimal communication gain given by
γ∗ grows as k grows. For a complete graph with uniform
edge weights, this relationship is linear, by Corollary 4.2.
For the IEEE 57-bus benchmark system topology we display
this relationship between k and γ∗ in Fig. 4.
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Fig. 4: Relative loss reduction with DAPI control for a
test network based on the IEEE 57 bus benchmark system
topology, at γ = γ∗, as function of k. Here, m = τ = 1.

V. DISCUSSION

In this paper, we have evaluated transient performance
of an inverter-based microgrid in terms of the power losses
incurred in regulating the frequency to a synchronous state
after a disturbance, or in maintaining this state under persis-
tent small disturbances. We compared two control strategies:
the standard frequency droop controller and a distributed
averaging PI (DAPI) controller and found that the latter
has the potential to significantly reduce the transient power
losses. This relative performance improvement compared to
droop control is largest for sparse network topologies, such as
those found in standard distribution networks and microgrids.

This result is in sharp contrast both to previous results
in [17], [18], [30], where losses associated with frequency
regulation were shown to be independent of network connec-
tivity, as well as to standard notions of power system stability,
which typically predict highly interconnected networks to
have better performance. The apparent reason for our results
is the self-damping terms −ωi + ω∗ added to the consen-
sus dynamics in (6c). These terms attenuate disturbances
independently of the power flows. Increasing connectivity by
introducing more lines generates more power flows, which
do not affect the self damping, but increase losses.

It is important to note, however, that the losses’ scaling
with the size of the network remains unchanged by the DAPI



strategy, and seems to be a fundamental performance limit
in systems where active power flows are the mechanism
by which the system regulates frequency. Therefore, even
though transient power losses typically represent a small
percentage of the total power flow, our results indicate that
they may become significant when power networks become
increasingly distributed and the number of generators grows.
Since DAPI control both reduces transient losses and elimi-
nates control errors, our results provide additional arguments
in favor of distributed algorithms for secondary frequency
control in microgrids.

We also derived results on optimal tuning of the DAPI
controller for loss reduction. In particular, the distributed
averaging term of (6):

∑
j∈NCi cij(Ωi−Ωj) should be tuned

so that cij = γ∗bij , where bij is the line susceptance and
γ∗ is a unique positive optimizer. Too large communication
gains cij cause a too strong reliance on the distributed av-
eraging in relation to the integral control, which deteriorates
damping and increases losses. In the present work, we made
the restrictive assumption that the graph topology for the
distributed averaging follows that of the physical network,
and found controller tunings that minimize losses. With more
degrees of freedom, we conjecture that losses can be even
further reduced by judicious control design. An important
direction for future work is therefore to find an optimal
topology configuration of the communication network.
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APPENDIX

A. Proof of Theorem 3.1

We follow the approach in [17] and transform the state
vectors of Hstd and HDAPI so that: θ = Uθ̂, ω =
Uω̂ and Ω = U Ω̂. Let U be the unitary matrix which
diagonalizes LB . That is, LB = U∗ΛBU with ΛB =
diag{λ1, λ2, . . . , λN}. Note that by assumptions (ii) - (iii),
LB , LC and L

1/2
G are simultaneously diagonalizable, so

U∗LCU = γΛB and U∗L1/2
G U =

√
αΛ

1/2
B . Given that the

H2 norm is unitarily invariant, we can also define ŷ = U∗y
and ŵ = U∗w.

Through these transformations, we obtain the systems
Ĥstd and ĤDAPI in which all blocks have been diagonalized.
They thus each represent N decoupled subsystems:

Standard droop control:[
˙̂
θn
˙̂ωn

]
=

[
0 1

−mτ λn − 1
τ

] [
θ̂n
ω̂n

]
+

[
0
1
τ

]
ŵn

=: Âstd,nψ̂std,n + B̂std,nŵn (21)

ŷn =
√
αλn

[
1 0

] [ θ̂n
ω̂n

]
=: Ĉstd,nψ̂std,n.

DAPI control:
˙̂
θn
˙̂ωn
˙̂
Ωn

 =

 0 1 0
−mτ λn − 1

τ − 1
τ

0 − 1
k − 1

kγλn

 θ̂nω̂n
Ω̂n

+

0
1
τ
0

 ŵn
=: ÂDAPI,nψ̂DAPI,n + B̂DAPI,nŵn (22)

ŷn =
√
αλn

[
1 0 0

]  θ̂nω̂n
Ω̂n

 =: Ĉstd,nψ̂std,n.

To verify that all system eigenvalues are in the left
half of the complex plane with the exception of the zero
eigenvalue associated with λ1 = 0, it suffices to consider the
characteristic equations of Âstd,n and ÂDAPI,n respectively.
The 2N − 1 nonzero eigenvalues z of Astd are given by:

z2 +
1

τ
z +

m

τ
λn = 0,

for n = 2, . . . , N . The 3N−1 nonzero eigenvalues of ADAPI

are given by:

z3 +z2
(

1

τ
+
γ

k

)
+z

(
1

kτ
(γ + 1) +

mλn
τ

+
mγλn
τk

)
= 0,

for n = 2, . . . , N . Since LB is positive semidefinite, λn > 0.
It is then easy to verify by Routh’s criterion that Re{z} < 0
if γ,m, k, τ > 0.

Now, denote the input-output mapping of each such sub-
system by Ĥstd,n and ĤDAPI,n respectively. The squared
H2 norms of Hstd and HDAPI are then the sum of the
squares of the decoupled subsystems’ norms, i.e., ||Hstd||22 =
||Ĥstd||22 =

∑N
n=1 ||Ĥstd,n||22, ||HDAPI||22 = ||ĤDAPI||22 =∑N

n=1 ||ĤDAPI,n||22
Notice that the subsystems Ĥstd,1 and ĤDAPI,1 corre-

sponding to λ1 = 0 have the output ŷ1 = 0. This veri-
fies that the zero mode is unobservable and ||Ĥstd,1||22 =
||ĤDAPI,1||22 = 0. For n 6= 0, the subsystem norms are calcu-
lated by solving the Lyapunov equation for the observability
Gramians Xn:

Â∗nXn +XnÂn = −Ĉ∗nĈn, (23)

and taking ||Ĥn||22 = tr{B̂nXnB̂n}. The subscripts for the
standard droop control and the DAPI systems have here been
left out to indicate that the equations hold for both.

Due to space limitations, we omit the expansion of (23),
but refer to [17] or [19] for a similar derivation.
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