Loading [a11y]/accessibility-menu.js
Distributed event-sampled approximate optimal control of interconnected affine nonlinear continuous-time systems | IEEE Conference Publication | IEEE Xplore

Distributed event-sampled approximate optimal control of interconnected affine nonlinear continuous-time systems


Abstract:

In this paper, a novel distributed near optimal control of an interconnected affine nonlinear continuous-time system with known dynamics is presented by using event-sampl...Show More

Abstract:

In this paper, a novel distributed near optimal control of an interconnected affine nonlinear continuous-time system with known dynamics is presented by using event-sampled state vector via novel hybrid learning scheme. Neural networks (NN) using event sampled state vector are designed at each subsystem to learn the optimal value function in an online and forward-in-time manner to generate the solution to the infinite horizon Hamilton-Jacobi-Bellman (HJB) equation. The presence of strong interconnections and limited communication among subsystems complicates the controller design. In order to improve the learning rate without explicitly increasing the events during the learning phase, iterative weight updates combined with time driven learning at the event sampled instants is introduced. By using Lyapunov technique, it is shown that the state vector and the NN weights at each subsystem are locally uniformly ultimately bounded (UUB). Simulation results are provided to illustrate the effectiveness of the proposed analytical design.
Date of Conference: 06-08 July 2016
Date Added to IEEE Xplore: 01 August 2016
ISBN Information:
Electronic ISSN: 2378-5861
Conference Location: Boston, MA, USA

Contact IEEE to Subscribe

References

References is not available for this document.