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Discrete-Time Approximations of Fliess Operators

W. Steven Gray · Luis A. Duffaut Espinosa ·
Kurusch Ebrahimi-Fard

Abstract A convenient way to represent a nonlinear input-output system in control
theory is via a Chen-Fliess functional expansion or Fliess operator. The general goal
of this paper is to describe how to approximate Fliess operators with iterated sums
and to provide accurate error estimates for two different scenarios, one where the
series coefficients are growing at a local convergence rate,and the other where they
are growing at a global convergence rate. In each case, it is shown that the error
estimates are achievable in the sense that worst case inputscan be identified which
hit the error bound. The paper then focuses on the special case where the operators
are rational, i.e., they have rational generating series. It is shown in this situation that
the iterated sum approximation can be realized by a discrete-time state space model
which is a rational function of the input and state affine. In addition, this model comes
from a specific discretization of the bilinear realization of the rational Fliess operator.
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1 Introduction

A convenient way to represent a nonlinear input-output system in control theory
is via a Chen-Fliess functional expansion or Fliess operator [4,5,14]. This series
of weighted iterated integrals of the input functions exhibits considerable algebraic
structure that can be used, for example, to describe system interconnections [7,10]
and to perform system inversion [8,9]. On the other hand, in the context of numer-
ical simulation and approximation, it is less clear how sucha representation can be
utilized efficiently. In guidance applications, for example, piecewise constant approx-
imations of the input have been used in combination with a truncated version of the
series to find acceptable solutions to specific problems [13,16]. But no a priori error
estimates are provided for this approach. Passing through adiscrete-time approxima-
tion of an equivalent state space model is also an option, butnot every Fliess operator
is realizable by a system of differential equations [5]. Onehint to the general problem
of approximating Fliess operators was provided by Grüne and Kloeden in [12], where
it was shown that iterated integrals can be well approximated by iterated sums. But
there is a considerable jump in going from approximating a single iterated integral to
approximating an infinite sum of such integrals. In particular, the error estimates for
each iterated integral have to be precise enough to yield an accurate error estimate
for the whole operator. Further complicating the picture isthe fact that in practice
only finite sums can be computed. So an independent truncation error also has to be
accounted for.

The general goal of this paper is to describe how to approximate Fliess operators
with iterated sums and to provide accurate error estimates for different scenarios. The
starting point is to develop a refinement of the error estimate in [12, Lemma 2] for a
single iterated integral. This is done largely using Chen’sLemma [3]. After this, two
specific cases are considered, one in which the series coefficients are growing at a
local convergence rate, and the other where they are growingat a global convergence
rate [11]. Each case yields different error estimates, and several simulation examples
are given to demonstrate the results. In particular, it is shown that the error estimates
are achievable in the sense that worst case inputs can be identified which hit the error
bound. The paper then focuses on the special case where the operators are rational,
i.e., have rational generating series [1]. In particular, it is shown that the iterated sum
approximation of a rational Fliess operator can be realizedby a discrete-time state
space model which is a rational function of the input and state affine. This means
that the approximating iterated sums do not have to be computed explicitly but can
be done implicitly via a difference equation. In which case,the truncation error can
be completely avoided. It is also shown that this differenceequation approach can be
viewed in terms of a specific discretization of a continuous-time bilinear realization
of the rational Fliess operator.

The paper is organized as follows. First some preliminarieson Fliess operators,
Chen’s Lemma, and rational series are given to set the notation and terminology.
Next the notion of a discrete-time Fliess operator is developed in Section 3. Then the
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main approximation theorems are given in Section 4. In the subsequent section, the
material concerning rational operators is presented. The conclusions of the paper are
given in the final section.

2 Preliminaries

A finite nonempty set of noncommuting symbolsX = {x0,x1, . . . ,xm} is called anal-
phabet. Each element ofX is called aletter, and any finite sequence of letters fromX,
η = xi1 · · ·xik, is called awordoverX. Thelengthof η , |η |, is the number of letters in
η . The set of all words with lengthk is denoted byXk. The set of all words including
the empty word, /0, is designated byX∗. It forms a monoid under catenation. The set
ηX∗ is comprised of all words with the prefixη . Any mappingc : X∗ → R

ℓ is called
a formal power series. The value ofc at η ∈ X∗ is written as(c,η) and called the
coefficientof η in c. Typically,c is represented as the formal sumc= ∑η∈X∗(c,η)η .
If the constant term(c, /0) = 0 thenc is said to beproper. Thesupportof c, supp(c),
is the set of all words having nonzero coefficients. The collection of all formal power
series overX is denoted byRℓ〈〈X〉〉. The subset of polynomials is written asRℓ〈X〉.
Each set forms an associativeR-algebra under the catenation product and a commu-
tative and associativeR-algebra under the shuffle product, denoted here by⊔⊔ . The
latter is theR-bilinear extension of the shuffle product of two words, which is defined
inductively by

(xiη) ⊔⊔ (x jξ ) = xi(η ⊔⊔ (x jξ ))+ x j((xiη) ⊔⊔ ξ )

with η ⊔⊔ /0= /0⊔⊔η = η for all η ,ξ ∈ X∗ andxi ,x j ∈ X.

2.1 Fliess Operators

One can formally associate with any seriesc ∈ R
ℓ〈〈X〉〉 a causalm-input, ℓ-output

operator,Fc, in the following manner. Letp≥ 1 andt0 < t1 be given. For a Lebesgue
measurable functionu : [t0, t1]→R

m, define‖u‖p = max{‖ui‖p : 1≤ i ≤ m}, where
‖ui‖p is the usualLp-norm for a measurable real-valued function,ui, defined on
[t0, t1]. Let Lm

p [t0, t1] denote the set of all measurable functions defined on[t0, t1] hav-
ing a finite‖·‖p norm andBm

p (R)[t0, t1] := {u∈Lm
p [t0, t1] : ‖u‖p≤R}. AssumeC[t0, t1]

is the subset of continuous functions inLm
1 [t0, t1]. Define inductively for eachη ∈ X∗

the mapEη : Lm
1 [t0, t1]→C[t0, t1] by settingE/0[u] = 1 and letting

Exi η̄ [u](t, t0) =
∫ t

t0
ui(τ)Eη̄ [u](τ, t0)dτ,

wherexi ∈ X, η̄ ∈ X∗, andu0 = 1. The input-output operator corresponding toc is
theFliess operator

Fc[u](t) = ∑
η∈X∗

(c,η)Eη [u](t, t0). (1)

If there exist real numbersKc,Mc > 0 such that

|(c,η)| ≤ KcM
|η|
c |η |!, ∀η ∈ X∗, (2)



4 W. Steven Gray et al.

ta

t

0
tb

u

v#
�
u

v

tc td� ta

t

0
tb

u

v

tc td�

Fig. 1 The catenation of two inputsu andv at t = τ .

thenFc constitutes a well defined mapping fromBm
p (R)[t0, t0+T] into Bℓ

q(S)[t0, t0+
T] providedR̄ := max{R,T} < 1/Mc(m+1), and the numbersp,q ∈ [1,∞] are con-
jugate exponents, i.e., 1/p+1/q= 1 [11]. (Here,|z| := maxi |zi | whenz∈R

ℓ.) In this
case, the operatorFc is said to belocally convergent(LC), and the set of all series
satisfying (2) is denoted byRℓ

LC〈〈X〉〉. Whenc satisfies the more stringent growth
condition

|(c,η)| ≤ KcM
|η|
c , ∀η ∈ X∗, (3)

the series (1) defines an operator from the extended spaceLm
p,e(t0) intoC[t0,∞), where

Lm
p,e(t0) := {u : [t0,∞)→ R

m : u[t0,t1] ∈ Lm
p [t0, t1],∀t1 ∈ (t0,∞)},

andu[t0,t1] denotes the restriction ofu to [t0, t1] [11]. In this case, the operator is said
to beglobally convergent(GC), and the set of all series satisfying (3) is designated
byRℓ

GC〈〈X〉〉.

2.2 Chen’s Lemma

For a fixedu consider a series inR〈〈X〉〉 of the formP[u] = ∑η∈X∗ ηEη [u], which is
often referred to as aChen series. Given two functions(u,v) ∈ Lm

1 [ta, tb]×Lm
1 [tc, td],

their durationsare taken to betb− ta ≥ 0 andtd − tc ≥ 0, respectively, and the func-
tions are not defined outside their corresponding intervals. Thecatenationof u andv
at τ ∈ [ta, tb] is understood to be

(v#τu)(t) =

{

u(t) : ta ≤ t ≤ τ
v((t − τ)+ tc) : τ < t ≤ τ +(td − tc)

(see Figure 1). It is easily verified thatLm
1,e(0) is a monoid under the catenation oper-

ator. The identity element in this case is denoted by0 and is equivalent to the set of
functions having exactly zero duration. The following lemma is due to Chen [3].

Lemma 1 (Chen’s Lemma) If(u,v) ∈ Lm
1 [0,T1]× Lm

1 [0,T2] and (t1, t2) ∈ [0,T1]×
[0,T2] then

P[v](t2)P[u](t1) = P[v#t1u](t2+ t1).

So in essenceP : Lm
1,e(0)→R〈〈X〉〉 acts as a monoid morphism, whereR〈〈X〉〉 is

viewed as a monoid under the catenation product.
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2.3 Rational Formal Power Series

A brief summary of rational and recognizable formal power series is useful. The
treatment here is based largely on [1].

A seriesc∈R〈〈X〉〉 is calledinvertibleif there exists a seriesc−1 ∈ R〈〈X〉〉 such
thatcc−1 = c−1c= 1.1 In the event thatc is not proper, it is always possible to write

c= (c, /0)(1− c′),

where(c, /0) is nonzero, andc′ ∈ R〈〈X〉〉 is proper. It then follows that

c−1 =
1

(c, /0)
(1− c′)−1 =

1
(c, /0)

(c′)∗,

where

(c′)∗ :=
∞

∑
i=0

(c′)i .

In fact, c is invertible if andonly if c is not proper. Now letS be a subalgebra of
theR-algebraR〈〈X〉〉 with the catenation product.S is said to berationally closed
when every invertiblec ∈ S hasc−1 ∈ S (or equivalently, every properc′ ∈ S has
(c′)∗ ∈ S). Therational closureof any subsetE ⊂ R〈〈X〉〉 is the smallest rationally
closed subalgebra ofR〈〈X〉〉 containingE.

Definition 1 A seriesc ∈ R〈〈X〉〉 is rational if it belongs to the rational closure of
R〈X〉.

It turns out that an entirely different characterization ofa rational series is possible
using the following concept.

Definition 2 A linear representationof a seriesc ∈ R〈〈X〉〉 is any triple(µ ,γ,λ ),
where

µ : X∗ →R
n×n

is a monoid morphism, andγ,λ T ∈R
n×1 are such that

(c,η) = λ µ(η)γ, ∀η ∈ X∗.

The integern is the dimension of the representation.

Definition 3 A seriesc∈ R〈〈X〉〉 is calledrecognizableif it has a linear representa-
tion.

Theorem 1 (Schützenberger)A formal power series is rational if and only if it is
recognizable.

The next concept provides an explicit way of constructing a linear representation
of a rational series. Define for anyxi ∈ X, the left-shift operator,x−1

i (·), on X∗ by
x−1

i (xiη) = η with η ∈ X∗ and zero otherwise. Higher order shifts are defined induc-
tively via (xiξ )−1(·) = ξ−1x−1

i (·), whereξ ∈ X∗. The left-shift operator is assumed
to act linearly onR〈〈X〉〉.

1 The polynomial 1/0 is abbreviated throughout as 1.
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Definition 4 A subsetV ⊂ R〈〈X〉〉 is calledstablewhenξ−1(c) ∈ V for all c ∈ V
andξ ∈ X∗.

Theorem 2 A series c∈ R〈〈X〉〉 is rational/recognizable if and only if there exists a
stable finite dimensionalR-vector subspace ofR〈〈X〉〉 containing c.

3 Discrete-Time Fliess Operators

Let u∈ Lm
1 [0,T] for some finiteT > 0. Following [12], select some integerL ≥ 1 and

with ∆ := T/L define the sequence

ûi(N) =

∫ N∆

(N−1)∆
ui(t)dt, i = 0,1, . . . ,m (4)

whereN ∈ [1,L]. Observe in particular that ˆu0(N) = ∆ sinceu0 = 1. The correspond-
ing iterated sum for anyxi ∈ X andη ∈ X∗ is defined inductively by

Sxiη [û](N) =
N

∑
k=1

ûi(k)Sη [û](k)

with S/0[û](N) := 1. The following lemma gives an alternative description ofSη which
will be useful later.

Lemma 2 For any N∈ [1,L] andη ∈ X∗

Sη [û](N) = ∆ |η| ∑
ξN···ξ1=η

uξN
(N) · · ·uξ1

(1),

where ui(k) := ûi(k)/∆ , uxi1
···xir

(k) := ui1(k) · · ·uir (k), u/0(k) := 1, and the summation
is over all partitions ofη having N subwordsξk ∈ X∗ (so some subwords can be
empty).

Proof: The proof is by induction on the length ofη . For the empty word the equality
holds trivially. Whenη = xi observe that

Sxi [û](N) =
N

∑
k=1

ûi(k) = ∆
N

∑
k=1

ui(k) = ∆ ∑
ξN···ξ1=xi

uξN
(N) · · ·uξ1

(1).

Now assume the claim holds for all words up to lengthj ≥ 0. If η ∈ X j then

Sxiη [û](N) =
N

∑
k=1

ûi(k)Sη [û](k) =
N

∑
k=1

∆ui(k)∆ j ∑
ξk···ξ1=η

uξk
(k) · · ·uξ1

(1)

= ∆ j+1 ∑
ξN···ξ1=xiη

uξN
(N) · · ·uξ1

(1),

which proves the lemma.

The next definition provides the main class of discrete-timeapproximators used
throughout the paper. In the most general context, the set ofadmissible inputs will
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be drawn from the real sequence spacelm+1
∞ [N0] := {û = (û(N0), û(N0 + 1), . . .) :

|û(N)| < R̂û < ∞, ∀N ≥ N0}, where|û(N)| := maxi=0,1,...,m|ûi(N)|. In which case,
‖û‖∞ := supN≥N0

|û(N)| is always finite. To be consistent with (4), it is assumed
throughout that ˆu0 is a constant input. Define a ball of radiusR̂ in lm+1

∞ [N0] asBm+1
∞ [N0]

(R̂) = {û∈ lm+1
∞ [N0] : ‖û‖∞ ≤ R̂}. The subset of finite sequences over[N0,Nf ] is de-

noted byBm+1
∞ [N0,Nf ](R̂).

Definition 5 For anyc∈ R
ℓ〈〈X〉〉, the correspondingdiscrete-time Fliess operator

defined onlm+1
∞ [1] is

ŷ(N) = F̂c[û](N) = ∑
η∈X∗

(c,η)Sη [û](N). (5)

Before considering the approximation problem, it is necessary to introduce vari-
ous sufficient conditions for convergence of such operators. The following lemma is
essential.

Lemma 3 If û∈ Bm+1
∞ [1](R̂) then for anyη ∈ X∗

∣

∣Sη [û](N)
∣

∣≤ R̂|η|
(

N−1+ |η |
|η |

)

.

Proof: If η = xi j · · ·xi1 then observe for anyN ≥ 1

∣

∣Sη [û](N)
∣

∣=

∣

∣

∣

∣

∣

∣

N

∑
kj=1

ûi j (k j)
kj

∑
kj−1=1

ûi j−1(k j−1) · · ·
k2

∑
k1=1

ûi1(k1)

∣

∣

∣

∣

∣

∣

≤
N

∑
kj=1

∣

∣ûi j (k j)
∣

∣

kj

∑
kj−1=1

∣

∣

∣
ûi j−1(k j−1)

∣

∣

∣
· · ·

k2

∑
k1=1

|ûi1(k1)|

≤ R̂|η|
N

∑
kj=1

kj

∑
kj−1=1

· · ·
k2

∑
k1=1

1

= R̂|η|
(

N−1+ |η |
|η |

)

,

using the fact that the final nested sum above has
(N−1+|η|

|η|
)

terms [2].

Since the upper bound on
∣

∣Sη [û](N)
∣

∣ in this lemma is achievable onBm+1
∞ [1](R̂),

it is not difficult to see that when the generating seriesc satisfies the growth bound

(2), the series (5) defininĝFc can diverge. For example, if(c,η) = KcM
|η|
c |η |! for all

η ∈ X∗, andû is such a maximizing input then

F̂ [û](N) = Kc ∑
η∈X∗

M|η|
c |η |!R̂|η|

(

N−1+ |η |
|η |

)

= Kc

∞

∑
j=0

(Mc(m+1)R̂) j((N−1+ j) · · ·(N+1)N),



8 W. Steven Gray et al.

which will diverge even ifMc(m+1)R̂< 1. The next theorem shows that this problem
is averted whenc satisfies the stronger growth condition (3).

Theorem 3 Suppose c∈R
ℓ〈〈X〉〉 has coefficients which satisfy (3). Then there exists

a real numberR̂> 0 and an integer L≥ 1 such that for eacĥu∈ Bm+1
∞ [1,L](R̂), the

series (5) converges absolutely and uniformly on[1,L].

Proof: Fix L ≥ 1 and select anyN ∈ [1,L]. In light of Lemma 3, if|η | ≫ N then

∣

∣Sη [û](N)
∣

∣. R̂|η| 1
(N−1)!

.

From the assumed coefficient bound it follows that
∣

∣F̂c(û)(N)
∣

∣ ≤
∞

∑
j=0

∑
η∈X j

|(c,η)|
∣

∣Sη [û](N)
∣

∣.
∞

∑
j=0

Kc(Mc(m+1)) j R̂j 1
(N−1)!

=
1

(N−1)!
Kc

1−Mc(m+1)R̂
,

providedR̂< 1/Mc(m+1). Since ˆu0 is constant on[1,L], an upper bound onL is also
implied.

The final convergence theorem shows that the restriction on the norm of ˆu can be
removed if an even more stringent growth condition is imposed onc.

Theorem 4 Suppose c∈ R
ℓ〈〈X〉〉 has coefficients which satisfy

|(c,η)| ≤ KcM
|η|
c

1
|η |!

, η ∈ X∗

for some real numbers Kc,Mc > 0. Then for everŷu∈ lm+1
∞ [1], the series (5) converges

absolutely and uniformly on[1,∞).

Proof: Following the same argument as in the proof of the previous theorem, it is
clear for any ˆu∈ lm+1

∞ [1] andN ≥ 1 that

∣

∣F̂c(û)(N)
∣

∣.
∞

∑
j=0

Kc(Mc(m+1)) j 1
j!
‖û‖ j

∞
1

(N−1)!
=

Kc

(N−1)!
eMc(m+1)‖û‖∞ .

Assuming the analogous definitions for local and global convergence of the op-
eratorF̂c, note the incongruence between the convergence conditionsfor continuous-
time and discrete-time Fliess operators as summarized in Table 1. In each case, for a
fixedc, the sense in whicĥFc converges isweakerthan that forFc. This is not entirely
surprising given that the input ˆu in the approximation setting is viewed as the incre-
ments of the integral ofu rather thanu itself. But the real source of this dichotomy
is the observation in Lemma 3 that iterated sums of ˆu do not grow as a function of
word length like 1/ |η |!, which is the case for iterated integrals. As shown in the next
section, however, this difference in convergence behaviordoes not provide any se-
rious impediment to using discrete-time Fliess operators as approximators for their
continuous-time counterparts.
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Table 1 Summary of convergence conditions forFc andF̂c.

growth rate Fc F̂c

|(c,η)| ≤ KcM|η|
c |η |! LC divergent

|(c,η)| ≤ KcM|η|
c GC LC

|(c,η)| ≤ KcM|η|
c

1
|η|! at least GC GC

4 Approximating Fliess Operators

4.1 Iterated Integrals

The starting point for the approximation theory is the observation thatExi [u](T,0) =
Sxi [û](L) for all xi ∈ X and the assertion of Grüne and Kloeden that for anyη ∈ X∗

with |η | ≥ 2

Sη [û](L) = Eη [u](T,0)+O

(

T |η|

L

)

[12, Lemma 2]. The following theorem gives an explicit errorbound along these
lines.

Theorem 5 Let u∈ Lm
1 [0,T] for some finite T> 0. Select integer L≥ 1, set∆ :=T/L,

and define the sequenceû as in (4). For anyη ∈ X∗ it follows that if L≫ |η | ≥ 2 then

∣

∣Sη [û](L)−Eη [u](T,0)
∣

∣.
T |η|

L
‖û/∆‖

|η|
∞

2(|η |−2)!
.

Proof: Since the input sequence ˆu is computed exactly from the integration ofu, there
is no loss of generality in the computation ofSη [û](L) if one assumes a priori thatu is
a piecewise constant input taking valuesui(t) := ûi(N)/∆ whent ∈ [(N−1)∆ ,N∆)
for i = 0,1, . . . ,m. In addition, it was shown in [11, Lemma 2.1] for anyu∈ L1[0,T]
that

∣

∣Eη [u](N∆ ,(N−1)∆)
∣

∣≤
U

|η|x0
0 · · ·U

|η|xm
m

|η |x0
! · · · |η |xm

!
, (6)

whereUi :=
∫ N∆
(N−1)∆ |ui(τ)| dτ, and|η |xk

denotes the number of times the letterxk

appears inη . This upper bound is achieved when eachui is constant over[(N −
1)∆ ,N∆). Thus, the worst case error betweenEη [u](T) and Sη [û](L) occurs for
piecewise constant inputs. Applying Chen’s Lemma specifically to the piecewise con-
stant inputu = u(L)#(L−1)∆ u(L− 1)#(L−2)∆ · · ·#∆ u(1) with u(N) := û(N)/∆ , N =
1,2, . . . ,L, gives directly

Eη [u](T,0) = (P[u](L∆),η) = (P[u(L)](∆) · · ·P[u(1)](∆),η)
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= ∑
ξL···ξ1=η

EξL
[u(L)](L∆ ,(L−1)∆) · · ·Eξ1

[u(1)](∆ ,0).

But for anyξ = xi1 · · ·xir

Eξ [u(N)](N∆ ,(N−1)∆) = ui1(N) · · ·uir (N)
∆ r

r!
,

and therefore,

Eη [u](T,0) = ∆ |η| ∑
ξL···ξ1=η

1
|ξL|! · · · |ξ1|!

uξL
(L) · · ·uξ1

(1).

Put another way, eachP[u(N)](∆) is an exponential Lie series, so from the Baker-
Campbell-Hausdorff formula the same is true ofP[u](L∆), andEη [u] = (P[u],η) is a
truncated version of this series. Comparing the expressionabove to that forSη [û](L)
from Lemma 2, it follows that ifL ≫ j := |η | then

∣

∣Sη [û](L)−Eη [u](T,0)
∣

∣≤ ∆ j ∑
ξL ···ξ1=η

[

1−
1

|ξL|! · · · |ξ1|!

]

∣

∣uξL
(L) · · ·uξ1

(1)
∣

∣

≤ ‖û‖ j
∞

([

∑
ξL···ξ1=η

1

]

−

[

∑
ξL ···ξ1=η

1
|ξL|! · · · |ξ1|!

])

= ‖û‖ j
∞

((

L+ j −1
j

)

−
L j

j!

)

=
‖û‖ j

∞

j!

(

(L+ j −1) · · ·(L+1)L−L j)

=
‖û‖ j

∞

j!

(

j( j −1)
2

L j−1+ · · ·+( j −1)!L

)

≈
T j

L
‖û/∆‖ j

∞

2( j −2)!
,

which proves the lemma.

4.2 Locally ConvergentFc

Whenc is locally convergent, it was shown in the previous section thatF̂c can diverge.
Therefore, a truncated version ofF̂c,

F̂J
c [û](N) :=

J

∑
j=0

∑
η∈X j

(c,η)Sη [û](N),

is considered. The following theorem states that the error in approximatingFc[u](T)
with F̂J

c [û](L) can be bounded by the sum of two errors, namely, ˆe(J), which bounds
the approximation error between iterated integrals and iterated sums, ande(J), which
bounds the tail of the series definingFc[u](T), i.e., the truncation error.
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Theorem 6 Let c∈ R
ℓ
LC〈〈X〉〉 with growth constants Kc,Mc > 0. If u ∈ Bm

1 (R)[0,T]
with R̄ := max{R,T}< 1/Mc(m+1) and L≫ J then

∣

∣Fc[u](T)− F̂J
c [û](L)

∣

∣. ê(J)+e(J),

where

ê(J) =
Kc

L

[

ŝ2

(1− ŝ)3 −
2J(J+1)ŝ(J+1)

1− ŝ
−

Jŝ(J+2)

(1− ŝ)2 −
ŝJ+2

(1− ŝ)3

]

e(J) = Kc
sJ+1

1− s

with ŝ := Mc(m+1)L‖û‖∞ and s:= Mc(m+1)R̄.

Proof: Applying Theorem 5 and the assumption thats< 1 give the following:

∣

∣Fc[u](T)− F̂J
c [û](L)

∣

∣ =

∣

∣

∣

∣

∣

∞

∑
j=0

∑
η∈X j

(c,η)Eη [u](T,0)−
J

∑
j=0

∑
η∈X j

(c,η)Sη [û](L)

∣

∣

∣

∣

∣

≤
J

∑
j=0

∑
η∈X j

|(c,η)|
∣

∣Eη [u](T,0)−Sη[û](L)
∣

∣+

∞

∑
j=J+1

∑
η∈X j

|(c,η)|
∣

∣Eη [u](T,0)
∣

∣

.
J

∑
j=2

KcM
j
c(m+1) j j!

T j

L
‖û/∆‖ j

∞

2( j −2)!
+

∞

∑
j=J+1

KcM
j
c(m+1) j j!

R̄j

j!

=
Kc

2L

J

∑
j=0

(Mc(m+1)L‖û‖∞)
j j( j −1)+

Kc

∞

∑
j=J+1

(Mc(m+1)R̄) j

=
Kc

2L

[

2ŝ2

(1− ŝ)3 −
J(J+1)ŝ(J+1)

1− ŝ
−

2Jŝ(J+2)

(1− ŝ)2 −

2ŝJ+2

(1− ŝ)3

]

+Kc
sJ+1

1− s

= ê(J)+e(J),

where standard formulas have been used to give closed-formsfor the final two series.

Simple examples show that it is possible to have ˆs≤ s andŝ≥ s, so the assumed
bounds< 1 in Theorem 6 does not imply that the same holds for ˆs. But in the event



12 W. Steven Gray et al.

that ŝ< 1 andL ≫ J ≫ 1, the following corollary gives a simplified upper bound on
the approximation error.

Corollary 1 Let c∈ R
ℓ
LC〈〈X〉〉 with growth constants Kc,Mc > 0. If u∈ Bm

1 (R)[0,T]
with R̄= max{R,T}< 1/Mc(m+1), L‖û‖∞ < 1/Mc(m+1), and L≫ J ≫ 1 then

∣

∣Fc[u](T)− F̂J
c [û](L)

∣

∣ .
Kc(Mc(m+1)L‖û‖∞)

2

L(1−Mc(m+1)L‖û‖∞)3 .

Proof: Sinceŝ< 1 andJ ≫ 1 thenê(J) ≈ Kcŝ2/L(1− ŝ)3. In addition, sinces< 1
andJ ≫ 1, e(J)≈ 0.

Example 1Consider the locally convergent seriesc=∑k≥0k! xk
1 so thatKc =Mc = 1.

Effectively,m= 0 sincec only involves one letter. It is easy to verify thaty= Fc[u]
has the state space realization

ż= u, z(0) = 0, y= 1/(1− z)

whenR̄= max{‖u‖1,T} < 1. For example, direct substitution forz into the output
equation gives

y(t) =
∞

∑
j=0

E j
x1
[u](t) =

∞

∑
j=0

E
x⊔⊔ j
1

[u](t) =
∞

∑
j=0

j! E
xj
1
[u](t) = Fc[u](t).

If the constant inputu= 1 is applied over the interval[0,T] with T < 1 theny(T) =
1/(1−T). On the other hand, the discrete-time approximation ˆyJ(N) := F̂J

c [û](N)
with û= ∆ andN = L is

F̂J
c [∆ ](L) =

J

∑
j=0

j! S
xj
1
[∆ ](L) =

J

∑
j=0

j!∆ j ∑
k1+k2+···+kL= j

1

=
J

∑
j=0

j!∆ j
(

L+ j −1
j

)

=
J

∑
j=0

∆ j
(

L j +
j( j −1)

2
L j−1+ · · ·+( j −1)!L

)

≈
J

∑
j=0

T j +
1
2L

J

∑
j=0

j( j −1)T j

= [Fc[1](T)−e(J)]+ ê(J),

which is consistent with Theorem 6 and represents the worst case in the sense that
the upper bound (6) on each iterated integral is attained. The outputsy andŷJ were
computed numerically over the interval[0,0.5] for various choices ofu, L, andJ.
This data is summarized in Table 2 (see the last page), and thecorresponding plots
for cases 3 and 6 are shown in Figures 2 and 3, respectively. For this example, most
of the error in the approximation is due to the term ˆe(J). As expected, the constant
input case yields an error that is approximately upper bounded byê(J)+e(J), while
for the sinusoidal input this bound is conservative.
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Fig. 2 Simulation comparingy= Fc[1] to its approximation ˆy10 = F̂10
c [∆ ] in Example 1, case 3.
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Fig. 3 Simulation comparingy(t) = Fc[sin(20t)] to its approximation ˆy10 = F̂10
c [û] in Example 1, case 6.

4.3 Globally ConvergentFc

Whenc is globally convergent, the divergence problem forF̂c is avoided provided
û is sufficiently small. But in most cases it is usually not possible to compute the
infinite sum definingF̂c, so once again the truncated approximatorF̂J

c will be utilized.
The main theorem of this section is given below. It provides an upper bound on the
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approximation error in terms of the (upper) incomplete gamma function,Γ (a,b) :=
∫ ∞

b ta−1e−t dt/Γ (a).

Theorem 7 Let c∈ R
ℓ
GC〈〈X〉〉 with growth constants Kc,Mc > 0. If u ∈ Bm

1 (R)[0,T]
and L≫ J then

∣

∣Fc[u](T)− F̂J
c [û](L)

∣

∣. ê(J)+e(J),

where

ê(J) =
Kc

2L
eŝŝ2Γ (J+1, ŝ), e(J) = Kces(1−Γ (J+1,s))

with ŝ := Mc(m+1)L‖û‖∞, s := Mc(m+1)R̄, andR̄ := max{R,T}.

Proof: Applying Theorem 5 gives the following:

∣

∣Fc[u](T)− F̂J
c [û](L)

∣

∣ ≤
J

∑
j=0

∑
η∈X j

|(c,η)|
∣

∣Eη [u](T,0)−Sη [û](L)
∣

∣+

∞

∑
j=J+1

∑
η∈X j

|(c,η)|
∣

∣Eη [u](T,0)
∣

∣

.
J

∑
j=2

KcM
j
c(m+1) j T j

L
‖û/∆‖

j
∞

2( j −2)!
+

∞

∑
j=J+1

KcM
j
c(m+1) j R̄j

j!

=
Kc

2L

J

∑
j=0

(Mc(m+1)L‖û‖∞)
j+2 1

j!
+

Kc

∞

∑
j=J+1

(Mc(m+1)R̄) j 1
j!

=
Kc

2L
eŝŝ2Γ (J+1, ŝ)+Kce

s(1−Γ (J+1,s))

= ê(J)+e(J),

where the identity∑J
j=0sj/ j! = esΓ (J+1,s) has been used [6, Chapter 8.35].

Analogous to the local case, the error bound in the previous theorem can be sim-
plified whenL ≫ J ≫ 1.

Corollary 2 Let c∈ R
ℓ
GC〈〈X〉〉 with growth constants Kc,Mc > 0. If u∈ Bm

1 (R)[0,T]
and L≫ J ≫ 1 then

∣

∣Fc[u](T)− F̂J
c [û](L)

∣

∣.
Kc

2L
eMc(m+1)L‖û‖∞(Mc(m+1)L‖û‖∞)

2.

Proof: The upper bound follows directly from Theorem 7 using the fact that limJ→+∞
Γ (J,s) = 1 (sinceΓ (J+1,s) = e−s∑J

j=0sj/ j!, J ≥ 0).
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Example 2Consider the globally convergent seriesc= ∑k≥0xk
1 so thatKc = Mc = 1.

In this caseFc has the state space realization

ż= u, z(0) = 0, y= ez (7)

since

y(t) =
∞

∑
j=0

(Ex1[u](t))
j 1
j!
=

∞

∑
j=0

E
x⊔⊔ j
1

1
j!
[u](t) =

∞

∑
j=0

E
xj
1
[u](t) = Fc[u](t)

for all t ≥ 0. If the constant inputu= 1 is applied over the interval[0,T] theny(T) =
eT . The discrete-time approximation atT = L∆ is

ŷJ(L) = F̂J
c [∆ ](L) =

J

∑
j=0

S
xj
1
[∆ ](L) =

J

∑
j=0

∆ j ∑
k1+k2+···+kL= j

1=
J

∑
j=0

∆ j
(

L+ j −1
j

)

=
J

∑
j=0

∆ j

j!

(

L j +
( j −1) j

2
L j−1+ · · ·+( j −1)!L

)

≈
J

∑
j=0

T j

j!
+

1
2L

J

∑
j=2

T j

( j −2)!

= [Fc[1](T)−e(J)]+ ê(J),

which is consistent with Theorem 7 and again the worst case scenario in terms of
approximating the iterated integrals. The outputsy andŷ were computed numerically
over the interval[0,2] for various choices ofu, L, andJ. This data is summarized in
Table 3, and the corresponding plots for cases 3 and 6 are shown in Figures 4 and
5, respectively. As in the previous example, most of the error in the approximation
is due to the term ˆe(J), and the constant input case yields an error that is approx-
imately upper bounded by ˆe(J)+ e(J). The error bound for the sinusoidal input is
again conservative.

5 Approximating Rational Operators

In the case whereFc is a rational operator, it is shown in this section that the approx-
imation F̂c can be computedwithout the need for truncation. This is due exclusively
to the fact that the generating series for such an operator has structure which is not
available in general, namely, a linear representation as described in Definition 2. The
main idea is to use this representation to construct a discrete-time state space realiza-
tion for F̂c. Later it will be shown that this technique is directly related to a specific
discretization of the corresponding bilinear state space realization ofFc. But the con-
nection only becomes apparent in retrospect. For simplicity, the focus will be on the
single-output case. As motivation, consider the followingsimple example.
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Fig. 4 Simulation comparingy= Fc[1] to its approximation ˆy10 = F̂10
c [∆ ] in Example 2, case 3.
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Fig. 5 Simulation comparingy(t) = Fc[sin(10t)] to its approximation ˆy10 = F̂10
c [û] in Example 2, case 6.

Example 3If c= xi3xi2xi1 ∈ X∗ then the corresponding discrete-time Fliess operator
is ŷ= Sxi3

xi2
xi1
[û]. Define the state ˆz1 = Sxi1

[û] so that

ẑ1(N+1) = ẑ1(N)+ ûi1(N+1).

Similarly, if ẑ2 = Sxi2i1
[û] then

ẑ2(N+1) = ẑ2(N)+ ûi2(N+1)ẑ1(N+1)
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= ẑ2(N)+ ẑ1(N)ûi2(N+1)+ ûi2(N+1)ûi1(N+1).

Finally, setting ˆy= ẑ3 = Sxi3
xi2

xi1
[û] gives

ẑ3(N+1) = ẑ3(N)+ ẑ2(N)ûi3(N+1)+ ẑ1(N)ûi3(N+1)ûi2(N+1)+

ûi3(N+1)ûi2(N+1)ûi1(N+1).

This triangular polynomial system is clearly not input-affine, as would be the
case for the analogous continuous-time input-output system y= Exi3

xi2
xi1
[u], but the

realization isstate affinein the following sense.

Definition 6 A discrete-time state space realization ispolynomial input andstate
affine if its transition map has the form

ẑi(N+1) =
n

∑
j=1

pi j (û(N+1))ẑj(N)+qi(û(N+1)),

i = 1,2, . . . ,n, whereẑ(N) ∈R
n, û= [û0, û1, . . . , ûm]

T , pi j andqi are polynomials, and
the output maph : ẑ 7→ ŷ is linear.

Polynomial input, state affine systems constitute an important class of discrete-
time systems as first observed by Sontag in [15, Chapter V]. The fact that ˆu(N+1)
appears in the transition map instead of ˆu(N), as is more common, has no serious
consequences here. It will turn out, however, that ifc is rational instead of being
merely polynomial, a more general class of state space realization is required, one
where rational functions of the input are admissible.

Definition 7 A discrete-time state space realization isrational input andstate affine
if its transition map has the form

ẑi(N+1) =
n

∑
j=1

r i j (û(N+1))ẑj(N)+ si(û(N+1)),

i = 1,2, . . . ,n, whereẑ(N) ∈R
n, û= [û0, û1, . . . , ûm]

T , r i j andsi are rational functions,
and the output maph : ẑ 7→ ŷ is linear.

The main theorem of the section is below.

Theorem 8 Let c∈ R〈〈X〉〉 be a rational series over X= {x0,x1, . . . ,xm} with rep-
resentation(µ ,γ,λ ). Thenŷ= F̂c[û] has a finite dimensional rational input and state
affine realization on Bm+1

∞ [0,Nf ](R̂) for any Nf > 0 providedR̂> 0 is sufficiently
small.

Before giving the proof, some preliminary results are needed.
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Lemma 4 For any c∈ R〈〈X〉〉 it follows that

F̂c[û](N+1) = F̂c[û](N)+
m

∑
j=0

û j(N+1) F̂x−1
j (c)[û](N+1).

Proof: Observe that

F̂c[û](N+1) = ∑
η∈X∗

(c,η)Sη [û](N+1)

=
m

∑
j=0

∑
η∈X∗

(c,x jη)
N+1

∑
k=0

û j(k)Sη [û](k)

=
m

∑
j=0

∑
η∈X∗

(c,x jη)

[

N

∑
k=0

û j(k)Sη [û](k)+ û j(N+1)Sη [û](N+1)

]

= F̂c[û](N)+
m

∑
j=0

û j(N+1) ∑
η∈X∗

(x−1
j (c),η)Sη [û](N+1)

= F̂c[û](N)+
m

∑
j=0

û j(N+1)F̂x−1
j (c)[û](N+1).

The next theorem hints at the well known dichotomy between time-reversible and
non-time-reversible discrete-time systems. That is, while every continuous-time state
space realization can be run in reverse time, this is definitely not the case for discrete-
time systems. The system in the following theorem will only be time-reversible under
certain conditions.

Theorem 9 Let c∈ R〈〈X〉〉 be a rational series over X= {x0,x1, . . . ,xm}. Thenŷ=
F̂c[û] has a finite dimensional backward-in-time bilinear realization for any input
sequencêu defined over[0,Nf ].

Proof: Sincec is rational, it follows from Theorem 2 that a stablen dimension sub-
spaceV of R〈〈X〉〉 exists which containsc. Let c̄k, k = 1,2, . . . ,n be a basis forV so
thatc= ∑n

k=1 λkc̄k with λk ∈ R. Furthermore, for anyx j ∈ X it follows that

x−1
j (c̄k) =

n

∑
l=1

µkl(x j) c̄l ,

whereµkl(x j) ∈ R. Define the state variables ¯zk(N) = F̂c̄k[û](Nf −N), k = 1,2, . . . ,n
for N ∈ [0,Nf ]. Then

ŷ(N) = F̂c[û](N) =
n

∑
k=1

λkF̂c̄k[û](N) =
n

∑
k=1

λkz̄k(Nf −N)

and
z̄k(Nf ) = F̂c̄k[û](0) = (c̄k, /0)S/0[û](0) = (c̄k, /0) =: γk.
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Now from Lemma 4

z̄k(Nf −N−1) = z̄k(Nf −N)+
m

∑
j=0

û j(N+1) F̂x−1
j (c̄k)

[û](N+1)

= z̄k(Nf −N)+
m

∑
j=0

û j(N+1)
n

∑
l=1

µkl(x j)F̂c̄l [û](N+1)

= z̄k(Nf −N)+
m

∑
j=0

û j(N+1)
n

∑
l=1

µkl(x j)z̄l (Nf −N−1)

= z̄k(Nf −N)+
m

∑
j=0

û j(N+1) [A j z̄(Nf −N−1)]k,

whereA j ∈ R
n×n, j = 0,1, . . . ,m has components[A j ]kl = µkl(x j), andz̄ is the col-

umn vector with ¯zk as itsk-th component. Therefore, forN = Nf −1,Nf −2, . . . ,0 it
follows that

z̄(Nf −N) =

[

I −
m

∑
j=0

A j û j(N+1)

]

z̄(Nf −N−1),

with z̄(Nf ) = γ and ŷ(N) = λ z̄(Nf −N), or equivalently, setting ˆz(N) = z̄(Nf −N)
gives forN = Nf −1,Nf −2, . . . ,0

ẑ(N) =

[

I −
m

∑
j=0

A j û j(N+1)

]

ẑ(N+1) (8)

with ẑ(0) = γ andŷ(N) = λ ẑ(N) as claimed.

The proof of the main result follows from introducing conditions onû so that
system (8) is time-reversible. Bilinearity is lost in the process, but the forward-in-
time system is rational input and state affine.

Proof of Theorem 8:If û∈ Bm+1
∞ [0,Nf ](R̂), andR̂ is sufficiently small, then the tran-

sition matrix I −∑m
j=0A j û j(N+ 1) of system (8) is nonsingular. In which case, the

forward-in-time system

ẑ(N+1) =

[

I −
m

∑
j=0

A j û j(N+1)

]−1

ẑ(N)

is well defined over[0,Nf ] and clearly state affine and rational in ˆu. Furthermore, by
design ˆy= Fc[û] = λ ẑover the interval[0,Nf ].

Example 4Reconsider the rational Fliess operator in Example 2 wherec= ∑k≥0xk
1.

Clearly,x−1
0 (c) = 0, x−1

1 (c) = c, and(c, /0) = 1= 1 ·1= λ γ. Thus,F̂c has then= 1
dimensional rational and state affine realization

ẑ(N+1) = (1− û(N+1))−1ẑ(N), ẑ(0) = 1, ŷ(N) = ẑ(N) (9)



20 W. Steven Gray et al.

provided‖û‖∞ < 1. Since

ẑ(N+1) =
∞

∑
i=0

ûi(N+1)ẑ(N),

if follows for N ≥ 0 that

ŷ(N) =
N

∏
k=1

(1− û(k))−1ẑ(0) =
∞

∑
i1,...,iN=0

ûiN(N)ûiN−1(N−1) · · · ûi1(1),

where the product is defined to be unity whenN = 0. For example,

ŷ(0) = 1

ŷ(1) = 1+ û(1)+ û2(1)+ û3(1)+ · · ·

ŷ(2) = (1+ û(2)+ û2(2)+ · · ·)(1+ û(1)+ û2(1)+ · · ·)

= 1+(û(1)+ û(2))+ (û2(1)+ û(2)û(1)+ û2(2))+

(û3(1)+ û2(2)û(1)+ û(2)û2(1)+ û3(2))+ · · ·

...

This solution can be checked independently by simply applying the definition ofF̂c.
That is,

ŷ(N) = S/0[û](N)+Sx1[û](N)+Sx2
1
[û](N)+ · · · ,

so that

ŷ(0) = 1

ŷ(1) = 1+ û(1)+ û2(1)+ û3(1)+ · · ·

ŷ(2) = 1+(û(1)+ û(2))+ (û2(1)+ û(2)û(1)+ û2(2))+

(û3(1)+ û2(2)û(1)+ û(2)û2(1)+ û3(2))+ · · ·

...

Not surprisingly, the plots of ˆy generated from system (9) are indistinguishable from
those shown in Figures 4 and 5, which were generated directlyfrom the definition of
F̂J

c . It also should be noted thatFc, being rational, has a bilinear realization

˙̃z= z̃u, z̃(0) = 1, y= z̃,

which is related to the realization (7) by the coordinate transformation ˜z= ez. For
small∆ > 0 observe

z̃((N+1)∆) = z̃(N∆)+

∫ (N+1)∆

N∆
z̃(t)u(t)dt

≈ z̃(N∆)+

∫ (N+1)∆

N∆
u(t)dt z̃((N+1)∆)

= z̃(N∆)+ û(N+1) z̃((N+1)∆),
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and therefore, letting ˆz(N) = z̃(N∆), this particular discretized system

ẑ(N+1) = (1− û(N+1))−1ẑ(N)

has the form of (9).

Example 5The previous example can be generalized by noting that

ẑ(N+1) =

[

I −
m

∑
j=0

A j û j(N+1)

]−1

ẑ(N)

=

[

∞

∑
k=0

m

∑
j0,..., jk=0

A j0A j1 · · ·A jkû j0(N+1)û j1(N+1) · · · û jk(N+1)

]

ẑ(N)

=: ∑
η=xj0

···xjk
∈X∗

Aη ûη(N+1)ẑ(N).

In which case,

ŷ(N) = ∑
ηN,...,η1∈X∗

λAηN · · ·Aη1γ ûηN(N+1) · · · ûη1(1)

= ∑
ηN,...,η1∈X∗

(c,ηN · · ·η1)ûηN(N+1) · · · ûη1(1).

This form of the discrete-time input-output map comes from aspecific discretization
of the underlying continuous-time realization

ż(t) =
m

∑
j=0

A jz(t)u j , z(0) = γ, y(t) = λz(t),

namely,

z((N+1)∆)≈ z(N∆)+
m

∑
j=0

A j û j(N+1)z((N+1)∆)

so that

ẑ(N+1) =

[

I −
m

∑
j=0

A j û j(N+1)

]−1

ẑ(N).

6 Conclusions

This paper described how to approximate Fliess operators with iterated sums and gave
explicit achievable error bounds for the locally and globally convergent cases. For the
special case of rational Fliess operators, it was shown thatthe method can be real-
ized via a rational input and state affine discrete-time state space model. This model
avoids the truncation error and can also be derived from a specific discretization of a
continuous-time bilinear realization of the rational Fliess operator.
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Table 2 Summary of simulation results for Example 1.

case u T L ∆ J ‖û‖∞ s ŝ y(T) ŷJ(L) ŷJ(L)−y(T) ê(J) e(J)

1 1 0.5 50 0.0100 10 0.0100 0.5000 0.5000 2.0000 2.0412 0.0412 0.0355 9.7656×10−4

2 1 0.5 50 0.0100 20 0.0100 0.5000 0.5000 2.0000 2.0448 0.0448 0.0400 9.5367×10−7

3 1 0.5 100 0.0050 10 0.0050 0.5000 0.5000 2.0000 2.0192 0.0192 0.0177 9.7656×10−4

4 sin(20t) 0.5 50 0.0100 10 0.0099 0.5000 0.4975 1.1009 1.1041 0.0032 0.0347 9.7656×10−4

5 sin(20t) 0.5 50 0.0100 20 0.0099 0.5000 0.4975 1.1009 1.1041 0.0032 0.0390 9.5367×10−7

6 sin(20t) 0.5 100 0.0050 10 0.0050 0.5000 0.4994 1.1011 1.1028 0.0017 0.0176 9.7656×10−4

Table 3 Summary of simulation results for Example 2.

case u T L ∆ J ‖û‖∞ s ŝ y(T) ŷJ(L) ŷJ(L)−y(T) ê(J) e(J)

1 1 2 50 0.0400 10 0.0400 2.0000 2.0000 7.3891 7.6989 0.3098 0.2956 6.1390×10−5

2 1 2 50 0.0400 20 0.0400 2.0000 2.0000 7.3891 7.6991 0.3100 0.2956 4.5119×10−14

3 1 2 100 0.0200 10 0.0200 2.0000 2.0000 7.3891 7.5403 0.1512 0.1478 6.1390×10−5

4 sin(10t) 2 50 0.0400 10 0.0392 2.0000 1.9601 1.0601 1.0803 0.0202 0.2728 6.1390×10−5

5 sin(10t) 2 50 0.0400 20 0.0392 2.0000 1.9601 1.0601 1.0803 0.0202 0.2728 4.5119×10−14

6 sin(10t) 2 100 0.0200 10 0.0199 2.0000 1.9899 1.0607 1.0711 0.0104 0.1448 6.1390×10−5
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