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Abstract— The presence of renewable energy generators in a
microgrid calls for the usage of storage units so as to smooth
the variability in energy production. This work addresses the
optimal management of a battery in a microgrid including
a wind turbine facility. A Markov chain model is employed
to predict the wind power production and the optimal man-
agement of the energy storage element is formulated as a
stochastic optimal control problem. An approximate dynamic
programming approach resting on system abstraction is then
proposed for control policy design. Some numerical examples
show the effectiveness of the approach.

I. INTRODUCTION

The classical paradigm of centralized energy generation,

with large power plants serving vast geographic areas, is

currently challenged by the widespread exploitation of dis-

tributed and stochastic energy sources, such as renewables.

Different solution concepts are required to deal with this new

scenario. The great variability and limited predictability in

the energy production from renewable energy sources may

easily cause demand-production unbalance and calls for the

adoption of energy storage elements jointly with appropriate

energy management strategies to mitigate the effect of such

fluctuations.

In the present work we address the energy management of

a small microgrid (see, e.g, [1], [2], [3], [4]), that includes

a wind turbine, a load and an energy storage element (a

battery). The microgrid is connected to the distribution grid,

which accommodates for unbalances between the supplied

and consumed power.

The wind energy is primarily employed to supply the load,

and is possibly supplemented by the energy provided by the

battery and/or the main grid. Energy in excess is either sold

to the grid or stored in the battery. The energy cost is time

dependent and the microgrid energy management problem

consists in minimizing the cost of the energy exchanged

with the main grid during some reference time horizon. The

difficulty in predicting the power generated by the wind en-

ergy source typically forces the energy management operator

to adopt conservative policies, such as storing energy for

buffering purposes. The load is also subject to fluctuations,

although of lesser importance.

The following assumptions are made throughout the paper:

• The microgrid energy management operator is con-

cerned with the optimal energy management (cost min-
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imization) of the system only. Grid stability and fre-

quency control are under the control of the main grid.

• The flow balancing of the reactive power in the grid is

ensured by the voltage stability control system. In view

of this, only the active power is here considered.

• The microgrid energy management operator has full

information on the system, so that a fully centralized

control system can be designed.

The main control knob in this framework is provided by

the battery unit. An energy storage element can alleviate

congestion problems on the energy transmission and dis-

tribution lines, as occur, e.g., when a peak in wind power

production corresponds to a moderate demand. It can also

serve to smooth out the irregular energy production [5],

[6], and level the load peaks by (partially) shedding the

energy usage in the microgrid through time-shifting. This is

particularly relevant in the presence of feed-in-tariffs, which

tend to favor the consumption of auto-produced energy.

Several attempts to manage the complex interplay between

the highly variable wind power generation and the storage

element are documented in the literature, mainly based on

Model Predictive Control (MPC) [7], [8], [9], or stochastic

programming techniques [10].

Here, the main objective of the control design is to optimally

use the battery, so as to complement the wind turbine in

fulfilling the load requirement, reducing overall the energy

cost towards the main grid along a medium term horizon of

some days. More specifically, the battery should be managed

so as to appropriately modulate in time the microgrid energy

exchanges with the main grid depending on the time-varying

charged price of the energy. To this purpose, we adopt a

stochastic optimal control approach integrating a Markov

chain model for wind power prediction as suggested in [11].

The microgrid is described as a discrete time stochastic

system with both discrete and continuous state variables and

the battery charge/discharge as control input. A finite-horizon

average cost function is minimized subject to constraints

on the state and rate of charge of the battery unit. In

principle, a Dynamic Programming (DP) solution can be

derived to determine an optimal state feedback policy. In

practice, some approximation is required to solve the DP

equations. Interestingly, the only approximation that one

needs to introduce consists in the abstraction of the stochastic

hybrid system to a purely discrete one via quantization of

the control input. As the quantization becomes finer, one

recovers the optimal solution. Moreover, the approximation

is exact if one constrains the control input to take only the

chosen quantized values. This is not generally the case when



adopting approximate DP solutions, [4].

II. MICROGRID DESCRIPTION AND MODELING

The system under consideration is schematically represented

in Figure 1. It consists of an electrical load served by a

wind turbine complementing the main grid, and a battery

that can be used to accommodate for the variability of the

wind-generated power as well as the load itself.

The power balance in the system is given by:

Pg(t) = Pw(t) + Pl(t) + Pb(t), (1)

where Pg is the net power exchanged with the main grid

(positive when entering the microgrid), Pw ≤ 0 denotes the

power produced by the wind turbine, Pl ≥ 0 is the power

absorbed by the load, and Pb is the power exchanged with

the battery (positive when charging and negative otherwise).

Note that, in our framework, the only control input is Pb,

whereas both Pw and Pl can be viewed as disturbances since

we consider only uncontrollable loads. In the sequel we shall

derive a model for each component in terms of energy per

time slot (of duration T ).

Fig. 1. System configuration.

A. Wind energy prediction model

A wind turbine is used to convert the kinetic energy of an

air mass in motion to electric energy. Energy is actually

produced if the wind speed exceeds a cut-in value. To avoid

machine damage, the rotor must be stopped if the wind

speed exceeds a cut-off value. Between these two extremal

points, the produced power Pw depends on the wind speed

vw according to a characteristic curve of the type depicted in

Figure 2. In Figure 2, vn denotes the nominal turbine speed,
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Fig. 2. Characteristic power curve for a wind turbine.

over which the pitch control system operates to preserve the

maximum nominal power, while vin and voff are the cut-

in and cut-off speeds, respectively. The wind power can be

calculated as follows:

Pw =











0, v < vin or v > voff

Pm(v), vin ≤ v < vn

Pn, vn ≤ v < voff

(2)

where Pm(v) denotes the maximum power achievable for

wind speed values lower than vn, while Pn is the nominal

power. Pm(v) is a continuous function of v that can be

accurately approximated e.g. via a polynomial expansion.

Both physical and statistical models have been considered

for wind power prediction in the literature, [12], [13], [14].

We are here mainly concerned with methods of the latter

class, which aim at reproducing the statistical properties of

the phenomenon extracting all the relevant information from

available data. Classical time series analysis using autore-

gressive (AR) or autoregressive moving average (ARMA)

models is appealing due to the reduced number of parameters

and the simplicity of the parameter estimation, but the

reported results are not particularly accurate [11]. A viable

alternative is to model the phenomenon using a (stationary)

discrete time Markov Chain (MC), where wind energy is

discretized in a finite number of values s1, s2, .., sM , and

the transition probabilities pij from state si to sj , i, j =
1, . . . ,M , are defined.

To this purpose, the wind energy per time slot T is first

computed from wind speed data using (2). Then, it is

uniformly quantized in the range [Ew, Ew] with M bins,

each accounting for an interval of width ∆Ew =
Ew−E

w

M
,

Ew and Ew being the minimum and maximum energy

generated by the wind turbine in a time slot of duration T .

The system is in si if the current energy is in the range

[Ew + (i − 1)∆Ew, Ew + i∆Ew]. Finally the transition

probabilities pij can be estimated as follows:

p̂ij =
nij

∑

k nik

, i, j = 1, . . . ,M,

where nij is the number of state transitions from si to sj in

the state sequence. An example of transition probability ma-

trix obtained on actual wind data is represented in Figure 3.

The system has a strong tendency to remain in the current

state (see the high probability values on the main diagonal of

the matrix). This is particularly true for the extremal states,

corresponding to 0 (s1) or maximal energy (sM ).

B. The battery

In the energy management of the microgrid on a medium

term horizon, the battery is essentially employed as a

means to shift the load requirements over time. Electrical

batteries are characterized by the power and energy they

can supply. Other important features are efficiency, lifetime,

operation temperature, charge and discharge characteristics,

self-discharge. The State Of Charge (SOC) is a dimensionless

parameter that expresses the amount of energy stored in the

battery in percentage with respect to the maximum storable

charge: SOC(t) = 100
∫ t

t0
I(t)dt/

∫

∞

t0
I(t)dt, where I(t) is

the charging current and the battery is assumed completely
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Fig. 3. Pictorial representation of the transition probability matrix.

discharged at t0. Estimating precisely the SOC is obviously

crucial for the optimal management of the battery (see, e.g.,

[15], [16]). The energy Eb stored in the battery, together with

the charge power Pb, provide an equivalent information to

the variables SOC and I . The stored energy is defined as

Eb(t) =
∫ t

t0
Pb(t)dt, from which the following discretized

equation can be derived:

Eb(k + 1) = Eb(k) + Pb(k)T, (3)

where k is the discrete time index, Pb(k) denotes the charge

power which is kept constant over the time slot [kT, (k +
1)T ], while Eb(k) is the actual value of the energy stored

at time kT . The battery is subject to the following physical

constraints, P b ≤ Pb(k) ≤ P b, Eb ≤ Eb(k) ≤ Eb, where

P b and P b are the maximum discharge and charge values,

and Eb and Eb are bounds on the battery capacity. Typically,

the minimum battery capacity is set strictly larger than zero

(Eb > 0) for battery management purposes, since complete

battery discharges degrade its behavior [7]. Similarly, the

maximum capacity Eb is limited to 90% − 95% of the

actual maximum energy that could physically be stored in

the battery.

C. Load model

The prediction of the load request in terms of electrical

energy is crucial for performing an adequate planning. Short

term predictions are usually obtained by processing load time

histories as well as meteorological data (e.g., temperature and

humidity), and must take into consideration the class of users

(e.g., residential, commercial or industrial). Both additive

[17], [18], and multiplicative [19] models are documented

in the literature to combine the different load components

(e.g., the nominal load associated with the considered user

class, the additional load that depends on the atmospheric

conditions, a term accounting for the effect of energy price,

noise). A simpler approach is adopted here, considering

a nominal load profile with an additive noise: El(k) =
Ēl(k)+ǫ(k), where Ēl(k) represents the nominal value of the

requested energy per time slot and ǫ(k) is a zero mean white

Gaussian noise with variance σ2: ǫ(k) ∼ WGN (0, σ2).

D. Electricity pricing

The considered microgrid can purchase and sell electricity

to the grid, the decisions regarding which practice to adopt

being influenced by the price of electricity. The latter is

generally variable during the day to influence the users’

policy regarding electricity consumption with the general

purpose of evening out the consumption peaks yielding a

more uniform load profile. Furthermore, to disincentivize

large energy requests in brief periods of time, the electricity

price is increased when a given limit (Eg) is exceeded,

introducing a penalty factor g.

Denoting with pp(k) the electricity purchase price at the kth

time slot and with ps the (constant) energy sale price, the

total expense (or profit, if negative) at the kth time slot is

defined by the following function:

Ck(Eg) =











psEg, Eg < 0

pp(k)Eg, 0 ≤ Eg ≤ Eg

pp(k)[Eg + g(Eg − Eg)], Eg > Eg

(4)

where Eg is the energy exchanged with the grid in the kth

time slot. The energy sale price ps is lower than the purchase

price pp(k) to incentivize the direct usage of auto-produced

energy. As a side effect of the condition ps < pp(k), Ck(Eg)
is a convex function of the control input. This is easily seen

given that Eg(k) can be computed by integrating (1) over

the k-th time slot and it is hence affine as a function of the

charge/discharge battery rate Pg(k):

Eg(k) = Ew(k) + El(k) + Pb(k)T. (5)

III. THE OPTIMAL ENERGY MANAGEMENT PROBLEM

The microgrid energy management task has a two-fold objec-

tive: guaranteeing full load satisfaction while minimizing the

overall expense over some look-ahead time horizon [t0, tf ].
The primary objective is achieved assuming that the grid

can exactly cover any residual unbalance left by the wind

turbine and battery system, as of equation (1). As for the

second objective, the time horizon is divided into N time

slots of duration T and the control input Pg, is set so as to

minimize the following finite horizon average cost:

N−1
∑

k=0

E[Ck(Eg(k))] (6)

where the energy exchanged with the grid in the kth time slot

Eg(k) is given by (5), and the battery power exchange Pg(k),
k = 0, 1, . . . , N − 1, is subject to the following constraints

on its instantaneous value and on its integral by way of

Eb(k) (see (3)): P b ≤ Pb(k) ≤ P b, Eb ≤ Eb(k) ≤ Eb,

k = 1, . . . , N − 1, and Eb(N) = Eb,med. The last equality

constraint sets the final state of charge of the battery equal to

Eb,med which is half the maximal capacity, [5], [7], so as to

guarantee maximum flexibility to the optimization algorithm

at the beginning of the next control time horizon.

The cost function depends on the energy Eg exchanged with

the grid, which in turn depends on Ew, El, and Pb (see (5)).

The wind turbine is assumed to be controlled so as to yield

the maximum power compatible with the wind conditions,

and Ew and El are modeled as independent disturbances,

for simplicity. The expectation in (6) is taken with respect to

both these stochastic disturbances realizations. By optimally



scheduling the charging and discharging of the battery ac-

cording to the minimization of the cost (6), one determines

when to buy and sell energy to the grid.

IV. DP-BASED SOLUTION

The optimal energy management problem formulated in

Section III is a finite horizon constrained optimization prob-

lem where some variables are subject to uncertainty. An

heuristic solution approach to problems of this class has been

proposed e.g. in [20]. Other solutions are based on a linear

programming (LP) reformulation of the problem, such as

[2], where a combination of LP with MPC is employed, or

[21], which solves first the optimization problem assuming

given load and wind power profiles, and then uses a second

optimization layer on-line to tackle variations from the given

profiles. An alternative line of approach to the problem is

provided by Dynamic Programming (DP), [22], which is also

pursued here. DP is a multi-stage resolution technique for

sequential optimal control problems that can also account

for the presence of stochastic disturbances. Examples of ap-

plication of DP-based techniques to the energy optimization

of a microgrid are given in [21], [4].

In view of a DP-based solution, the considered optimization

problem is reformulated as follows [22]:

min
π∈Π

Jπ(x(0))

subject to:

x(k + 1) = fk(x(k), u(k), w(k)), k = 0, . . . , N − 1

u(k) = µk(x(k)) ∈ Uk(x(k)), k = 0, . . . , N − 1

x(k) ∈ X, k = 0, . . . , N − 1

where x(k) ∈ X is the system state, u(k) ∈ Uk(x(k)) is

the control input (notice that Uk(x(k)) may in general be

a function of the current state), and w(k) is a disturbance

term acting on the system, characterized by a probability

distribution Pk(· | x(k), u(k)) which may depend on the

current state and action.

The control policy π is a sequence of state-action maps

{µ0, ..., µN−1}, and the control input at time k is chosen

according to u(k) = µk(x(k)). A policy is admissible if

µk(x) ∈ Uk(x) for all x ∈ X . The set of admissible

policies is denoted Π. The cost function accumulates over

time additively:

Jπ(x(0)) = Ew[gN (x(N)) +
N−1
∑

k=0

gk(x(k), u(k), w(k))],

where Ew denotes the expectation with respect to the dis-

turbance sequence w(0), . . . , w(N − 1). Each time step

provides an individual contribution to the overall cost, which

depends on the current state and control action (as well

as the disturbance), except the terminal cost gN , which

only depends on the final state. The cost function Jπ(x(0))
depends on the initial state x(0) and on the chosen control

policy. In our case, we have:

x1(k + 1) = x1(k) + u(k)T

x2(k + 1) = w1(k)

where x1(k) is the battery charge, x2(k) is the energy

generated by the wind turbine, u(k) is the battery charg-

ing/discharging power, and w1(k) is a disturbance term mod-

eled by the probability distribution P(w1(k) = sj |x2(k) =
si) = pij , as resulting from the MC model of the wind

energy. Notice that the state x = (x1, x2) is hybrid, being

x1 continuous and x2 discrete. The state space is defined as

X = X1×X2, where X1 = {x1 ∈ R| : Eb ≤ x1 ≤ Eb} and

X2 = {s1, s2, .., sM}. Correspondingly, the control space is

defined as follows:

Uk(x) = {u ∈ R| :
Eb − x1

T
≤ u ≤

Eb − x1

T
}.

The cost term gk is defined as follows:

gk =

{

Ck(x2(k) + w2(k) + u(k)T ), k = 0, . . . , N − 1

α(x1(k)− Eb,med)
2, k = N

where

w2(k) = w̄2(k) + ǫ(k), (7)

w̄2 representing the nominal (daily) load profile and ǫ being a

Gaussian white noise term. As stated previously, w1 and w2

are assumed to be independent. The terminal cost implements

the requirement on the final state of charge of the battery as

a soft constraint (α > 0 should be set sufficiently large to

enforce this condition).
The DP solution to the considered optimal multi-stage op-

timization problem can be obtained by applying the value

iteration approach. This involves determining the value

functions Vk : X → R, k = 0, 1, . . . , N , as described

below, and then solving a minimization problem at each

stage k so as to compute an optimal admissible policy

π⋆ = {µ⋆
0, . . . , µ

⋆
N−1} ∈ Π. More precisely, we have to set

VN (x) = gN (x), x ∈ X , and compute the value functions

Vk : X → R, k = 0, 1, . . . , N−1 via the backward recursion:

Vk(x)= min
u∈Uk(x)

Ew(k)[gk(x, u, w(k))+Vk+1(fk(x, u, w(k))].

Then,

µ⋆
k(x) ∈ arg min

u∈Uk(x)
Vk(x), k = 0, 1, . . . , N − 1.

Notice that the expectations involved in the value functions

computations are taken with respect to a MC disturbance and

a Gaussian noise. Hence, they admit an analytic expression

for each given x and u pair of values. However, the state x =
(x1, x2) has a continuous component x1 and the control input

u is continuous as well, which hampers the exact solution to

the DP equations. One has then to resort to an approximate

solution. Interestingly, the structure of the problem simplifies

this task. Note that x1 is the battery charge and as such it

is obtained by integrating the control input u representing

the rate of charge/discharge of the battery. It then suffices

to quantize the input u to get a discrete abstraction of

the system and solve the DP equations numerically. The

obtained solution is actually exact if the input u is allowed

to take values only in the chosen quantized control space.

If the control input were to be freely selected, then, the

obtained solution would only represent an approximation of

the optimal control policy, whose accuracy improves as the

quantization gets finer.



V. A NUMERICAL CASE STUDY

We next detail some characteristics of a numerical case

study introduced to assess the performance of the proposed

microgrid energy optimization strategy.

Regarding the wind turbine description, the following pa-

rameters have been employed in (2): Pn = 300kW , vin =
2m/s, vn = 14m/s, voff = 20m/s. Furthermore, the

maximum power curve in the B region of Figure 2 has

been approximated as P̂m(v) = a0 + a1v + a2v
2, with

a0 = −119.22, a1 = −64.67 and a2 = 2.53.

A data series containing average wind velocity measurements

over a period of 4 months on a 10 minute scale was used

for deriving the transition probability matrix represented in

Figure 3. A sub-sampling has been performed to obtain a

series of hourly data, averaging the previous data over each

hour period. The resulting 4320 points have been quantized

in M = 10 bins of amplitude ∆Ew = 33 kWh. The

corresponding transition probability matrix is represented in

Figure 3.

As for the electricity purchase price, we consider the three

tariffs for residential consumers adopted by the Italian elec-

tric utility, depending on the time of the day:

F1) 0.21 e/kWh from 23 to 7

F2) 0.27 e/kWh from 7 to 8 and from 19 to 23

F3) 0.30 e/kWh from 8 to 19

Figure 4 displays the corresponding daily price profile. The

(constant) energy sale price ps was set to 0.10 e/kWh.
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Fig. 4. Daily electricity price profile.

A group of lead batteries is considered, with a maximum

physical capacity of Ec
max = 1 MWh, for which the energy

bounds are defined as E = 0.2 MWh and E = 0.9 MWh,

while the power limits are set to P b = −0.2 MW and P b =
0.2 MW.

The considered nominal load profile (see Figure 5) pertains

to a block of residential flats on a working day and is

characterized by two peak requests, in the early morning and

in the evening hours. A peak request of 0.233 MWh occurs

around 8 p.m. The fluctuation ǫ(k) around the nominal load

profile in (7) is a white Gaussian noise WGN (0, σ2) with

σ = 0.02 MWh.

A. Validation of the optimal policy

The optimal policy provides a state-action map at every hour

of the considered time horizon. A graphic representation

of the optimal policy at three different times of the day is

depicted in Figure 6. As a general rule, given the load and

energy price profiles, the optimal policy tends to charge the
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Fig. 5. Nominal daily load energy profile.
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Fig. 6. Optimal state-action maps at different hours of the day.

battery in the early hours of the day (Figure 6, left), when

the energy price and the load requirement are low, and uses

the stored energy later in the day (Figure 6, middle), when

the energy price and the load requirement are high. Wind

energy is preferably stored than sold at the beginning of

the day, whereas the reverse occurs during daylight hours (if

any excess energy remains after serving the load). Finally, in

the evening hours (Figure 6, right) the battery is recharged

to meet the final state condition. More in detail, notice in

Figure 6 (left) that for low wind power conditions the battery

is charged progressively less as the wind increases. This can

be explained by considering the inertia in the MC model of

the wind power. Indeed, since persistence wind conditions

are to be expected it becomes less urgent to charge the battery

as the level of the wind increases. Large charging powers also

occur for strong wind levels. Also, fewer energy is stored in

the battery as the battery level increases. The large variability

of the wind conditions during the day results in a large spread

of the economic results of the policy. To see this, the optimal

policy has been tested on 104 realizations of the stochastic

variable w = [w1 w2]
T over the entire time horizon. Figure 7

displays the resulting cost histograms for different initial

wind conditions. Negative costs correspond to profits. Since

the wind power MC has a certain inertia, initially low wind

power values generally determine a large requirement of

energy from the main grid during the day, rarely resulting in

actual profits, and viceversa. Sampling x2(0) uniformly over

S and generating the load profile according to (7) yields a

wide spectrum of solutions, ranging from a profit of nearly

400 e (strong wind conditions and minimal load request)

to an overall cost of nearly 950 e (no wind conditions and

maximal load request), with an average cost of 241 e.

B. Policy optimization in different conditions

To evaluate the effectiveness and utility of the microgrid

components, the optimization has been repeated in different
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conditions and the overall average cost calculated. For exam-

ple, in the absence of both the storage element and the wind

turbine, and assuming a nominal load requirement, a total

cost of 846,6 e is estimated. The wind turbine yields some

saving (an average profit of 239 e is obtained for constant

strong wind conditions, whereas a cost of 594 e results if

the wind falls completely after 10 a.m.), although the wind

power is not exploited in full (power in excess cannot be

stored and must be sold to the grid at the current price).

In the absence of wind generation, the use of the battery

alone (pre-loaded at Emed) guarantees a 7% savings over

the basic reference case (795 e of energy cost), by allowing

the user to buy energy at the most convenient time. If both

the storage element and the wind turbine are present the

battery is of limited use for constant strong wind conditions,

since it saturates early on, yielding an average profit of 254

e. Conversely, in conditions of (strong) wind only up to 10

o’clock the battery has a more decisive role guaranteeing

100 e of savings compared to the corresponding condition

without storage (average cost of 494 e).

Figure 8 shows the various power profiles (Eg/T , Pb, El/T ,

Ew/T ), as well as the storage capacity usage (Eb), over a

period of three days, with varying wind conditions.
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Fig. 8. Power profiles (top) and storage level (bottom) for a 3-day
realization with varying wind conditions (no wind on the 1st day, constant
strong wind on the 2nd day, partially windy on the 3rd day).

The maximum cost incurred by the plant is greatly influenced

by bounds on the maximum amount of energy per hour that

can be bought from the grid (Eg). Indeed, in the absence

of such bounds the worst case cost amounts to 845 e. This

figure grows to 948 e if Eg = 300 kWh, and to as much as

1362 e if such limit is further halved.
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