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Discrete-Time Approximations of Fliess Operators
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Abstract A convenient way to represent a nonlinear input-outputesysn control
theory is via a Chen-Fliess functional expansion or Fliggrator. The general goal
of this paper is to describe how to approximate Fliess opesatith iterated sums
and to provide accurate error estimates for two differeehados, one where the
series coefficients are growing at a local convergence aattthe other where they
are growing at a global convergence rate. In each case, itowrs that the error
estimates are achievable in the sense that worst case itgautse identified which
hit the error bound. The paper then focuses on the specialwhsre the operators
are rational, i.e., they have rational generating series shown in this situation that
the iterated sum approximation can be realized by a distiratestate space model
which is a rational function of the input and state affine.ddition, this model comes
from a specific discretization of the bilinear realizatidihe rational Fliess operator.
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1 Introduction

A convenient way to represent a nonlinear input-outputesysin control theory
is via a Chen-Fliess functional expansion or Fliess operdi®/14]. This series
of weighted iterated integrals of the input functions exisilbonsiderable algebraic
structure that can be used, for example, to describe systemtonnections [7,10]
and to perform system inversion/[8,9]. On the other handhédontext of numer-
ical simulation and approximation, it is less clear how saalepresentation can be
utilized efficiently. In guidance applications, for exampbiecewise constant approx-
imations of the input have been used in combination with adated version of the
series to find acceptable solutions to specific problém&B]3But no a priori error
estimates are provided for this approach. Passing throdigteete-time approxima-
tion of an equivalent state space model is also an optiomdiigvery Fliess operator
is realizable by a system of differential equatians [5]. @i to the general problem
of approximating Fliess operators was provided by Griinekdaeden in[12], where
it was shown that iterated integrals can be well approxichbteiterated sums. But
there is a considerable jump in going from approximatinghglsiiterated integral to
approximating an infinite sum of such integrals. In particuthe error estimates for
each iterated integral have to be precise enough to yielccemrate error estimate
for the whole operator. Further complicating the picturéhis fact that in practice
only finite sums can be computed. So an independent trumcatior also has to be
accounted for.

The general goal of this paper is to describe how to appraeifiléess operators
with iterated sums and to provide accurate error estimatafifferent scenarios. The
starting point is to develop a refinement of the error eséinma{12, Lemma 2] for a
single iterated integral. This is done largely using Chéesima [3]. After this, two
specific cases are considered, one in which the series depffiare growing at a
local convergence rate, and the other where they are gratiaglobal convergence
rate [11]. Each case yields different error estimates, amdral simulation examples
are given to demonstrate the results. In particular, it ashthat the error estimates
are achievable in the sense that worst case inputs can kdigtbwhich hit the error
bound. The paper then focuses on the special case wheredhstang are rational,
i.e., have rational generating seriels [1]. In particutds shown that the iterated sum
approximation of a rational Fliess operator can be reallaed discrete-time state
space model which is a rational function of the input andestdfine. This means
that the approximating iterated sums do not have to be caedperplicitly but can
be done implicitly via a difference equation. In which cabe, truncation error can
be completely avoided. It is also shown that this differesmpeation approach can be
viewed in terms of a specific discretization of a continutinee bilinear realization
of the rational Fliess operator.

The paper is organized as follows. First some preliminarie§liess operators,
Chen’s Lemma, and rational series are given to set the patatd terminology.
Next the notion of a discrete-time Fliess operator is dgyeddn Sectiofil3. Then the
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main approximation theorems are given in Secfibn 4. In thEsaeguent section, the
material concerning rational operators is presented. ©helasions of the paper are
given in the final section.

2 Preliminaries

A finite nonempty set of noncommuting symb#ls= {xo, Xy, ...,Xm} is called aral-
phabet Each element oX is called detter, and any finite sequence of letters frém
n =x,--- X, is called avord overX. Thelengthof n, |n|, is the number of letters in
n. The set of all words with lengtkis denoted by*. The set of all words including
the empty word, 0, is designated Ky. It forms a monoid under catenation. The set
nX* is comprised of all words with the prefix. Any mappinge : X* — R’ is called
aformal power seriesThe value ofc at n € X* is written as(c,n) and called the
coefficienof n in c. Typically, c is represented as the formal sere 3 ,cx-(C,n)n.
If the constant tern{c,0) = O thenc is said to beroper. Thesupportof ¢, supfc),
is the set of all words having nonzero coefficients. The ctilbe of all formal power
series oveK is denoted byR’((X)). The subset of polynomials is written R§(X).
Each set forms an associatiRealgebra under the catenation product and a commu-
tative and associativR-algebra under the shuffle product, denoted here.byrhe
latter is theR-bilinear extension of the shuffle product of two words, whiedefined
inductively by

(6m) w (X&) =X (12 (x€)) + X, (1) 1w €)
with n w0 =0wn =n forall n,& € X* andx;, xj € X.

2.1 Fliess Operators

One can formally associate with any series R’((X)) a causahvinput, ¢-output
operatorf, in the following manner. Lep > 1 andty < t; be given. For a Lebesgue
measurable function: [to,t1] — R™, define||u||, = max{||ui|, : 1 <i<m}, where
llui|lp is the usualL,-norm for a measurable real-valued functiaf, defined on
[to, ta]. LetL'[to, t1] denote the set of all measurable functions definefpti| hav-
ing a finite|| - ||, norm andBJ\(R) [to, ta] := {u € L[to, ta] : [|ullpy < R}. AssumeClto, t1]
is the subset of continuous functiondifi[to,t1]. Define inductively for each € X*
the mapkE,, : LT"[to,t1] — Clto,t1] by settingEg[u] = 1 and letting
t
Euqlul(tto) = | w(DEqlU(r.to)dr,

to

wherex; € X, n € X*, andup = 1. The input-output operator correspondingtis
theFliess operator
Fe[ul(t) = ; (¢,n) Enu](t;to). €y
nex*

If there exist real numbeis;, Mc > 0 such that

I(e,n)] < KM |n|t, v e X7, @)
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Fig. 1 The catenation of two inputsandv att = 7.

thenF constitutes a well defined mapping frd{(R)to, to + T] into B! q(S)to, to +
T] providedR := max{R T} < 1/Mc(m+ 1), and the numbens, q € [1, oo] are con-
jugate exponents, i.e./fi+1/q= 1 [11]. (Here,z| := max |z| whenz € R’.) In this
case, the operatdt; is said to bdocally convergen{LC), and the set of all series
satisfying [2) is denoted bR{((X)). Whenc satisfies the more stringent growth
condition
l(e,n)] < KM, vn e X, 3)

the seried (1) defines an operator from the extended sga¢®) intoClto, ), where
Lp'e(to) == {u: [to,0) = R™: U, 11 € Ly'to, ta], ity € (to, )},

anduy, ,) denotes the restriction efto [to,t;] [11]. In this case, the operator is said
to beglobally convergenfGC), and the set of all series satisfyilg (3) is designated

by Rec((X)).

2.2 Chen's Lemma

For a fixedu consider a series iR((X)) of the formP[u] = ¥ ,cx+ NEp[u], which is
often referred to as &hen seriesGiven two functiongu,v) € L"[ta, ty] x L[tc, td],
their durationsare taken to b, —ty > 0 andty —t; > 0, respectively, and the func-
tions are not defined outside their corresponding interddls catenatiornof u andv
att € [ta, tp] is understood to be

u(t) ‘ast<Tt
(VHu)(t) = {V((t T4t)  T<t< T+ (tg—to)

(see Figurgll). It is easily verified thlaTe is a monoid under the catenation oper-
ator. The identity element in this case is denotedland is equivalent to the set of
functions having exactly zero duration. The following lemia due to Cheri [3].

Lemma 1l (Chen’s Lemma) I{u,v) € LT[0, T1] x LT[0, T,] and (ty,tp) € [0,T1] x
[0, T,] then
PV (t2)P[u](ts) = P, U] (t2 +ta).

Soin essenck : LT'y(0) — R((X)) acts as a monoid morphism, whék&(X)) is
viewed as a monoid under the catenation product.
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2.3 Rational Formal Power Series

A brief summary of rational and recognizable formal poweaieseis useful. The
treatment here is based largely oh [1].

A seriesc € R((X@ is calledinvertibleif there exists a series™ € R((X)) such
thatcc ! = ¢~1c = 1/ In the event that is not proper, it is always possible to write

c=(c,0)(1-0),
where(c,0) is nonzero, and’ € R{(X)) is proper. It then follows that

C71: (Tl@)(l_c/)flz (Tl@)(d)*v

() = i;}(c’)‘.

In fact, c is invertible if andonly if c is not proper. Now leS be a subalgebra of
the R-algebraR ((X)) with the catenation producs is said to berationally closed
when every invertible € Shasc™! € S (or equivalently, every proper € S has
(c)* € 9. Therational closureof any subseE C R{(X)) is the smallest rationally
closed subalgebra @((X)) containingE.

where

Definition 1 A seriesc € R((X)) is rational if it belongs to the rational closure of
R(X).

Itturns out that an entirely different characterizatiomoétional series is possible
using the following concept.

Definition 2 A linear representationof a seriesc € R((X)) is any triple(u,y,A),
where

po X — RN
is @ monoid morphism, and A T € R™*! are such that

(c.n)=Au(n)y, vn e X*.
The integen is the dimension of the representation.

Definition 3 A seriesc € R((X)) is calledrecognizablef it has a linear representa-
tion.

Theorem 1 (Schitzenberger) formal power series is rational if and only if it is
recognizable.

The next concept provides an explicit way of constructinigedr representation
of a rational series. Define for any € X, the left-shift operatorx(l(-), on X* by
xl-’l(x@r)) = n with n € X* and zero otherwise. Higher order shifts are defined induc-
tively via (x&)~1(-) = E1x71(-), where& € X*. The left-shift operator is assumed
to act linearly oriR((X)).

1 The polynomial 10 is abbreviated throughout as 1.
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Definition 4 A subsetV C R((X)) is calledstablewhen&~1(c) € V for all c € V
andé e X*.

Theorem 2 A series a&c R((X)) is rational/recognizable if and only if there exists a
stable finite dimension&-vector subspace @& ((X)) containing c.

3 Discrete-Time Fliess Operators

Letu e LT[0, T] for some finiteT > 0. Following [12], select some integer> 1 and
with A :=T /L define the sequence

NA
Oi(N):/ u(t)dt, i=0,1,...,m 4)
(N-1)4

whereN € [1,L]. Observe in particular thaih(N) = A sinceug = 1. The correspond-
ing iterated sum for any;, € X andn € X* is defined inductively by

with $[0](N) := 1. The following lemma gives an alternative descriptio&pfvhich
will be useful later.

Lemma 2 Forany Ne [1,L] andn € X*
SIAN) =215 ug (N)--ug, (1),

én--é1=n
where y(k) := Gi(k) /A, Uy .., (K) == Ui; (K) -~ i, (k), up(k) := 1, and the summation
is over all partitions ofp having N subwordgy € X* (so some subwords can be
empty).
Proof: The proof is by induction on the length gf For the empty word the equality
holds trivially. Whenn = x; observe that

N
SIAI(N) =y Gi(k) :Akzlui(k) =A Z Ugy (N) -+ ug, (1).

EN-E1=X

X
™ z

Now assume the claim holds for all words up to length 0. If n € X! then

N N .
Sxin[O](N)Zglﬂi(k)%[li](k)ZK;AUi(k)A’ > Ug(K)ug (1)

Sk--&1=n

=Altt Z ug, (N) -+ Ug, (1),
En--a=xin

which proves the lemma. ]

The next definition provides the main class of discrete-tapproximators used
throughout the paper. In the most general context, the satwiissible inputs will
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be drawn from the real sequence sp#fe![No] := {G = (G(Np),lG(No +1),...) :
IG(N)| < Ra < ©, VN > No}, where|d(N)| := max—o1._m|Gi(N)|. In which case,
0]l = SUR=n, [G(N)| is always finite. To be consistent withl (4), it is assumed
throughout thatigis a constant input. Define a ball of radig@ 17+ [No] asBI 2 [No]

(R) = {0 € I™7[No] : ||0]|l» < R}. The subset of finite sequences offds, N¢] is de-
noted byBT+1[No, N¢](R).

Definition 5 For anyc € R‘((X)), the correspondindiscrete-time Fliess operator
defined onI+1[1] is

Y(N) = F[a](N) = ; (€,n)S; [G](N). (5)
nex
Before considering the approximation problem, it is neagsto introduce vari-

ous sufficient conditions for convergence of such operaidrs following lemma is
essential.

Lemma 3 If G € BR[1](R) then for anyn € X*

N—1+|n|>

|5 [0](N)] sﬁ”( il

Proof: If n = Xij - Xiy then observe forani > 1

N Ki ko
[SHAMN)[ =Y Gijky) > Gy y(kja)- S Gy (ke)
=1 k=1 1=
N Kj ko
< 3 (0] Y O] S 10 (k)
ki=1 kj,;]_: 1=
NI .-
SR’] 1
PEDIAPE
Qn(’\'lﬂm),
In|
using the fact that the final nested sum above(ﬁ'é%ﬁ”‘) terms [2]. n

Since the upper bound d6;[C](N)| in this lemma is achievable @{*1[1](R),
it is not difficult to see that when the generating sedestisfies the growth bound

(@), the seried(5) defining. can diverge. For example, (&, n) = KCM‘C'” [n|! for all
n € X*, andu’is such a maximizing input then

N1+|n|)

FIO(N) =Ke S M ppRnl
n;* ( In

=Ke zo(l\/lc(m+ DRI(N=1+])-(N+DN),
=
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which will diverge even iM¢(m-+ 1)R < 1. The next theorem shows that this problem
is averted where satisfies the stronger growth conditioh (3).

Theorem 3 Suppose € R*((X)) has coefficients which satisfyl (3). Then there exists

a real numbeR > 0 and an integer > 1 such that for eactii € BI*1[1,L](R), the
series[(b) converges absolutely and uniformly{tm.].

Proof: Fix L > 1 and select anil € [1,L]. In light of Lemmd3, if|n| > N then

Syl < RY oy

From the assumed coefficient bound it follows that

A~ . o ~ ad .Alil
IEL(G)(N)| < j;ng(j [CYIEARICOIES 2 KelMe(m 1) R gy,
1 Ke

C(N=1)'1—Mc(m+1)R

providedR < 1/M(m+1). Sinceus is constant orfi, L], an upper bound onis also
implied. ]

The final convergence theorem shows that the restrictioh@naorm ofu™can be
removed if an even more stringent growth condition is implasec.

Theorem 4 Suppose € R*((X)) has coefficients which satisfy

l(e,n)] < KcM‘”‘ﬁ, nex:

for some real numbersgM > 0. Then for everyi € IT[1], the seried(5) converges
absolutely and uniformly ofi, ).

Proof: Following the same argument as in the proof of the previoasrm, it is
clear for anyue 171[1] andN > 1 that

Fe(@(N)] < Ji}Kc(MC(er 1))ij_1! ”OH‘L(NEQ! _ (N*icl)!eMc<m+1>Hauw_

Assuming the analogous definitions for local and global eogence of the op-
eratorf, note the incongruence between the convergence conditionsntinuous-
time and discrete-time Fliess operators as summarizedite[h In each case, for a
fixedc, the sense in which. converges isveakerthan that for=. This is not entirely
surprising given that the inputif the approximation setting is viewed as the incre-
ments of the integral ol rather tharu itself. But the real source of this dichotomy
is the observation in Lemnid 3 that iterated sums db ot grow as a function of
word length like ¥ |n|!, which is the case for iterated integrals. As shown in the ne
section, however, this difference in convergence behaloes not provide any se-
rious impediment to using discrete-time Fliess operateraproximators for their
continuous-time counterparts.
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Table 1 Summary of convergence conditions farandFe.

growth rate R Fe
[(c,n)| < KCMIC'”W! LC divergent
l(e.n)| < KM GC LC

(e <KMok | atleastGC|  GC

4 Approximating Fliess Operators
4.1 Iterated Integrals

The starting point for the approximation theory is the obaton thatE, [u](T,0) =
S [0](L) for all x; € X and the assertion of Gruine and Kloeden that for ary X*
with [n]| > 2

%mMJ=Ewth+o(ﬁ?)

[12, Lemma 2]. The following theorem gives an explicit ertmyund along these
lines.

Theorem 5 Letue LT[0, T] for some finite T> 0. Select integer > 1, setA :=T /L,
and define the sequengas in [4). For any; € X* it follows that if L>> |n| > 2then

A Tl Ja/a)d!
S AL~ EalT.0)| £ 5=

Proof: Since the input sequenags’computed exactly from the integrationgfthere
is no loss of generality in the computation®{{0] (L) if one assumes a priori thatis
a piecewise constant input taking valugg) := Gi(N)/A whent € [(N —1)A,NA)
fori=0,1,...,m. In addition, it was shown in_[11, Lemma 2.1] for any¥ L4[0, T]
that .

Nixy 11 |xm
EﬂwmAxNDAnsTO Um

=0 W 6
SIREREI (©)

whereU; := f('\,iﬁlm lui(T)| d1, and|n |, denotes the number of times the letigr
appears in. This upper bound is achieved when eaghs constant ovef(N —
1)A,NA). Thus, the worst case error betweEp[u](T) and $,[0](L) occurs for
piecewise constantinputs. Applying Chen’s Lemma spedfitathe piecewise con-
stant inputu = u(L)#_1au(L — )# 24 ---#au(1) with u(N) := G(N)/A, N =
1,2,...,L, gives directly

By [U](T,0) = (Pu](LA),n) = (Pu(L)](4)---Plu(1)](4),n)
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= Y Eq[uL)](LA, (L - 1)A)--Eg [u(1))(4,0).
éL+&1=n
But for any& = x;, - - - i,
E¢[UN)](NA, (N — 1)) = uy (N)--u, (N) 5
and therefore,
1

— Alnl -
Eq[U](T,O) A |EL|!"'|El|!UEL

§L--é1=n

(L)---ug (2).

Put another way, eadR[u(N)](4) is an exponential Lie series, so from the Baker-
Campbell-Hausdorff formula the same is truePidi| (LA), andE, [u] = (P[u],n) is a
truncated version of this series. Comparing the expresdione to that fofs, [G](L)
from LemmdZ2, it follows that it >> j := |n| then

. ; 1
S [A(L) —Ep[u)(T,0)| <Al {1— m] |ug (L)~ ug, (1)]

éL--é1=n

(|, 3 [, 3 e
=g (171 -5)

= _|! (L+j—1)-(L+1L-L))

which proves the lemma. ]

4.2 Locally Convergerit;

Whencis locally convergent, it was shown in the previous sectiaif. can diverge.
Therefore, a truncated version e,

J

FI(N) = ZO > (M [AN),

]=0nexi

is considered. The following theorem states that the errapproximating=[u](T)
with F2[0](L) can be bounded by the sum of two errors, namely), which bounds
the approximation error between iterated integrals amdtiéel sums, ane(J), which
bounds the tail of the series definiRgu](T), i.e., the truncation error.
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Theorem 6 Let ce R{((X)) with growth constants KM > 0. If u € BJ'(R)[0, T]
withR:=maxR T} < 1/Mc(m+1) and L>> J then

|Felu)(T) — F[A)(L)] < &) +e(3),

where

Ke & 2J(JI+ )"(JJrl) 380+2) g+2
L= 1o T (1-92 (1-98

JH1
‘1—s

with §:= M¢(m+ 1)L||0]|» and s:= M¢(m+ 1)R.

eJ) =

Proof: Applying Theorenib and the assumption that 1 give the following:

[

Jzoza:n)En u(T,0) - zoz cms,

nexl nexi

|Felu](T) — R [a)(L)| =

< ZO > I(c.n)I[Eq[ul(T,0) — S[a](L)] +
1=0neXx!

(c,n)| |Eq[u](T,0)
F %, CMIEITO)

J j
< ;KCMJ (m+1)ij1 TL ZH(UJ/A|>

[«

KeM{(m+1)!j1 —
=T I

J .
- 3 (Melm+ L) (i -1+

[

Ke Me 1)R)!
jgﬂ( (m+1)R)

Kcl 28 JI+1)FHY 2383+2)
1

T2l |(1-93 T 1-&8  (1-97
2§J+2 SJ+1
(1@)3}“1

=&(J) +e(J),

where standard formulas have been used to give closed-forrtiee final two series.
|

Simple examples show that it is possible to havesands™> s, so the assumed
bounds < 1 in Theoreni b does not imply that the same holdssfd@ut in the event
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thats< 1 andL > J > 1, the following corollary gives a simplified upper bound on
the approximation error.

Corollary 1 Let ce R{((X)) with growth constants KM > 0. If u € BJ'(R)[0, T]
withR=maxR T} < 1/Mc(m+ 1), L||0]|e < 1/M¢(m+1), and L>> J > 1then

Ke(Mc(m+ 1)L [|0]|e)?

[Felul(T) = FE10IL)| < T it DL )R

Proof: Sinces< 1 andJ > 1 thene(J) ~ K.8/L(1— $§)3. In addition, sinces < 1
andJ > 1,eJ) ~ 0. [ |

Example 1Consider the locally convergentseres 3ok x'{ so thatkc =M; = 1.
Effectively,m= 0 sincec only involves one letter. It is easy to verify that Fc[u]
has the state space realization

z=u, 20)=0, y=1/(1-2

whenR = max{||ul|3, T} < 1. For example, direct substitution faiinto the output
equation gives

:J;]E){l ZOE wil ):goj!EXi[u](t):FC[u](t)'

If the constant inputi = 1 is applied over the intervgd, T] with T < 1 theny(T) =
1/(1—T). On the other hand, the discrete-time approximagitiNy := FJ[0](N)
withd=AandN=Lis

J .
ZJ'S' L=z 2
L+j—
,w( )
ZOAJ<LJ+ )
z%TJ—FZJ;j(j—l)TJ

= [Fe[1](T) —e(9)] + &),
which is consistent with Theorehni 6 and represents the warst in the sense that
the upper bound{6) on each iterated integral is attained.dthputsy andy® were
computed numerically over the intervi@, 0.5] for various choices o, L, andJ.
This data is summarized in Talilé 2 (see the last page), ancbthesponding plots
for cases 3 and 6 are shown in Figures 2[and 3, respectivalyhisoexample, most
of the error in the approximation is due to the tee(d)” As expected, the constant

input case yields an error that is approximately upper bediy€(J) + e(J), while
for the sinusoidal input this bound is conservative. 0

LTt (j -2 >
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241

22f

1 Lt
0

Fig. 2 Simulation comparing = F.[1] to its approximatiory®® = F1%[A] in Example[l, case 3.

114

1
0 0.05 0.1 0.15 02 0.25 03 0.35 0.4 0.45 0.5

Fig. 3 Simulation comparing(t) = F[sin(20t)] to its approximationy*® = F10[d] in Example[l, case 6.

4.3 Globally Convergertft;

Whenc is globally convergent, the divergence problem fris avoided provided
d is sufficiently small. But in most cases it is usually not pokesto compute the
infinite sum definind, so once again the truncated approximawill be utilized.

The main theorem of this section is given below. It providesipper bound on the



14 W. Steven Gray et al.

approximation error in terms of the (upper) incomplete ganfiomction,l” (a,b) :=
Jo 3 e tdt/r (a).

Theorem 7 Let ce RE.((X)) with growth constants KM > 0. If u € BJY(R)[0, T]
and L> J then A
|Felu](T) — R [A)(L)] < &) +e(d),

where
&J) = %eéézl' (J+1,9), ed)=Ke(1-T(JI+1,9)

with §:= M¢(m+ 1)L 0|, S:= Mc(m+1)R, andR:= max{R, T }.

Proof: Applying Theoreni b gives the following:

J
|Felu](T) - Faj(L)] < ZO > 1(e.n)I[Eq[ul(T,0) — S[a](L)] +
J=0neXl

[ee]

Z Y I(c.n)I[Ep[ul(T,0)]
j=J+1nexi

S M Sz
SJZE KCM(J:(m+1)J—L 2(]_72)!_’_

0

| R
KeMl(m-+ 1)) =
=T I
Ke & il
= (Mc(er :I.)LHUHW)JJr —+
2L jZD j!
Ke (Mc(m+1)R)! =
j:Zﬂ )"
= % &M (J+1,8) +Kee*(1—T(3+1,9))
=&J) +eJ),
where the identityy?_ys!/j! = €% (J+ 1,5) has been used][6, Chapter 8.35]. m

Analogous to the local case, the error bound in the previoasrem can be sim-
plified whenL > J > 1.

Corollary 2 Let ce RE((X)) with growth constants &M > 0. If u € BJ'(R)[0, T]
and L> J > 1then

|Felu)(T) — F[al(L)] < %8M°<m“)L”O”°°(Mc(m+ D)L|0lles)?.

Proof: The upper bound follows directly from Theoréin 7 using the flaat limy_, ;e
r(J,s)=1(sincelr J+1,5)=e >3] _os/j!, 3> 0). [
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Example 2Consider the globally convergent seres ¥, x'i so thatk; = M = 1.
In this casd~; has the state space realization

z=u, 20)=0, y=¢ @)

since

[ [

t Ex, [U] Euialu = = F[u(t
=3 zo ; J[U(0) = Felul(t)

J:

forallt > 0. If the constant input = 1 is applied over the intervdd, T] theny(T) =
e'. The discrete-time approximationt= LA is

) A J 3 b L+j-1
L) =FAL =5 S;alL =75 Al =4
y(L) [AJ(L) go 3 [A1(L) go k1+k2+z+k|_:j JZO ( i >

<L1+(121)1Lj1+,,,+(j1)!|_>

ZLZZJf

= [Fc[l](T) —e0)] +&Q),

which is consistent with Theorel 7 and again the worst caspasio in terms of
approximating the iterated integrals. The outpuasdy'were computed numerically
over the interval0, 2] for various choices of, L, andJ. This data is summarized in
Table[3, and the corresponding plots for cases 3 and 6 arensimoiigured™# and

[, respectively. As in the previous example, most of therdrrehe approximation

is due to the terne(J), and the constant input case yields an error that is approx-
imately upper bounded b§(J) + e(J). The error bound for the sinusoidal input is
again conservative. 0

Q

P e

A_
j!
T
2. i

5 Approximating Rational Operators

In the case wherE; is a rational operator, it is shown in this section that therag-
imation F. can be computedithoutthe need for truncation. This is due exclusively
to the fact that the generating series for such an operatsthacture which is not
available in general, namely, a linear representation asried in Definitiod 2. The
main idea is to use this representation to construct a destirae state space realiza-
tion for Fe. Later it will be shown that this technique is directly reldtto a specific
discretization of the corresponding bilinear state spaaézation off.. But the con-
nection only becomes apparent in retrospect. For simplitie focus will be on the
single-output case. As motivation, consider the followsimgple example.
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+
-+
+
+
-+

Fig. 4 Simulation comparing = F.[1] to its approximatiory®® = F1%[A] in Example2, case 3.

Fig. 5 Simulation comparing(t) = F[sin(1Qt)] to its approximatiory*® = F10[d] in Exampld2, case 6.

Example 3If ¢ = xi;x,X, € X* then the corresponding discrete-time Fliess operator
is ¥ = Sq,x,x, [0]. Define the statey= S [0] so that
21(N+1) = 21(N) + G, (N+1).

Similarly, if z = S_;_[0] then

21

22(N+1) =2(N) +0;,(N+1)21(N+1)
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=2(N) 4+ 2 (N)Gi, (N+ 1) + 0i, (N + 1)Gi, (N4 1).
Finally, settingy’= 23 = quxizxil [0] gives

23(N+1) = 23(N) 4+ 22(N)Gig (N + 1) + 21(N)Gig (N + 1) Gi, (N + 1)+
Gi,(N+1)Gi,(N+1)G;, (N+1).

O

This triangular polynomial system is clearly not input+adfj as would be the
case for the analogous continuous-time input-output sygte: EX| X, %, [u], but the
realization isstate affinen the following sense.

Definition 6 A discrete-time state space realizatiorpi@ynomial input and state
affine if its transition map has the form

Z(N+1)= Zplj G(N+1)) ZJ( )+ai(G(N+1)),

i=12...,n,wherezlN) € R", (= [lp,0s,...,0m]", pij andg; are polynomials, and
the output magh : 2 yis linear.

Polynomial input, state affine systems constitute an ingmrtlass of discrete-
time systems as first observed by Sontad in [15, Chapter \§.fatt thatu{N + 1)
appears in the transition map insteadugNf, as is more common, has no serious
consequences here. It will turn out, however, that i§ rational instead of being
merely polynomial, a more general class of state spacezatialh is required, one
where rational functions of the input are admissible.

Definition 7 A discrete-time state space realizationdonal input andstate affine
if its transition map has the form

Z(N+1)= Z rij (G(N+1))2;(N) +s(G(N+1)),
i=1,2...,n,wherezN) € R", G = [do,0s,...,0m|", rij ands are rational functions,
and the output map: 2+ yis linear.

The main theorem of the section is below.
Theorem 8 Let ce R((X)) be a rational series over % {Xo, X1, ..., Xm} With rep-
resentation(i, y,A ). Theny = F[0] has a finite dimensional rational input and state
affine realization on B1[0,N¢](R) for any Nt > O providedR > 0 is sufficiently

small.

Before giving the proof, some preliminary results are neede
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Lemma 4 For any ce R{(X)) it follows that
Fe[0](N+1) = F[a)(N) + io,— (N+1) |ij,1<c) [G](N+1).
=

Proof: Observe that

FelO](N+1) = ; (€:M)S [A(N+1)
nexs

_ ﬁon;;c,xm)ti ;(K)Sy [0 (K)

= Z) ; (exjn) [ 0j (K) Sy [0] (k) + G (N + 1)Sy [A] (N + 1)
=0nex*

j k=0

4

C“N—i—m“-N—i—l ~1(0), 0](N+1
[a](N) J;UJ( )ne;(xJ (€),n)Sy [a)( )

AN +m‘-N+1|fX_,1c 0](N+1).
[a](N) JZOUJ( ) JU[U]( )

The next theorem hints at the well known dichotomy betwemereversible and
non-time-reversible discrete-time systems. That is, ewilery continuous-time state
space realization can be run in reverse time, this is deffjmitet the case for discrete-
time systems. The system in the following theorem will ordytime-reversible under
certain conditions.

Theorem 9 Let ce R((X)) be a rational series over X {Xo,X1,...,Xm}. Theny =
Fc[d] has a finite dimensional backward-in-time bilinear reatiga for any input
sequencé defined ovefo, N¢].

Proof: Sincec is rational, it follows from Theoreinl 2 that a stalii@limension sub-
spaceV of R((X)) exists which contains. Let ¢, k= 1,2,...,n be a basis fo¥ so
thatc = y_; AkCk with A, € R. Furthermore, for any; € X it follows that

RS YICILE

wherepi(x;) € R. Define the state variableg(N) = Fg [0](Nf —N), k=1,2,...,n
for N € [0,N¢]. Then

JN) =BGl (N) = $ A la(N) = 5 AN —N)
k=1 k=1

and
Z(Nt) = Fg[0)(0) = (&, 0)So[01](0) = (&, 0) =: K-
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Now from Lemmd %

Ze(Nt —N—1) = Z(N; — N)+i)0j(N+ 1)F sy 0N +1)

z(Ns — +Z)UJN+1

M (X)) Fg [A1(N+ 1)

i (Xj)Z (Nf =N —1)

HM: HM:

z(Ns — +zouJ N+1
=Z(Nf —N)+ Zoa,-(N+ 1) [Ajz(Ns —N —1)]i,
=

whereAj € R™", j =0,1,...,mhas component#\] = i (X;j), andzis the col-
umn vector withz, as itsk-th component. Therefore, fof = Ny — 1Nt —2,...,0 it
follows that

ZIN —N) = |1 — mA-O-(N+1) Z(Nf —N—1),
f [ J; jYj f

with Z(N¢) = y andy{N) = Az(N¢ — N), or equivalently, setting(N) = z(N; — N)
givesforN=N¢ —1,N;—2,...,0

[lszJ (N+1)

with 2(0) = y andy{N) = AZ(N) as claimed. [ |

2N+1) 8)

The proof of the main result follows from introducing cordiits onu"so that
system[(B) is time-reversible. Bilinearity is lost in theopess, but the forward-in-
time system is rational input and state affine.

Proof of Theorerfil8tf & € BI[0,N¢](R), andR is sufficiently small, then the tran-
sition matrix|l — 32 4Ajdj(N + 1) of system[(B) is nonsingular. In which case, the
forward-in-time system
-1

ZN)

Z(N+1) = [I - zoAJuJ (N+1)
is well defined ovef0, N;] and clearly state affine and rationallinFurthermore, by
designy= F¢[0] = AZ over the intervalO, N]. |
Example 4Reconsider the rational Fliess operator in Exarfiple 2 Wbequzox‘{.

Clearly,x,*(c) =0, x;(c) = ¢, and(c,0) = 1=1-1= Ay. Thus,F; has then =1
dimensional rational and state affine realization

2(N+1)=(1-Qa(N+12))"12(N), 2(0)=1, 9(N)=2(N) 9)
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provided)||(|| < 1. Since

y(0)=1
9(1) = 1+ 0(1) + 6%(1) + 63(1) +
9(2) = (1+0G(2) + 0%(2) +---)(1+0(1) + 02(1) + - )
=14 (G(1) +G(2)) + (G%(1) + G(2)0(1) + 62(2))+
(G3(1) + 02(2)0(1) + G(2)02(1) + 63(2)) +

This solution can be checked independently by simply applyfe definition of.
Thatis,

so that
y(0)=1
9(1) = 14+ 0(1) + 03(1) + 03(1) +
¥(2) = 14 (G(1) + 6(2)) + (0%(1) + G(2)G(1) + G*(2)) +
(G3(1) + 02(2)0(1) + G(2)02(1) + 63(2)) +

Not surprisingly, the plots of generated from systerinl(9) are indistinguishable from
those shown in Figurés 4 apHl 5, which were generated dirigotly the definition of
FCJ. It also should be noted thig, being rational, has a bilinear realization

b=2u 20)=1, y=12

which is related to the realizatioh] (7) by the coordinatasfarmationz’= €. For
smallA > 0 observe
(N+1)A

2ANA)+ [ Atu(t)de

(N+1)A
2(NA)+/NA u(t)dt Z(N+1)4)
5(NA) + 0N+ 1) Z(N+1)A),

Z((N+1)4)

Q
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and therefore, letting(N) = Z(NA), this particular discretized system
2(N+1) = (1-Qa(N+12))"12(N)
has the form of{{(9). 0

Example 5The previous example can be generalized by noting that
-1

2IN+1) = |1 — mA-”-(N+1) 2(N)
2 l J;) i 2

(o] m

[Z > AiAir Al (N+1)0j, (N+1) - 0, (N+ 1) | Z(N)
n:xjo---XjkeX*

In which case,

9(N): /\AWN"'AnlyonN(N+1)"'0nl(1)
= (CJIN"'Ul)OnN(N+1)"'0n1(1)-

This form of the discrete-time input-output map comes frogpecific discretization
of the underlying continuous-time realization

2) = 3 Az, 20) = v, Y(t) = Azlt),
JZO j j
namely,
Z(N+1)A) = z(NA) + ZOA,-OJ- (N+1)z(N+1)A)
=
so that

-1

2IN+1) = |1 — mA-"(NJrl) 2(N).
yd [ JZO i0j yd

6 Conclusions

This paper described how to approximate Fliess operatdhsterated sums and gave
explicit achievable error bounds for the locally and gltpebnvergent cases. For the
special case of rational Fliess operators, it was showntligamethod can be real-
ized via a rational input and state affine discrete-timeesspice model. This model
avoids the truncation error and can also be derived from eifspdiscretization of a
continuous-time bilinear realization of the rational BBeoperator.
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Table 2 Summary of simulation results for Example 1.

lcase] v [T L] a Jafypa] s | s [yov0 |[foyn] e | e
1 1 | 05| 50 | 00100 10 | 0.0200| 05000 | 0.5000 | 2.0000| 2.0412| 00412 | 0.0355 | 9.7656<10
2 1 | 05| 50 | 00100 20 | 0.0200| 0.5000 | 0.5000 | 2.0000 | 2.0448| 0.0448 | 0.0400 | 9.536%107
3 1 |05/ 100 0.0050| 10 | 0.0050| 0.5000 | 0.5000 | 2.0000| 2.0192]| 0.0192 | 0.0177| 9.7656<10
4 | sin2at) | 05| 50 | 0.0100| 10 | 0.0099 | 0.5000 | 0.4975 | 1.1009 | 1.1041| 0.0032 | 0.0347 | 9.7656<10*
5 | sin20) | 0.5 | 50 | 0.0100| 20 | 0.0099 | 0.5000 | 0.4975 | 1.1009 | 1.1041| 0.0032 | 0.0390 | 9.5367%10°7
6 | sin20) | 0.5 | 100 | 0.0050 | 10 | 0.0050 | 0.5000 | 0.4994 | 1.1011| 1.1028 | 0.0017 | 0.0176 | 9.7656<10°*

Table 3 Summary of simulation results for Example 2.

lcase] w [Tl ] a [a]je] s | s [y [y0[voyn] & | e
1 1 | 2] 50| 00400] 10 | 0.0400 | 2.0000| 2.0000] 7.3891 | 7.6989| 0.3098 | 0.2956| 6.1300<10°
2 1 | 2] 50| 00400 20 | 0.0400 | 2.0000 | 2.0000| 7.3891| 7.6991| 0.3100 | 0.2956 | 45119104
3 1 | 2] 100 00200] 10 | 0.0200| 2.0000 | 2.0000]| 7.3891 | 7.5403| o0.1512 | 0.1478| 6.1390¢10°
4 | sinaa) | 2 | 50 | 0.0400 | 10 | 0.0392 | 2.0000 | 1.9601 | 1.0601| 1.0803| 00202 | 0.2728| 6.1390<10°5
5 | sina) | 2 | 50 | 0.0400 | 20 | 0.0392 | 2.0000 | 1.9601 | 1.0601 | 1.0803| 0.0202 | 0.2728 | 4.511%¢101¢
6 | sin(aa) | 2 | 100 | 0.0200 | 10 | 0.0199 | 2.0000 | 1.9899 | 1.0607 | 1.0711| 00104 | 0.1448| 6.1390<10°5
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