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Abstract— In this paper a model is developed to solve the
on/off scheduling of (non-linear) dynamic electric loads based
on predictions of the power delivery of a (standalone) solar
power source. Knowledge of variations in the solar power
output is used to optimally select the timing and the combi-
nations of a set of given electric loads, where each load has a
desired dynamic power profile. The optimization exploits the
desired power profiles of the electric loads in terms of dynamic
power ramp up/down and minimum time on/off of each
load to track a finite number of load switching combinations
over a moving finite prediction horizon. Subsequently, a user-
specified optimization function with possible power constraints
is evaluated over the finite number of combinations to allow
for real-time computation of the optimal timing and switching
of loads. A case study for scheduling electric on/off loads with
switching dynamics and solar forecast data at UC San Diego is
carried out.

I. INTRODUCTION

Power variability and intermittency are the main obstacles
facing renewable energy integration into smart grids to create
a sustainable electric power system. This problem is more
critical in standalone or island mode applications where a
high penetration of renewable power sources may create
power variability that is large enough to frequently influence
electric power quality and increase operating costs. Storage
systems in different formats of electrochemical, mechanical
or thermal storage have been applied to solve this problem
[1], but this will add cost and complexity to the standalone
system. An alternative is load scheduling, where loads on
the (standalone) system are scheduled to absorb solar power
variability, thereby reducing the need for solar curtailment
and associated energy losses.

Load scheduling has been applied to many load types, such
as thermal loads, residential appliances, power industry, and
EV charging [2]. In [3], a case study was implemented to
overcome the wind power variability through EV charging.
An example for residential appliance scheduling was shown
in [4]. Also HVAC systems have been included in the
scheduling problem [5]. From the supply side for a hybrid
system was discussed in [6]. In [7] game theory and customer
effects on the grid and EVs were investigated.

Most approaches to optimal load or demand scheduling
use a form of Model Predictive Control (MPC) [8], [9] to
compute optimal control or scheduling signals for the load.
Typically, in MPC a constrained (quadratic) optimization
problem is solved iteratively over a finite horizon N and
a moving time horizon t from t = k till t = k + N − 1to
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compute an optimal control signal in real time, denoted here
by w(k) at time t = k. Countless examples of innovative
MPC based approaches for load scheduling, grid tied storage
systems or maintaining voltage stability can be found in
e.g., [3], [10], [11] or [12]. Although MPC approaches are
extremely powerful in computing optimal control signals
over a moving but finite time horizon, typically the control
signal w(k) is allowed to attain any real value during the
optimization, see e.g., [13], [14], [15]. Unfortunately, a real-
valued control signal w(k) would require electrical loads to
operate at fractional load demands. Although fractional loads
can be accommodated by electrical energy storage systems
or partial or pulse width modulation of loads [11], (non-
linear) dynamic power profiles of the electric loads during
power ramp up/down and minimum time on/off of each load
is harder to implement in a standard MPC framework.

In this paper we define load scheduling as the optimal
on/off combinations and timing of a set of distinct electric
loads via the computation of an optimal binary control signal
w(k) ∈ {0, 1}. The work is partially motivated by previous
work [16] and [17] in which the design sizing problem of
a standalone photovoltaic reverse osmosis (RO) system is
considered, where the RO loads are to be scheduled on/off.
The work in [16] computes the optimal size and number of
units for a selected location but does not consider optimal
scheduling of dynamic loads. Here we aim for finding
the optimal load schedule and on/off switching events for
possibly non-linear dynamics of electric loads. For the MPC
solution over a moving prediction horizon, solar forecasting
data is used as an input to our model.

The solar forecasting model developed by UC San Diego
utilizes a ground based sky imager to detect clouds and
forecast their movement up to 15 min into the future.
Using the forecasts of projected cloud shadows on the
surface coupled with a clear sky irradiance model yields the
Global Horizontal Irradiance (GHI) forecast for a selected
location[1], [7]. With the finite prediction horizon in MPC
it is crucial to have reliable and accurate forecasts of power
delivery and it is assumed to be provided by the work in [18],
[19] as a starting point for the dynamic load scheduling in
this paper.

For binary load switching, MPC optimization problems
often become untractable due to a combinatorial problem
where the number of binary combinations grows exponen-
tially with the length of the prediction horizon N and the
number n of loads. In this paper it is shown that constraints
on the allowable load switching help to alleviate the combi-
natorial problem, making an MPC optimization with binary
switching computationally feasible.This paper is organized
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as follows. In Section II the assumptions for the dynamic
loads such as dynamic power ramp up/down and minimum
on/off time are specified. For brevity, linear dynamics for
the load models are used, but the rate of change of the load
models are chosen to differ for the ”on” or ”off” switching
of the load. In section III the approach for dynamic load
scheduling is presented. Based on power tracking over a
moving prediction horizon of N points, the admissible set
of binary switching combinations is derived. It is shown that
the number of binary combinations growths much less than
for a typical exponential growth with the length of the pre-
diction horizon and the number of loads due to the imposed
constraints on the allowable load switching. In Section IV an
illustrative example of a standalone solar system connected to
3 distinctive loads is presented. Solar forecasting data of both
a clear and a cloudy day obtained from the Solar Resource
Assessment & Forecasting Laboratory (SRAF) at UC San
Diego will be used to illustrate how loads are scheduled to
turn on/off dynamically to track solar power predictions. The
paper ends by concluding remarks in Section V.

II. SWITCHED DYNAMIC LOAD MODELING

A. Assumptions on Loads

We consider a fixed number of n loads where the power
demand pi(t), i = 1, 2, . . . , n as a function of time t for each
load i is modeled by a known switched dynamic system. For
the dynamic scheduling of the loads, we will assume that
loads can be switched “on” or “off” by a binary switching
signal wi(t) = {0, 1}. To allow for a realistic dynamic load
switching, the dynamic system used to model the power
demand pi(t) may be distinct for each load i = 1, 2, . . . , n.
Furthermore, the distinct dynamic system for a particular
load i may also switch its dynamics, depending on the
transition of the binary switching signal wi(t) = {0, 1}.
The switched dynamic system assumption allows different
dynamics for the time dependent power demands pi(t) when
the binary switching signal wi(t) = {0, 1} transitions from
0 to 1 or from 1 to 0.

Each load i is also assumed to have a known minimum
duration T off

i > 0 for the “off” time of the load when wi(t) =
0 and a minimum duration T on

i > 0 for the “on” time of
the load when wi(t) = 1. The duration times T off

i and T on
i

avoid unrealistic on/off chattering of the switch signal wi(t)
during load scheduling and limit the number of transitions
in wi(t) over a finite optimization period T > 0. Finally, it
is assumed that all loads are switched “off”, e.g., wi(t) = 0
for i = 1, 2, . . . , n, outside the finite time interval t ∈ [0, T ].

B. Admissible Switching Signals

With the minimum on/off duration times T on
i , T

off
i and the

finite time period T for load switching, on/off switching of
a load at time t = τi can now be formalized. Special care
should be given to turning on loads at t = τi close to the final
time τi = T . For the formalization, the load switching signal
wi(t) will be a combination of an “on” signal won

i (t) ∈ 0, 1
and an “off” signal won

i (t) ∈ 0, 1 that both take into account

the constraints of minimum on/off duration and the finite
time T for load switching.

As a result, the admissible on/off transition signal wi(t) =
{won

i (t), woff
i (t)} of a load at time t = τi can now be

formalized by the switching signal

won
i (t) =

{
0 for t < τi and τi ≥ T off

i,last + T off
i

1 for t ≥ τi and τi ≤ T − T on
i

(1)
where T off

i,last denotes the most recent (last) time stamp at
which the load i was switched “off”, and

woff
i (t) =

{
1 for t < τi and τi ≥ T on

i,last + T on
i

0 for t ≥ τi
(2)

where T on
i,last denotes the most recent (last) time stamp at

which the load i was switched “on”.

C. Dynamic Load Models

It is clear that the switching time(s) τi for the signal
wi(t) = {0, 1} depends on the dynamics of the power
demand pi(t), which again may be different for each load.
For the computational results presented in this paper, linear
continuous-time dynamic models will be used to model the
switching dynamics of the power demand of the loads. It
should be pointed out that the computational analysis is not
limited to the use of linear dynamic models, as long as the
dynamic models allow the numerical computation of power
demand pi(t) as a function of the switching signal wi(t).

To allow different dynamics for the time dependent power
demands pi(t) when the binary switching signal wi(t) =
{0, 1} transitions from 0 to 1 (”on”) or from 1 to 0 (”off”),
different dynamics is sued for the load models. This allows
power demands pi(t) to be modeled at different rates when
switching loads. Using the Laplace transform L{·} and
referring back to the admissible on/off transition signals
won
i (t) and woff

i (t) respectively in (1) and (2), the switched
linear order continuous-time dynamic models for the loads
are assumed to be of the form

pi(s) = Goni (s)xiwi(s) and wi(s) = L{won
i (t)} (3)

and

pi(s) = Goffi (s)xiwi(s) and wi(s) = L{woff
i (t)} (4)

where Goni (s) and Goffi (s) represent the dynamics of the
power flow for turning the load i ”on” or ”off”. Both models
satisfy Goni (0) = 1 and Goffi (0) = 1 and a steady-state
load demand parameter xi is used to model the size of the
load, but different dynamics is used to model respectively
the on/off dynamic switching of the load. As an example,
if the Goni (s) is given by a first order system with only a
time constant αon

i , the power demand pi(t) progresses from
the “off” state poff

i (not necessarily zero) to the “on” state
over time for the “on” switching of the load. Based on the
solution

pi(t) = poff
i · e−t/α

on
i + xi(1− e−t/α

on
i )



it is clear that
lim
t→∞

pi(t) = xi

Clearly, more complex models Goni (s) and Goffi (s) may be
used, but in this paper we will restrict ourselves to first and
second order models for brevity without loss of generality
of the approach presented here.

D. Discretization of Models

A tractable numerical implementation of the computation
of the optimal switching times τi of the binary switching
signals wi(t) for each load can be achieved by discretizing
the power demand pi(t) and the optimal switching signal
wi(t) at a time step

tk = k∆t

where ∆t is the sampling time k = 0, 1, . . . is an integer
index. To simplify the integer math, we assume that both the
switching times

τi = Ni∆t (5)

and the minimum on/off duration times

T on
i = N on

i ∆t

T off
i = N off

i ∆t
(6)

are all multiple of the sampling time ∆t.
With the imposed time discretization, the switching signal

wi(tk) is held constant between subsequent time samples
and tk and tk+1. In that case, the computation of pi(tk) can
be achieved using a Zero Order Hold (ZOH) discrete-time
equivalent of the continuous-time models given earlier in (3)
and (4). Using the z-transform Z{·}, the ZOH discrete-time
equivalent dynamic models are given by

pi(z) = Goni (z)xiwi(z) and wi(z) = Z{won
i (tk)}

for “on” switching of the load and

pi(z) = Goffi (z)xiwi(z) and wi(z) = Z{woff
i (tk)}

for “off” switching of the load, where Goni (z) and
Goffi (z) are the ZOH discrete-time equivalents of Goni (s)
and Goffi (s) using a sampling time ∆t. In this way the
(discrete-time) load dynamics is fully determined by Goni (z),
Goffi (z), static load demand xi and the chosen sampling time
∆t.

III. DYNAMIC LOAD SCHEDULING

A. Power Tracking

To formulate the optimization that allows for a computa-
tion of optimal discrete-time switching signals wi(tk), i =
1, 2, . . . , n for the power demand pi(tk) of n loads, we
consider the problem of tracking a desired discrete-time
power profile P (tk). Defining a power tracking error

e(tk) = P (tk)−
n∑
i=1

pi(tk) (7)

it is clear that computing optimal wi(tk) involves a criterion
function and possible constraints on e(tk) and wi(tk) over

a (finite) time horizon k = 1, 2, . . . , N . Choosing N to be
large, e.g., N = T/∆t where T is the complete optimization
period T > 0, suffers from two major drawbacks.

The first drawback is that the number of possible combina-
tions of the discretized binary switching signal wi(tk) grows
exponentially with the number of loads n and the number
of time steps N . At each time step tk with n loads, one
would typically have 2n binary (on/off) load combinations.
Starting with an initial combination at time step k = 1,
evaluating possible switching along the remaining N−1 time
steps leads to (2n)N−1 binary combinations, which quickly
becomes intractable. The second drawback of choosing N
to be large requires the discrete-time power profile P (tk)
to be available over many time samples to plan for optimal
load scheduling. In case of solar power tracking, this would
require predictions of the solar power output P (tk) many
time steps ahead, which may quickly becomes unreliable.
If indeed P (tk) is produced by solar power forecasting, it
makes sense to limit the prediction horizon N used in load
scheduling.

Fortunately, the effects of the first drawback is signifi-
cantly reduced by the requirement of minimum on/off dura-
tion times T on

i , T
off
i for the loads. As mentioned before, this

avoids unrealistic on/off chattering of the switch signal wi(t)
during load scheduling and significantly reduces the number
of binary load combinations.

B. Admissible Discrete-Time Switching Combinations

With the imposed time discretization given in (5), (6) and
a finite prediction horizon N , the admissible on/off transition
signal in (1) reduces to

won
i (tk) =

{
0 for k < Ni and Ni ≥ N off

i,last +N off
i

1 for k ≥ Ni and Ni ≤ N −N on
i

(8)
where N off

i,last now denotes the most recent discrete-time
index at which the load i was switched “off”. Similarly, (2)
reduces to

woff
i (tk) =

{
1 for k < Ni and Ni ≥ N on

i,last +N on
i

0 for k ≥ Ni
(9)

where N on
i,last denotes the most recent discrete-time index at

which the load i was switched “on”. Collectively, the signals
won
i (tk) in (8) and woff

i (tk) (9) define a setW of binary values
for admissible discrete-time switching signals defined by

W =


wi(tk) ∈ {won

i (tk), woff
i (tk)},

i = 1, 2, . . . , n, k = 1, 2, . . . , N

where
won
i (tk) ∈ {0, 1} given in (8)

woff
i (tk) ∈ {0, 1} given in (9)

 (10)

It is worthwhile to note that the number of binary elements
in the set W is always (much) smaller than (2n)N−1 due to
required minimum number of on/off samples N on

i , N
off
i for

the loads. This can be seen by using the simplified binomial



formula

2n =

n∑
m=0

(
n
m

)
= 1 +

n∑
m=1

(
n
m

)
which explains that a combination of n loads leads to the
sum of n binary combinations where in each combination
m = 1, 2, . . . , n loads can be turned “on” in(

n
m

)
=

n!

m!(n−m)!

different ways. Without a required minimum number of N on
i

for the loads, the same number of 2n remains available
leading to 2n · 2n combinations at the next time step tk+1.

With N on
i > 1, for each combination where m loads have

turned “on”, only 2n−m combinations of “off” loads are
available. This leads to

n∑
m=0

2n−m
(

n
m

)
at the next time step tk+1 for N on

i > 1. With

2n · 2n =

n∑
m=0

(
n
m

)
·

n∑
m=0

(
n
m

)
>

n∑
m=0

2n−m
(

n
m

)
it is clear that the number of combinations is much smaller.
Continuing this argument for the subsequent time steps until
k = N emphasizes that number of binary elements in
the set W is always (much) smaller than (2n)N−1. This
results shows that constraints on the allowable load switching
helps to alleviate the combinatorial problem, making an
optimization with binary switching computationally feasible.

As an example, consider the case of n = 3 loads over
a power prediction horizon of N = 6 samples. Without
any requirements on minimum number of on/off samples
one would have to evaluate (2n)N−1 = 32768 possible
combinations of the load switching signal wi(tk) ∈ {0, 1}.
Starting at a binary combination with all loads off, e.g.,
w(0) = [0 0 0] and requiring the loads to stay on/off for
at least 4 samples reduces the number of possible binary
combinations to only 2197. Clearly, the number of combi-
nations reduces even further for a non-zero initial condition,
e.g., w(0) = [1 0 0], where the first load that is switched
on is required to stay on over the prediction horizon. An
example of this situation is also analyzed in the following
figures that show the admissible switching combinations in
the graph representation of a tree.

In figure 1, a tree plot was created to illustrate the idea,
the initial condition here was [0 0] of n = 2 loads over a
power prediction horizon of N = 6. The total number of
combination will be 36. Where the minimum time on or off
is 7 and 5 for unit 1 and 2. Another illustrative example is
when the initial conditions are [1 1] for a prediction horizon
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Fig. 1. Example of tree plot for of n = 2 loads over a power prediction
horizon of N = 6 with initial conditions W (τ1) = [0 0].
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Fig. 2. Example of tree plot for of n = 2 loads over a power prediction
horizon N = 11 with initial conditions W (τ1) = [1 1].

N = 11 which is large (or long) enough to allow units to be
off again, as shown in figure 2.

It is clear from the above illustrations that the number of
admissible binary combinations of n loads over a predic-
tion horizon of N points is in general much smaller than
(2n)N−1, making the optimization with binary switching
computationally feasible for real-time operation. Only a
much smaller number of function evaluations have to be
performed to find the optimal switching combination over
a given prediction horizon, as explained in the following.

C. Moving Horizon Formulation

Following the power tracking error defined in (7), the
dynamic load scheduling optimization problem is formulated
as a moving horizon optimization problem

wi(tm)
i = 1, 2, . . . , n

m = k, . . . , k +N − 1
= arg min

wi(tm)∈W
f(e(tl)), (11)

where l = k, . . . , k + N − 1 over the admissible set W ,
defined in (10). Similar to the ideas in Model Predictive
Control (MPC), the N × n dimensional optimal switching
signal wi(tm) is computed over the optimization horizon
m = k, . . . , k + N − 1. Once the optimal switching signal
wi(tm) ∈ W , m = k, . . . , k+N−1 is computed, the optimal
signal is applied to the loads only at the time instant tk, after
which the time index k is incremented and the optimization
in (11) is recomputed over the moving time horizon.

It should be noted that the admissible setW defined in (10)
has a finite and countable number of binary combinations
for the switching signal. Therefore, the N × n dimensional



optimal switching signal wi(tm) ∈ W is computed simply
by a finite number of evaluation of the criterion function
f(e(tl)) > 0. Hence, no (gradient) based or Quadratic
Programming (QP) optimization is used to compute the final
value for wi(tk) and this makes the problem computationally
feasible, even for varying switching load dynamics. Possible
candidate functions f(e(tl)) > 0 may include a least squares
criterion

f(e(tl)) =

k+N∑
l=k+1

tr{e(tl)e(tl)T }

or may include a barrier function

f(e(tl)) =

k+N∑
l=k+1

tr{e(tl)e(tl)T } − ln(c(e(tl))) (12)

to enforce a positive constraint e(tl) > 0. Such constraints
may be required to guarantee that the load demand is always
smaller than the (predicted) power profile P (tk) in (7). In this
paper we use the quadratic function with a barrier function
in (12) to perform tracking of predicted solar power curves
by dynamic load switching.

IV. APPLICATION EXAMPLE

A. Solar Power Data and Load Dynamics

This model can be implemented for any kind of standalone
system (wind, solar or even hybrid) with a forecast tool
providing input data. Here we present a standalone solar
system connected with 3 units of normalized sizes rated as
xi = 60%, 25.86% and 12.22% of full power at a clear day
solar curve. San Diego solar power data was collected from
UC San Diego campus for illustration purposes of the load
scheduling, as solar data variability is prevalent during the
summer months when the marine layer clouds are present
and leading to multiple days with overcast conditions in the
morning and partly cloudy conditions in the afternoon. As

Load1

Load2

Loadn

…

Forecasted

solar power

+
+

+

- Error

Fig. 3. Scheduling approach for on/off time of loads based on forecasted
solar power.

illustrated in Figure 3, the proposed scheduling approach
targets to schedule the on/off time of the three different loads
to minimize the difference between predicted power delivery
and power consumed by the loads, so as to decrease the
energy losses as much as possible. For scheduling purposes
we also consider every load to have different dynamics

for on/off switching modeled by either a first or second
system Goni (s) and Goffi (s) given earlier in (3) and (4).
The dynamics of Goni (s) and Goffi (s) is adjusted based on
the actual size xi of the load, assuming that larger loads will
take longer to settle to their steady state power demand. A
summary of the chosen load dynamic models is summarized
in Table I.

TABLE I
LOADS CHARACTERISTICS (SECONDS)

Loads
char. Size (%) Polesoni Polesoffi T on

i T off
i

x1 60.00 -0.01 -0.04 180 180
x2 25.86 - 0.05 ± j0.06 -0.05 240 240
x3 12.22 -0.02 -0.02 300 300

B. Dynamic Load Switching Results

To illustrate the variability in the dynamics of the loads
summarized in Table I, first the dynamic response of the
three loads in our case study are depicted in Figure 4. it can
be seen that Load 1 and Load 3 exhibit first order dynamic
behavior, but the dynamics of Load 3 for turning on is much
slower due to the larger size of Load 3. Load 2 shows the
typical behavior of a second order dynamics model with an
initial larger peak load demand for turning on Load 2, e.g.,
HVAC systems and refrigerators. All loads exhibit similar
dynamics when turning off.

Time (seconds)
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1
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power of load 1

power of load 2

power of load 3

Fig. 4. Dynamics of the three loads used in this case study, where the
dynamics of the loads were summarized in Table I.

Using the dynamics of the loads given in Table I and
illustrated in Figure 4 with a sampling time ∆t = 1 second
and a switching time τi = Ni∆t = 60 seconds, the three
loads are scheduled optimally using a moving horizon of
N = 360 seconds with 6 possible switching times. The
results in Figure 5 shows a smooth scheduling for n = 3
loads over a clear day. Here the solar power is normalized
to 1 as well as the loads. It can be seen that the scheduling
optimization emphasizes that turning on the largest unit is
the main priority. Optimal power tracking is obtained by
following the remaining power which is filled in by the
remaining smaller loads. During the peak of the day power
was too small to keep the smallest unit on.

Scheduling for solar power with cloud-induced variability
is a more interesting problem. The results in Figure 6 show
how (dynamic) scheduling can be done in case of high solar
power variability. In this example the smallest load dynamic
is assumed to have very short time constants to allow



fast power up/down to facilitate fast power tracking. The
larger the load the slower the dynamics. Similar scheduling
results can also be obtained in the case where loads are
assumed to have much larger time constants. Moreover, the
computational time was around 45 seconds performed in a
3.4 GHz Intel Core i7 processor with 32 GB of RAM for a
full solar day data sampled at 15 minutes.
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Fig. 5. Example of load scheduling for n = 3 loads with size dimensions
xi = 60%, 25.86% and 12.22% of full solar power, subjected to solar
forecast of a stand alone PV on a clear day with power output normalized
to peak at 1.
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Fig. 6. Example of load scheduling for n = 3 loads with size dimensions
xi = 60%, 25.86% and 12.22% of full solar power, subjected to a solar
prediction from a highly variable (partly cloudy) day.

V. CONCLUSIONS

Dynamic load scheduling is defined in this paper as the
optimal on/off combinations and timing of a set of distinct
electric loads via the computation of an optimal binary
control signal. For binary load switching, the optimization
problem for dynamic load scheduling becomes untractable
due to a combinatorial problem where the number of binary
combinations grows exponentially with the length of the
prediction horizon and the number of loads. In this paper
it is shown that constraints on the allowable load switching
(typically in the form of a minimum on/off time) help to
alleviate the combinatorial problem, making an optimization
with binary switching computationally feasible. The model
presented in this paper is able to solve the on/off scheduling
of electric loads with non-linear dynamics based on predic-
tions of the power delivery of a stand-alone solar power

source. A prediction of solar power output is used as an
input to optimally select the timing and the combinations
of a set of given electric loads. The approach is illustrated
on electric loads with different dynamics for on versus off
switching and solar forecasting data obtained from the Solar
Resource Assessment & Forecasting Laboratory at UC San
Diego.

REFERENCES

[1] W. F. Pickard and D. Abbott, “Addressing the intermittency challenge:
Massive energy storage in a sustainable future,” Proceedings of the
IEEE, vol. 100, no. 2, p. 317, 2012.

[2] Y. Lin, P. Barooah, and J. L. Mathieu, “Ancillary services to the grid
from commercial buildings through demand scheduling and control,”
in American Control Conference (ACC), 2015. IEEE, 2015, pp. 3007–
3012.

[3] T. Ferhatbegovic, G. Zucker, and P. Palensky, “Model based predic-
tive control for a solar-thermal system,” Proceedings of 10th IEEE
AFRICON, pp. 1–6, 2011.

[4] Q. Huang, Q.-s. Jia, and X. Guan, “Ev charging load scheduling with
high wind power penetration: A robust shortest path approach,” in
American Control Conference (ACC). IEEE, 2015, pp. 2765–2770.

[5] C. Wang, Y. Zhou, B. Jiao, Y. Wang, W. Liu, and D. Wang, “Robust
optimization for load scheduling of a smart home with photovoltaic
system,” Energy Conversion and Management, vol. 102, pp. 247–257,
2015.

[6] Z. Ma and D. Chen, “Optimal power dispatch and control of a wind
turbine and battery hybrid system,” in American Control Conference
(ACC), 2015. IEEE, 2015, pp. 3052–3057.

[7] B.-G. Kim, S. Ren, M. van der Schaar, and J.-W. Lee, “Bidirectional
energy trading and residential load scheduling with electric vehicles
in the smart grid,” Selected Areas in Communications, IEEE Journal
on, vol. 31, no. 7, pp. 1219–1234, 2013.

[8] M. Morari and J. H. Lee, “Model predictive control: past, present
and future,” Computers & Chemical Engineering, vol. 23, no. 4, pp.
667–682, 1999.

[9] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert,
“Constrained model predictive control: Stability and optimality,” Au-
tomatica, vol. 36, no. 6, pp. 789–814, 2000.

[10] Y. Ma, A. Kelman, A. Daly, and F. Borrelli, “Predictive control for
energy efficient buildings with thermal storage,” IEEE Control System
Magazine, vol. 32, no. 1, pp. 44–64, 2012.

[11] T. Wang, H. Kamath, and S. Willard, “Control and optimization of
grid-tied photovoltaic storage systems using model predictive control,”
Smart Grid, IEEE Transactions on, vol. 5, no. 2, pp. 1010–1017, 2014.

[12] I. Hiskens and B. Gong, “Mpc-based load shedding for voltage
stability enhancement,” in Decision and Control, 2005 and 2005
European Control Conference. CDC-ECC’05. 44th IEEE Conference
on. IEEE, 2005, pp. 4463–4468.

[13] K. J. Kircher and K. M. Zhang, “Model predictive control of thermal
storage for demand response,” in American Control Conference (ACC),
2015. IEEE, 2015, pp. 956–961.

[14] A. Afram and F. Janabi-Sharifi, “Theory and applications of hvac
control systems–a review of model predictive control (mpc),” Building
and Environment, vol. 72, pp. 343–355, 2014.

[15] M. Arnold and G. Andersson, “Model predictive control of energy
storage including uncertain forecasts,” in Power Systems Computation
Conference (PSCC), Stockholm, Sweden, 2011.

[16] A. Habib, V. Zamani, R. A. de Callafon, and J. Kleissl, “Sizing of
photovoltaic reverse osmosis for solar desalination based on historical
data in coastal california,” in International Desalination Association
World Congress 2015. IDA, 2015.

[17] A. Habib, V. Zamani, and J. Kleissl, “Solar desalination system model
for sizing of photovoltaic reverse osmosis (pvro),” in ASME 2015
Power Conference collocated with the ASME 2015 9th International
Conference on Energy Sustainability, the ASME 2015 13th Interna-
tional Conference on Fuel Cell Science, Engineering and Technology,
and the ASME 2015 Nuclear Forum. American Society of Mechanical
Engineers, 2015, pp. V001T01A009–V001T01A009.

[18] C. W. Chow, B. Urquhart, M. Lave, A. Dominguez, J. Kleissl,
J. Shields, and B. Washom, “Intra-hour forecasting with a total sky
imager at the uc san diego solar energy testbed,” Solar Energy, vol. 85,
no. 11, pp. 2881–2893, 2011.



[19] H. Yang, B. Kurtz, D. Nguyen, B. Urquhart, C. W. Chow, M. Ghonima,
and J. Kleissl, “Solar irradiance forecasting using a ground-based sky
imager developed at uc san diego,” Solar Energy, vol. 103, pp. 502–
524, 2014.


	I INTRODUCTION
	II Switched Dynamic Load Modeling
	II-A Assumptions on Loads
	II-B Admissible Switching Signals
	II-C Dynamic Load Models
	II-D Discretization of Models

	III Dynamic Load Scheduling
	III-A Power Tracking
	III-B Admissible Discrete-Time Switching Combinations
	III-C Moving Horizon Formulation

	IV Application Example
	IV-A Solar Power Data and Load Dynamics
	IV-B Dynamic Load Switching Results

	V Conclusions
	References

