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A Computationally Optimal Randomized Proper
Orthogonal Decomposition Technique

Dan Yu, Suman Chakravorty

Abstract—In this paper, we consider the model reduction
problem of large-scale systems, such as systems obtained through
the discretization of partial differential equations. We propose a
computationally optimal randomized proper orthogonal decom-
position (RPOD∗) technique to obtain the reduced order model by
perturbing the primal and adjoint system using Gaussian white
noise. We show that the computations required by the RPOD∗

algorithm is orders of magnitude cheaper when compared to
the balanced proper orthogonal decomposition (BPOD) algorithm
and BPOD output projection algorithm while the performance
of the RPOD∗ algorithm is much better than BPOD output
projection algorithm. It is computationally optimal in the sense
that a minimal number of snapshots is needed. We also relate the
RPOD∗ algorithm to random projection algorithms. The method
is tested on two advection-diffusion problems.

Keywords—Model Reduction, Proper Orthogonal Decomposition
(POD), Randomization Algorithm.

I. I NTRODUCTION

In this paper, we are interested in the model reduction
of large scale systems such as those governed by partial
differential equations (PDE). The dimension of the system
is large due to the discretization of the PDEs. For instance,
consider the atmospheric dispersion of an air pollutant [1]. The
emission of the contaminants on the ground level is shown in
Fig. 1 with four point sources labeled from S1 to S4.

This is a three dimensional problem, and after discretizing
the PDE, the dimension of the system is106. Therefore, we are
interested in constructing a reduced order model (ROM) that
can capture the input/output characteristics of the large model
such that this ROM can then be used by a filtering algorithm
for updating the states of the field, such as the Kalman filter.
Also, the actuators and sensors could be placed anywhere in
this field, which leads to a model reduction problem of a large-
scale system with a large number of inputs/outputs. There
are two popular contemporary model reduction techniques that
have been studied in the past few decades: Principal component
analysis (PCA) and randomization algorithms.

Among the PCA algorithms, Balanced Proper Orthogonal
Decomposition (BPOD) [2], [3] based on the balanced trun-
cation [4] and the snapshot Proper Orthogonal Decomposi-
tion (POD) technique [5] has been widely used. Balancing
transformations are constructed using the impulse responses
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Fig. 1. Air pollutant problem

of both the primal and adjoint system, and hence, the most
controllable and observable modes can be kept in the ROM.
In 1978, Kung [6] presented a new model reduction algorithm
in conjunction with the singular value decomposition (SVD)
technique, and the eigensystem realization algorithm (ERA)
[7] was developed based on this technique. The BPOD is
equivalent to the ERA procedure [8], and forms the Hankel
matrix using the primal and adjoint system simulations as
opposed to the input-output data as in ERA. More recently,
there has been work on obtaining information regarding the
dominant modes of the system based on the snapshot POD,
followed by an eigendecomposition of an approximating linear
operator, called the dynamic mode decomposition (DMD) [9],
[10]. In [11], [12], an adaptive POD algorithm based on the
snapshot POD algorithm is introduced to recursively revisethe
locally valid ROMs. When there are new snapshots collected,
decisions are made if the basis functions need to be updated.
Both the DMD and adaptive POD algorithm are applicable for
the nonlinear systems.

The primary drawback of the BPOD and ERA is that for
a large scale system, such as that obtained by discretizing a
PDE, with a large number of inputs/outputs, the computational
burden incurred is very high. There are two main parts to
the computation: the first is to collect datasets from compu-
tationally expensive primal and adjoint simulation in order to
generate the Hankel matrix. The second part is to solve the
SVD problem for the resulting Hankel matrix.

To reduce the computational cost of BPOD, improved al-
gorithms have been proposed. For example, [3] proposed an
output projection method to address the problem when the
number of outputs is large. The outputs are projected onto a
small subspace via an orthogonal projectionPs that minimizes
the error between the full impulse response and the projected
impulse response. However, the method cannot make any claim
regarding the closeness of the solution to one that is obtained
from the full Hankel matrix, and is still faced with a very
high computational burden when both the numbers of inputs
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and outputs are large. There have also been methods proposed
[13] to reduce the number of snapshots, however, the primary
problem regarding large number of inputs/outputs remains the
same.

There are two major classes of randomization algorithms
used for low-rank matrix approximations and factorizations:
random sampling algorithms and random projection algo-
rithms. For a large scale matrixH , random sampling algo-
rithms construct a rankk approximation matrixĤ by choosing
and rescaling some columns ofH according to certain sam-
pling probabilities [14], so the error satisfies‖H − Ĥ‖F ≤
‖H −H(k)‖F + ǫ‖H‖F , with high probability, whereH(k) is
a best rankk approximation ofH , ǫ is a specified tolerance,
and ‖H‖F denotes the Frobenius norm of H. The improved
algorithm proposed in [15] is to sample some columns accord-
ing to leverage scores, where the leverage scores are calculated
by performing the SVD ofH , so that the error satisfies
‖H − Ĥ‖F ≤ (1 + ǫ)‖H − H(k)‖F , with high probability.
A direct application of both algorithms would require the full
Hankel matrix to be constructed, however, such a construction
of the Hankel matrix is computationally prohibitive when the
number of inputs/outputs is large. Further, the leverage scores
are calculated by performing the SVD of the Hankel matrix,
which is also computationally prohibitive owing to the sizeof
the problem.

In random projection method [16], the large matrixH is
projected on to an orthonormal basisQ such that the error
satisfies‖H − QQ′H‖ ≤ (1 + ǫ)‖H − H(k)‖ with high
probability, where‖H‖ denotes the spectral 2-norm ofH , (.)′

denotes the conjugate transpose of(.). A Gaussian test matrix
Ω is generated, and the orthonormal basisQ is constructed by
performing a QR factorization of the matrix productHΩ. The
bottleneck of this algorithm remains, as above, the construction
of the full Hankel matrix, which is prohibitively expensive.

We had introduced an RPOD algorithm in [17] that ran-
domly chooses a subset of the input/output trajectories. A sub-
Hankel matrix is constructed using these sampled trajectories,
which is then used to form a ROM in the usual BPOD fashion.
The Markov parameters of the ROM constructed using the
sub-Hankel matrix were shown to be close to the Markov
parameters of the full order system with high probability.
We proved that a lower bound exists for the number of the
input/output trajectories that need to be sampled. The major
problem associated with this algorithm is that different choices
of the sampling algorithms would lead to different lower
bounds, and the choice of a good sampling algorithm other
than the uniform distribution is unclear.

In this paper, we propose the RPOD∗ algorithm which is
closely related to the random projection algorithm. In the
RPOD∗ algorithm, we perturb the primal and adjoint system
with Gaussian white noise, and we prove that similar to
the BPOD algorithm, the controllable and observable modes
are retained in the ROM. The Markov parameters of the
ROM constructed using RPOD∗ are shown to be close to the
Markov parameters of the full order system, while the error is
bounded. The main contribution of the RPOD∗ method is that
it is computational orders of magnitudes less expensive when

compared to the BPOD/ERA and randomization algorithms for
a large-scale system with a large number of inputs/outputs.The
RPOD∗ algorithm can be viewed as applying the random pro-
jection on the full Hankel matrixH twice without constructing
the full Hankel matrixH , i.e., Ĥ = Ω′

2Z
′XΩ1 = Ω′

2HΩ1,
whereΩ1,Ω2 are two random projection matrices, andZ,X
are the usual impulse response matrices of the adjoint and
primal system. However, we actually only generateZΩ2 and
XΩ1 which can be constructed from a single white noise
perturbed trajectory each of the adjoint and primal system
respectively, and thus, are orders of magnitude smaller in size
than the impulse responsesZ andX . Thus, the computational
cost to generate the Hankel matrix and to solve the SVD
problem is saved by orders of magnitude. We believe that it is
the most computational efficient POD algorithm. In practice,
the RPOD∗ algorithm can be solved in real-time.

The rest of the paper is organized as follows. In Section
II, the problem is formulated, and in Section III, we review
the BPOD algorithm and illustrate in a simplified fashion how
to relate the BPOD ROM to the controllable and observable
modes of the system. The RPOD∗ algorithm is proposed in
Section IV, and the formal proofs and results are shown. Also,
we discuss some implementation problems in this section. In
Section V, we compare the RPOD∗ algorithm with BPOD,
random projection and BPOD output projection algorithm. In
Section VI, we provide computational results comparing the
RPOD∗ with the BPOD/BPOD output projection for a one
dimensional heat transfer problem and a three dimensional
atmospheric dispersion problem.

II. PROBLEM FORMULATION

Consider a stable linear input-output system:

xk = Axk−1 + Buk,

yk = Cxk, (1)

wherexk ∈ ℜN , uk ∈ ℜp, yk ∈ ℜq are the states, inputs, and
outputs at discrete time instanttk respectively. Assume that
A,B,C matrices are real.

The adjoint system is defined as:

zk = A′zk−1 + C′vk, wk = B′zk, (2)

wherezk ∈ ℜN , wk ∈ ℜp is the state and output of the adjoint
system at timetk respectively,vk ∈ ℜq.

Definition 1. The Markov parameters of the system is
defined asCAiB, i = 1, · · · .

Assumption 1.Assume thatA is diagonalizable and stable.
Under Assumption 1, let,

A = V ΛU ′, (3)

whereΛ are the eigenvalues,(V, U) are the corresponding right
and left eigenvectors.

Definition 2. A mode (Λi, Ui, Vi) is not controllable if
U ′

iB = 0, and is not observable ifCVi = 0, where(Λi, Vi, Ui)
is the ith eigenvalue-eigenvector pair.

We partition the eigenvalues and eigenvectors(Λ, V, U) into
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four parts:

A =
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Λc̄ō
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co
U ′

cō
U ′

c̄o
U ′

c̄ō




 , (4)

where (Λco, Vco, Uco) are the controllable and observable
modes,(Λcō, Vcō, Ucō) are the controllable but unobservable
modes,(Λc̄o, Vc̄o, Uc̄o) are the uncontrollable but observable
modes, and(Λc̄ō, Vc̄ō, Uc̄ō) are the uncontrollable and unob-
servable modes.

In this paper, we consider the model reduction problem for
large-scale systems with a large number of inputs/outputs.The
goal is to construct an ROM such that the outputs of the ROM
yr are close to the outputs of the full order systemy, i.e.,
|y − yr| is small.

Denote the number of the controllable and observable modes
is exactlyl throughout the paper. First, we summarize all the
assumptions made in this paper.
• A1. A is stable and diagonalizable.
• A2. l ≪ N .
• A3. U ′

c̄oB = 0, U ′

c̄ōB = 0, CVcō = 0, CVc̄ō = 0.
• A4. U ′

c̄oB = ǫC1, U
′

c̄ōB = ǫC2, CVcō = ǫC3, CVc̄ō =
ǫC4, whereǫ is a small number,C1, C2, C3, C4 are con-
stant matrices. And if‖U ′

coB‖ = O(‖C5‖), ‖CVco‖ =
O(‖C5‖), then ‖C1‖, ‖C2‖, ‖C3‖, ‖C4‖ = O(‖C5‖),
whereC5 is a constant matrix.

The structure of the paper is summarized in Figure 2.
Discussion on Assumptions.For most of the practical

applications we consider, A1 is satisfied. A2 needs to be
satisfied for the system to have an ROM, this assumption
is typically satisfied for a large-scale system. It should be
noticed that from Definition 2, assumption A3 is the state-
ment of controllability/observability of the different modes
of the system. However, in practice,U ′

c̄oB,CVcō are never
exactly zero, and hence, in assumption A4, we assume that
‖U ′

c̄oB‖ ∝ ǫ, ‖CVc̄o‖ ∝ ǫ, whereǫ is small.

III. S IMPLIFIED ANALYSIS

In this section, first, we briefly review the BPOD algorithm,
and then illustrate in a simplified fashion how the transforma-
tion bases and the Markov parameters of the ROM constructed

A1 and A2 are satisfied

A3 is satisfied
(Ideal)

Proposition 1,
Corollary 1

(Simplified Analysis,
Section III)

A4 is satisfied
(Practical)

Proposition 2,
Proposition 3

(Perturbation analysis
of Proposition 1,

Section IV)

Fig. 2. Structure of the Paper

Algorithm 1 BPOD Algorithm
1) Collect impulse responseXb of the primal system

(1): Use bi, i = 1, · · · , p as initial conditions for (1)
with uk = 0. Take m snapshots at discrete times
t1, t2, · · · , tm, and

Xb = [x1(t1), · · · , xp(t1), · · · , x1(tm), · · · , xp(tm)], (5)

wherexi(tk) is the state snapshot at timetk with bi
as the initial condition,k = 1, 2, · · · ,m and i =
1, 2, · · · , p.

2) Collect impulse responseZb of the adjoint system (2):
Use c′j , j = 1, · · · , q as initial conditions for (2) with
vk = 0. Take n snapshots at time step̂t1, t̂2, · · · , t̂n,
and

Zb = [z1(t̂1), · · · , zq(t̂1), · · · , z1(t̂n), · · · , zq(t̂n)], (6)

wherezj(t̂k) is the state snapshot of the adjoint sys-
tem at time t̂k with c′j as the initial condition,k =
1, 2, · · · , n andj = 1, 2, · · · , q.

3) Construct Hankel matrixHb:

Hb = Z ′

bXb, (7)

4) Solve the SVD problem ofHb:

Hb = (Lb L1)

(
Σb 0
0 Σ1

)(
R′

b
R′

1

)

, (8)

whereΣb contains the firstl non-zero singular values,
and(Lb, Rb) are the corresponding left and right singu-
lar vectors.Σ1 contains the rest of the singular values.

5) Construct the BPOD bases:

Tb = XbRbΣ
−1/2
b , Sb = Σ

−1/2
b L′

bZ
′

b, (9)

6) The ROM is:

Ab = SbATb, Bb = SbB,Cb = CTb. (10)

using the BPOD algorithm can be related to the controllable
and observable modes(Λco, Vco, Uco) of the system matrixA.
The simplified analysis is critical to understand the intuition
behind the proposed RPOD∗ algorithm in Section IV.

A. BPOD Algorithm

Consider the stable linear system (1)-(2), letB =
[b1, · · · , bp] where bi, i = 1, · · · , p is the ith column of B,
andC′ = [c′1, · · · , c

′

q], wherecj , j = 1, · · · , q is the jth row
of C. The BPOD Algorithm [3] is summarized in Algorithm
1.

B. Simplified Analysis

First, we construct a modal BPOD ROM by projecting
the BPOD bases(Tb, Sb) onto the ROM eigenspace as in
Algorithm 2.

Under assumptions A1, A2, and A3, we have the following
result.
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Algorithm 2 BPOD modal ROM Algorithm

1) Construct BPOD ROM(Ab, Bb, Cb) and BPOD bases
(Tb, Sb) using BPOD Algorithm 1.

2) Solve the eigenvalue problem ofAb:

Ab = PbΛbP
−1
b , (11)

whereΛb are the eigenvalues, andPb are the corre-
sponding eigenvectors.

3) Construct BPOD modal bases:

Φb = P−1
b Sb,Ψb = TbPb, (12)

4) The modal ROM is:

Âb = ΦbAΨb, B̂b = Φ′

bB, Ĉb = CΨb. (13)

Proposition 1: Denote(Âb, B̂b, Ĉb) as the modal ROM con-
structed using Algorithm 2,(Φb,Ψb) are BPOD modal bases.
Then Âb = ΦbAΨb = Λco, B̂b = Φ′

bB = U ′

coB, Ĉb = CΨb =
CVco, where(Λco, Uco, Vco) are the controllable and observ-
able modes of the system, and̂CbÂ

i
bB̂b = CAiB, i = 1, 2, · · · .

Proof: Consider the snapshots in the primal snapshot
ensemble (5),

xi(tk) = Atkbi, (14)

wherei = 1, · · · , p andk = 1, · · · ,m. Hence,

(x1(tk), · · · , xp(tk)) = AtkB, (15)

and the snapshot ensembleXb can be written as:

Xb =
(
At1B At2B · · · AtmB

)
. (16)

Under assumptions A1 and A3, and from (4), we have:

AtkB = (Vco Vcō)

(
Λco

Λcō

)tk (
U ′

co
U ′

cō

)

B,

= (Vco Vcō)

(
αk
co

αk
cō

)

, (17)

whereαk
co, α

k
c̄o are the coefficient matrices. Substitute (17) into

(16), andXb can be written as:

Xb = (Vco Vcō)

(
αb
co

αb
cō

)

, (18)

whereαb
co, α

b
cō the coefficient matrices. Similarly,

Zb = (Uco Uc̄o)

(
βb
co

βb
c̄o

)

, (19)

whereβb
co, β

b
c̄o are some coefficient matrices.

Hence,

Z ′

bXb = ((βb
co)

′U ′

co + (βb
c̄o)

′U ′

c̄o)(Vcoα
b
co + Vcōα

b
cō),

= (βb
co)

′αb
co, (20)

whereU ′

coVcō = 0, U ′

c̄oVco = 0, U ′

c̄oVcō = 0.
Under assumption A3, there are exactlyl non-zero singular

values in the resulting SVD problem, i.e.,

Z ′

bXb = LbΣbR
′

b, (21)

where Σb ∈ ℜl×l are the l non-zero singular values and
(Lb, Rb) are the corresponding left and right singular vectors.
Moreover,

Z ′

bAXb = (βb
co)

′Λcoα
b
co. (22)

Now, consider the BPOD ROM:

Ab = SbATb = Σ
−1/2
b L′

b(Z
′

bAXb)RbΣ
−1/2
b

= Σ
−1/2
b L′

b(β
b
co)

′

︸ ︷︷ ︸

Pb

Λco α
b
coRbΣ

−1/2
b

︸ ︷︷ ︸

P̂b

. (23)

We show thatΛco are the eigenvalues ofAb, andPb are the
eigenvectors as follows:

PbP̂b = Σ
−1/2
b L′

b(β
b
co)

′αb
coRbΣ

−1/2
b

= Σ
−1/2
b L′

bLbΣbR
′

bRbΣ
−1/2
b = I. (24)

Also,

P̂bPb = αb
coRbΣ

−1/2
b Σ

−1/2
b L′

b(β
b
co)

′

= αb
co((β

b
co)

′αb
co)

+(βb
co)

′ = I, (25)

where(.)+ denotes the pseudoinverse of(.). Hence,P̂b = P−1
b

and from (23),

Λco = (P−1
b Sb)

︸ ︷︷ ︸

Φb

A (TbPb)
︸ ︷︷ ︸

Ψb

. (26)

Also, we prove thatΨb,Φb are biorthogonal as follows.

ΨbΦb = TbPbP
−1
b Sb = TbSb,

ΦbΨb = P−1
b SbTbPb = P−1

b Pb = I, (27)

where(Tb, Sb) are BPOD bases, and are biorthogonal.
Hence,

Ψb = TbPb = XbRbΣ
−1/2
b Σ

−1/2
b L′

b(β
b
co)

′

= (Vcoα
b
co + Vcōα

b
cō)RbΣ

−1
b L′

b(β
b
co)

′

= VcoP̂bPb + VcōC6 = Vco + VcōC6, (28)

whereC6 = αb
cōRbΣ

−1
b L′

b(β
b
co)

′. Similarly,

Φb = P−1
b Sb = U ′

co + C7U
′

c̄o, (29)

whereC7 = αb
coRbΣ

−1
b L′

b(β
b
c̄o)

′. Under assumption A3, the
modal BPOD ROM constructed using(Ψb,Φb) is:

Âb = ΦbAΨb = Λco,

B̂b = Φ′

bB = U ′

coB + C7U
′

c̄oB = U ′

coB,

Ĉb = CΨb = CVco + CVcōC6 = CVco. (30)

And the Markov parameters of the ROM are:

ĈbÂ
i
bB̂b = CVcoΛ

i
coU

′

coB = CAiB. (31)

Discussion on Proposition 1.Recall the impulse response
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snapshot ensembles collected in the BPOD are:

Xb = Vco
︸︷︷︸

N×l

αb
co

︸︷︷︸

l×pm

+Vcōα
b
cō

︸ ︷︷ ︸

N×pm

, Zb = Uco
︸︷︷︸

N×l

βb
co

︸︷︷︸

l×qn

+Uc̄oβ
b
c̄o

︸ ︷︷ ︸

N×qn

, (32)

and the Hankel matrix is:

Hb = Z ′

bXb = (βb
co)

′

︸ ︷︷ ︸

qn×l

αb
co

︸︷︷︸

l×pm

∈ ℜqn×pm. (33)

There are two main parts to the computation:

1) The primal and adjoint snapshot ensemblesXb ∈
ℜN×pm, Zb ∈ ℜN×qn, and hence, the construction of
Hb takes timeO(pqmnN).

2) The computational cost to solve the SVD ofHb is
O(min{p2m2qn, pmq2n2}).

However,Hb is only rank “l”, where l ≪ N, pm, qn, and
from the development of Proposition 1, we see that the modal
BPOD ROM given in (30) is completely determined by thel
controllable and observable modes and is invariant to the data
Xb and Zb, i.e., as long as the snapshot ensembles can be
written as:

X∗

︸︷︷︸

N×m

= Vco
︸︷︷︸

N×l

α∗

︸︷︷︸

l×m

+Vcōᾱ
∗

︸ ︷︷ ︸

N×m

, (34)

Z∗

︸︷︷︸

N×n

= Uco
︸︷︷︸

N×l

β∗

︸︷︷︸

l×n

+Uc̄oβ̄
∗

︸ ︷︷ ︸

N×n

, (35)

where α∗, β∗ are rank l constant matrices, and̄α∗, β̄∗ are
some constant matrices of suitable dimensions, then under
assumptions A1, A2, and A3, the following corollary holds.

Corollary 1: Denote(A∗, B∗, C∗) as the modal ROM con-
structed using Algorithm 2 with snapshot ensemblesX∗, Z∗

as in (34). ThenA∗ = Λco, B
∗ = U ′

coB,C∗ = CVco, where
(Λco, Uco, Vco) are the controllable and observable modes of
the system, andC∗(A∗)iB∗ = CAiB, i = 1, 2, · · · .

Corollary 1 can be proved by replacingXb, Zb in Proposi-
tion 1 with X∗, Z∗, and the proof is omitted here. We make
the following observations.

Observation: 1) The snapshot ensembles do not have to be
collections of the impulse responses as in BPOD. 2) Onlyl
snapshots may be enough to extract all the controllable and
observable modes of the system.

Bearing this observation in mind, in the next section, we
introduce the RPOD∗ algorithm which generates the snapshot
ensembles using exactly “l” snapshots, such that the Corollary
1 holds.

IV. COMPUTATIONALLY OPTIMAL RANDOMIZED PROPER
ORTHOGONAL DECOMPOSITION(RPOD∗)

In this section, first, we define the computationally optimal
snapshot ensemble, and prove that the snapshot ensembles
generated by perturbing the primal/adjoint system with white
noise are computationally optimal snapshot ensembles. Then
we propose the RPOD∗ algorithm in Section IV-B. We discuss
implementation issues of the algorithm in Section IV-C.

A. Computationally Optimal Snapshot Ensemble

Under assumptions A1, A2 and A3, we define a computa-
tionally optimal snapshot ensemble of the system as follows.

Definition 3: A computationally optimal primal snapshot
ensembleX∗ is an l-snapshot ensemble of rankl which can
be written as in Eq. (34), i.e.,m = l.

A similar definition suffices for the computationally optimal
adjoint snapshot ensembleZ∗.

Consider the system (1)-(2), under assumption A1 thatA is
stable, there exists a finite numbertss, such that‖Atss‖ ≈ 0.
Under assumptions A1, A2 and A3, we have the following
result.

Proposition 2: Perturb the primal system (1) with white
noiseuk, and collectm snapshots at timet1, t2, · · · , tm, where
tm ≥ tss, and‖Atss‖ ≈ 0. Denote the snapshot ensemble as
Xr = (x1 x2 · · · xm). If m = l, wherel is the number
of the controllable and observable modes of the system, then
Xr is a computationally optimal snapshot ensemble.

Proof: For the snapshots taken beforetss, the state
snapshotxk at timek is:

xk =

k−1∑

i=0

AiBu(k − i), k ≤ tss. (36)

Suppose there is a snapshot ensembleXf which takestss
snapshots at timek = 1 to k = tss, then from (36), the
snapshot ensembleXf can be written as:

Xf = (x1 x2 · · · xtss) =
(
B AB · · · Atss−1B

)

︸ ︷︷ ︸

Xb

×









u(1) u(2) · · · u(tss − 1) u(tss)
0 u(1) · · · u(tss − 2) u(tss − 1)
0 0 · · · u(tss − 3) u(tss − 2)
...

... · · · · · ·
...

0 0 · · · 0 u(1)









︸ ︷︷ ︸

Ω

, (37)

whereXb is the BPOD snapshot ensemble from timek = 0
to k = tss − 1. DenoteΩ = (ω1 ω2 · · · ωtss), whereωi is
the ith column ofΩ. The Ω matrix above has columns that
are linearly independent since it is upper triangular.

SinceXr consists ofm columns ofXf , Xr can be written
as:

Xr = (x1 · · · xm) = Xb (ω1 · · · ωm)
︸ ︷︷ ︸

Ω1

, (38)

where (ω1 · · · ωm) are the corresponding columns ofΩ,
and hence,Ω1 has full column rank.

For the snapshotxk taken aftertss, xk could also be written
as: xk = Xbωk, whereωk is a column vector whose entries
are white noises. Therefore,ωk is independent ofω1, · · · , ωm

in (38), and hence, for all the snapshots collected inXr, Xr =
XbΩ1, whereΩ1 has full column rank.
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Recall that from (18),Xb can be written as:

Xb = Vco
︸︷︷︸

N×l

αb
co

︸︷︷︸

l×ptss

+Vcōα
b
cō

︸ ︷︷ ︸

N×ptss

, (39)

andαb
co has full row rank. Thus, whenm = l,

Xr = XbΩ1 = Vco
︸︷︷︸

N×l

αb
co

︸︷︷︸

l×ptss

Ω1
︸︷︷︸

ptss×l

+Vcōα
b
cōΩ1,

= Vco
︸︷︷︸

N×l

αco
︸︷︷︸

l×l

+Vcōαcō, (40)

where rankαco = l. Hence,Xr is a computationally optimal
snapshot ensemble.

Similarly, we taken = l snapshots by perturbing the adjoint
system (2) with white noisevk, and the adjoint snapshot
ensemble can be written as:

Zr = Uco
︸︷︷︸

N×l

βco
︸︷︷︸

l×l

+Uc̄oβc̄o, (41)

where rankβco = l, andβc̄o is a constant matrix. Thus,Zr is a
computationally optimal snapshot ensemble. In Section IV-C,
we discuss about how to choosem,n and the snapshots in
practice.

B. RPOD∗ Algorithm

The RPOD∗ algorithm is summarized in Algorithm 3.
Under assumptions A1, A2 and A4, the following result

holds.
Proposition 3: Denote (Ar , Br, Cr) as the ROM con-

structed using RPOD∗ following Algorithm 3. If we keep
the first l non-zero singular values in (44), then‖CrA

i
rBr −

CAiB‖ ∝ O(ǫ), i = 1, · · · , whereǫ is a small number defined
in assumption A4.

The proof of Proposition 3 uses perturbation theory [18],
[19] to extend the proof of the idealized Proposition 1 such
that A4 holds instead of A3. Under assumption A4, the actual
snapshot ensembles can be written as:

Xr = (Vco Vcō Vc̄o Vc̄ō)






αco

αcō

δαc̄o

δαc̄ō




 , (49)

whereδαc̄o = ǫαc̄o, δαc̄ō = ǫαc̄ō and ǫ is small. Therefore,
‖Vc̄oδαc̄o + Vc̄ōδαc̄ō‖ = O(ǫ) are small perturbations of the
ideal snapshot ensemble, and we can expect the ideal result to
be perturbed by a small amount as well.

The formal proof is shown in Appendex A.
Corollary 2: ǫ is assumed to be a small number in assump-

tion A4, andǫ can also be related toσl+1 as follows.

‖CrA
i
rBr − CAiB‖ ∝ O(ǫ) ∝ O(σl+1). (50)

The proof is shown in Appendex B.

C. Implementation Issues

Here we discuss some implementation problems in the
RPOD∗ algorithm. We give the insight into how to collect

Algorithm 3 RPOD∗ Algorithm
1) Perturb the primal system (1) with white noiseuk,

collectm snapshots at time stept1, t2, · · · , tm, where
tm ≥ tss, ‖Atss‖ ≈ 0, m ≥ l. Denote the snapshot
ensembleXr as:

Xr = (x1 x2 · · · xm) . (42)

2) Perturb the adjoint system (2) with white noisevk,
collect n snapshots at time step̂t1, t̂2, · · · , t̂n, where
t̂n ≥ tss, n ≥ l. Denote the adjoint snapshot ensemble
Zr as:

Zr = (z1 z2 · · · zn) . (43)

3) Solve the SVD problem:

Z ′

rXr = (Lr Lo)

(
Σr 0
0 Σo

)(
R′

r
R′

o

)

, (44)

and truncate atσl, where l is the number of control-
lable and observable modes present in the snapshot
ensembles.Σr contains the firstl non-zero singular
valuesσ1 ≥ σ2 ≥ · · · ,≥ σl > 0, (Rr, Lr) are the
corresponding right and left singular vectors.

4) Construct the POD bases:

Tr = XrRrΣ
−1/2
r , Sr = Σ−1/2

r L′

rZ
′

r. (45)

5) Construct the ROMÃ, find the eigenvaluesΛr and
eigenvectorsPr of Ã.

Ã = SrATr = PrΛrP
−1
r , (46)

6) Construct new POD bases:

Φr = P−1
r Sr,Ψr = TrPr. (47)

7) The ROM is:

Ar = ΦrAΨr, Br = ΦrB,Cr = CΨr (48)

the snapshot ensembles, and how to select the ROM size.
Snapshot selectionFrom the analysis in Section IV-A,

we only need to collectm = l snapshots from the primal
simulations. However,l is not known a priori, thus, in practice,
we start with a random guessm << N , whereN is the
dimension of the system, or we can choosem from experience.
For instance, in a fluid system with106 degrees of freedom,
m is O(10) ∼ O(102). Similarly, we guessn, and then we
check the rank ofZ ′

rXr. If Z ′

rXr has full rank, i.e., rank
(Z ′

rXr) = min (m,n), then it is possible that we did not take
enough snapshots, and hence, we increasem,n, until rank
(Z ′

rXr) < min (m,n).
For the primal simulation, we takem snapshots from

one simulation with zero initial condition, and white noise
perturbationu(k). We assume that the snapshots are taken at
∆T, 2∆T · · · ,m∆T , WLOG. Here,∆T is a small constant,
and we require thatm∆T ≥ tss, where‖Atss‖ ≈ 0. In Fig. 3,
we show one simulation result comparing the accuracy of the
ROMs using∆T = 3, 5, 10, 20, 50 for the atmospheric disper-
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Fig. 3. Snapshot Selection: Effect of∆T

sion problem introduced in Section VI-B. Heretss = 900, and
m = 300. The output relative error is defined in (59), and we
take the average of the output relative error for each ROM. It
can be seen that as∆T increases, each column inΩ1 is well
separated, and hence, the ROM is more accurate, while it takes
longer time to generate the snapshots. Thus, this is a trade-off
between the accuracy and the computational efficiency.

ROM size selectionIn Proposition 3, we assume that there
are l controllable and observable modes, and we keep exact
l non-zero singular values. However,l is not known as a
priori. We prove in [20] that if we keepk non-zero singular
values, andk > l, then undesired noise will be introduced.
If k < l, not all the controllable and observable modes can
be recovered. Therefore, in practice, we decidel by trial and
error. Since rank(Z ′

rXr) ≥ l is always true, we start with
k = rank (Z ′

rXr), and check the eigenvalues of̃A = SAT .
From the development in [20], we can see that whenk > l,
k−l eigenvalues of̃A are small, which are the perturbations of
the zero eigenvalues. Ifk >> l, then the perturbations in the
ROM is too large to be neglected, which results in unstable
eigenvalues ofÃ. Thus, we keep decreasing the value ofk
until Ã is stable. If there are some small eigenvalues which
are approximately zero, we knowk > l, and we decrease the
value ofk until we reach a region[l, l+a], wherea is a small
number, such that most of the eigenvalues ofÃ remain the
same for different value ofk (l controllable and observable
modes withk − l perturbations of the zero eigenvalues), then
we stop and pick the numberl as the number of non-zero
eigenvalues ofÃ.

V. COMPARISON WITH RELATEDALGORITHMS

In this section, we compare the RPOD∗ algorithm with
BPOD, random projection and BPOD output projection algo-
rithm.

A. Comparison with BPOD

First, we summarize the differences between the BPOD and
RPOD∗ algorithm.

As we mentioned in Section III,p + q simulations are
needed for BPOD algorithm, wherep is the number of
inputs andq is the number of outputs. LetXb, Zb denote
the impulse response snapshot ensembles that need to be
collected in BPOD algorithm from time step(1, · · · , tss).
Thus,Xb ∈ ℜN×ptss , Zb ∈ ℜN×qtss . It is expensive to store
(p+ q)tss snapshots, and it is expensive to solve the resulting

SVD problem due to the large size of the problem. For RPOD∗

algorithm, only (1 primal + 1 adjoint) simulations are needed,
and onlym+n, wherem,n ≪ tss snapshots need to be stored.
Also, it is easy to solve the resulting SVD problem.

Another practical problem with impulse responses snapshots
is that the snapshots after some time are dominated by very few
slow modes, and including these snapshots does not give much
new information. On the other hand, the RPOD∗ trajectories
are white noise forced, and all the modes are always present in
all the snapshots due to the persistent excitation of the white
noise terms. Hence, the RPOD∗ snapshots can be taken tilltss,
and be assured that all of the relevant modes will be captured.

B. Comparison with Random Projection

From the analysis in Section IV-A, we see that the snapshot
ensembles collected in RPOD∗ can be written as:

Xr = XbΩ1, Zr = ZbΩ2, (51)

whereXb ∈ ℜN×ptss , Zb ∈ ℜN×qtss are the impulse response
snapshot ensembles that need to be collected in the BPOD
algorithm from time step(0, · · · , tss − 1), and ‖Atss‖ ≈ 0.
Ω1 ∈ ℜptss×m andΩ2 ∈ ℜqtss×n are full rank matrices. We
have:

Hr
︸︷︷︸

rank l

= Z ′

rXr = Ω′

2Z
′

bXbΩ1 = Ω′

2 Hb
︸︷︷︸

rank l

Ω1, (52)

There is a significant difference between the proposed
algorithm and a direct application of the random projection
algorithm on BPOD. A direct application of the random
projection would require to generate the Hankel matrixHb

(andXb, Zb) first. However, in practice, the construction and
the storage of the Hankel matrix is computationally prohibitive
when N is large and the number of inputs/outputs is large.
Also, the bottleneck of the random projection algorithm is the
projection ofXb, Zb onto the Gaussian test matrices. In the
proposed algorithm, the snapshot ensembles are constructed
directly from the primal and adjoint simulations, and hence,
the computational cost to generate the Hankel matrix and to
project it onto the Gaussian test matrices is saved.

C. Comparison with BPOD output projection

As we mentioned in Section III, when the number of the
outputs q is large, the computation of the BPOD adjoint
simulations may not be tractable. To reduce the number of the
outputs, the output projection method in [3], [21] is proposed.
In this section, we compare the RPOD∗ algorithm with BPOD
output projection algorithm. First, we briefly review the BPOD
output projection method in Algorithm 4.

In the following, we compare the BPOD output projection
method with RPOD∗ algorithm. From (54), the adjoint snap-
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Algorithm 4 BPOD output projection algorithm
1) Collect the primal snapshot ensembleXb in (5).
2) Compute the POD modes of the datasetYb = CXb.

Y ′

bYbφk = λkφk, λ1 ≥ · · · ≥ λn ≥ 0, (53)

where λk are the eigenvalues, andφk are the corre-
sponding eigenvectors. Thus, the POD modesΘs =
[φ1, · · · , φs], wheres is the rank of the output projec-
tion, ands ≪ q.

3) Collect the impulse responses of the adjoint system:

zk+1 = A′zk + C′Θsv, w = B′zk. (54)

The adjoint snapshot ensemble is denoted asZs.
4) Construct the Hankel matrix:

Hs = Z ′

sXb. (55)

5) Solve the SVD problem ofHs, and construct the BPOD
output projection bases as(Ts, Ss) using equations (8)
and (9). The ROM is:

As = SsATs, Bs = SsB,Cs = CTs. (56)

shote ensembleZs can be written as:

Zs
︸︷︷︸

N×stss

=
(
C′Θs A′C′Θs · · · (A′)tssC′Θs

)

=
(
C′ A′C′ · · · (A′)tssC′

)

︸ ︷︷ ︸

Zb






Θs

Θs

· · ·
Θs






︸ ︷︷ ︸

Θ

= Zb
︸︷︷︸

N×qtss

Θ
︸︷︷︸

qtss×stss

. (57)

And hence, the projected Hankel matrixHs is:

Hs = Θ′Z ′

bXb = Θ′Hb, (58)

Recall that the adjoint snapshot ensembles collected in RPOD∗

can be written asZr = ZbΩ2, and the projected Hankel matrix
in RPOD∗ is Hr = Ω′

2HbΩ1. Thus, we make the following
remark.

Remark 1:Both the BPOD output projection and RPOD*
algorithms can be viewed as projecting the full order Hankel
matrix onto a reduced order Hankel matrix with projection
matricesΘ and (Ω1,Ω2).

1) Differences between two algorithms:First, the infor-
mation preserved inHs, Hr are not the same. The output
projectionPs = ΘsΘ

′

s minimizes the 2-norm of the difference
between the original transfer function and the output-projected
transfer function, i.e.‖CAiB − ΘsΘ

′

sCAiB‖, i = 1, · · · ,
is minimized. Thus, the controllable and observable modes
preserved inHs are an approximation of those inHb, while
in RPOD∗ algorithm, the exact controllable and observable
modes are preserved using the Gaussian random projection
matrix. As mentioned in [21], whens < l, where l is the

TABLE I. COMPUTATIONAL COMPLEXITY ANALYSIS FOR RPOD∗

AND BPOD OUTPUT PROJECTION

RPOD* BPOD output projection
Construction ofH O(mnN) O(pst2ssN)
Solve SVD O(m2n) O(p2st3ss)

number of non-zero Hankel singular values (number of con-
trollable and observable modes), then only the firsts Hankel
singular values are the same as the full balanced truncations
Hankel singular values.

Another difference between output projection algorithm and
RPOD∗ algorithm is that RPOD∗ algorithm can be used when
both the number of the inputs and outputs are large, while
output projection can be used when the number of the inputs
or the outputs is large. When the number of inputs is large,
we can construct an input projection using the adjoint snapshot
ensemble, but when both the number of inputs and outputs are
large, the construction of the projection matrix is not helpful.

2) Comparison of computational cost:The comparison of
the computational cost of the BPOD output projection algo-
rithm with RPOD∗ algorithm is shown in Table I. We collect
m,n snapshots for RPOD∗ algorithm respectively, andtss
snapshots for BPOD output projection algorithm.N is the
dimension of the system,p, q are the number of inputs and
outputs respectively, the rank of the output projection iss,
and without loss of generality, we assumep ≤ q, m ≤ n, and
p ≤ s.

Now we compare the computation time to generate the
snapshot ensembles. If we denoteT as the time to propagate
the primal/adjoint system once, then for BPOD output projec-
tion algorithm,(p + s) simulations are needed, and for each
simulation, we need to collect the snapshots up tot = tss.
Thus, the total computation time to generate the snapshot
ensembles is(p+ s)tssT .

The RPOD∗ algorithm needs 1 primal and 1 adjoint sim-
ulation till time m∆T, n∆T respectively, wherem∆T ≥
tss, n∆T ≥ tss. When we choose∆T such thatm∆T =
tss, n∆T = tss, the performance of the ROM con-
structed using RPOD∗ is better than those constructed using
BPOD/BPOD output projection algorithm. While, the total
computation time to generate the snapshot ensembles is2tssT ,
which means that RPOD∗ computational cost is the same as
BPOD in a single input single output (SISO) system. The
comparison of the computation time to generate the snapshot
ensembles is shown in Table III for two examples.

VI. COMPUTATIONAL RESULTS

In this section, we show the comparison of RPOD∗ with
BPOD for two examples: a one-dimensional heat transfer prob-
lem, and a three dimensional atmospheric dispersion problem
to illustrate the proposed algorithm.

First, we define the output relative error:

Eoutput =
‖Ytrue − Yrom‖

‖Ytrue‖
, (59)

whereYtrue are the outputs of the full order system, andYrom

are the outputs of the reduced order system.
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The frequency response for multiple input multiple output
systems can be represented by plotting the maximum singular
value of the transfer function matrixmax(σ(H(jω))) as a
function of frequencyω. We define the frequency responses
error as:

Efre(jω) = |max(σ(Htrue(jω))) −max(σ(Hrom(jω)))|, (60)

where Htrue(jω) is the transfer function of the full order
system, andHrom(jω) is the transfer function of the ROM.

For the two experiments below, there are design parameters
that need to be chosen manually, such as the rank of the output
projection, when to take the snapshots, and the size of the
ROM. We have shown the results of the best selections of these
parameters for the BPOD/BPOD output projection algorithms
and the RPOD∗ algorithm.

A. Heat Transfer

The equation for heat transfer by conduction along a slab is
given by the partial differential equation:

∂T

∂t
= α

∂2T

∂x2
+ f, (61)

with boundary conditions

T |x=0 = 0,
∂T

∂x
|x=L = 0, (62)

whereα is the thermal diffusivity, andf is the forcing.
Two point sources are located atx = 0.15m andx = 0.45m.

The system is discretized using finite difference method, and
there are 100 grids which are equally spaced. We take full
field measurements, i.e., measurements at every node. The
parameters of the system are summarized in Table II. In the
following, we compare the ROM constructed using RPOD∗,
BPOD and BPOD output projection.

For RPOD∗, the system is perturbed by the white noise with
distribution N(0, I2×2). At time tss = 3000s, ‖Atss‖ ≈ 0,
thus, for the primal/adjoint simulation, one realization is
needed, and we collect 80 equispaced snapshots during time
t ∈ [0, 3200]s. For BPOD, we needp = 2 realizations for
the primal simulation, andq = 100 realizations for the adjoint
simulations. In general, 3000 equispaced snapshots between
[0, 3000]s should be taken in each realization for BPOD/output
projection. However, due to the memory limits on the platform,
only 400 equispaced snapshots can be taken and for the optimal
performance of BPOD/output projection, the 400 equispaced
snapshots are taken from timet ∈ [0, 400]s (first 400 dominant
impulse responses). The rank of the output projection is 40,
and hence, for the BPOD output projection algorithm, 40
realizations are needed for the adjoint simulations. RPOD∗

algorithm and BPOD algorithm extract 70 modes, and BPOD
output projection algorithm extract 50 modes. Here, we take80
snapshots by trial and error following the procedure in Section
IV-C.

In Fig. 4(a), we compare the norm of the Markov parameters
of the ROM constructed using three algorithms with the
true Markov parameters of the full order system. We perturb
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Fig. 5. Heat Transfer Problem

the system with random Gaussian noise, and compare the
output relative errors in Fig. 4(b). In Fig. 5(a), we compare
the frequency responses of the ROM constructed using three
algorithms with the true frequency responses. In Fig. 5(b),we
plot the error of the maximum singular value of the input-
output model as a function of frequency.

For all three methods, we can see that the Markov param-
eters of the ROM are close to the true Markov parameters
of the full order system. From Fig. 4(b), it can be seen that
all three methods are accurate enough. The output relative
error of BPOD output projection is less than0.01%, and the
performance of the RPOD∗ algorithm is much better than the
BPOD output projection algorithm, the performance of RPOD∗

algorithm is better than BPOD algorithm because we do not
take all the snapshots up totss due to the memory limits. From
Fig. 5, we can see that the frequency responses error of RPOD∗

algorithm is smaller than BPOD and BPOD output projec-
tion algorithm in low frequencies. With the increase of the
frequency, the BPOD algorithm performs better than RPOD∗

algorithm, however, the errors are below10−10, and hence, the
difference is negligible. The comparison of computationaltime
of RPOD∗ and BPOD output projection algorithm is shown in
Section VI-C. We can see that the construction of the snapshot
ensembles using RPOD∗ takes almost the same time as BPOD
output projection, while the dominant computational cost is
solving the SVD problem, and it can be seen that RPOD∗ is
about 24 times faster than BPOD output projection.
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TABLE II. PARAMETERS OF SYSTEM

Heat Atmospheric Dispersion

System Parameters

Domain x ∈ [0, 1](m) x ∈ [0, 2000](m), y ∈ [−100, 400](m),
z ∈ [0, 50](m)

Dimension of system N = 100 N = 105

Parameters α = 4.2× 10−6(m2/s) Wind velocity ~u = (4m/s, 0, 0)
Number of Inputs 2 10

Number of Outputs 100 810

output projection V.S. RPOD∗

Primal Snapshots 400 V.S. 80 200 V.S. 400
Adjoint Snapshots 400 V.S. 80 200 V.S. 400

Snapshots taken duringt ∈ [0, 400s] V.S. t ∈
[0s, 3200s]

t ∈ [0, 200]s V.S. t ∈ [0, 4000]s

ROM modes 50 V.S. 70 200 V.S. 380
Hankel matrix 16000× 800 V.S. 80× 80 4000× 2000 V.S. 400× 400

B. Atmospheric Dispersion Problem

The three-dimensional advection-diffusion equation describ-
ing the contaminant transport in the atmosphere is:

∂c

∂t
+∇ · (c~u) = ∇ · (K( ~X)∇c) +Qδ( ~X − ~Xs), (63)

where
c( ~X, t) : mass concentration at location~X = (x, y, z).
~Xs = (xs, ys, zs): location of the point source.
~u = (ucos(α), usin(α), 0): wind velocity.α is the direction

of the wind in the horizontal plane and the wind velocity is
aligned with the positivex-axis whenα = 0, u ≥ 0 is constant.
Q: contaminant emitted rate.
∇: gradient operator.
K( ~X) = diag(Kx(x),Ky(x),Kz(x)) : diagonal matrix

whose entries are the turbulent eddy diffusivities. In general
K( ~X) is a function of the downwind distancex only.

In practice, the wind velocity is sufficiently large that the
diffusion in thex-direction is much smaller than advection,
and hence, assume that the termKx∂

2
xc can be neglected.

Define σ2
y(x) = 2

u

∫ x

0 Ky(η)dη, σ2
z(x) = 2

u

∫ x

0 Kz(η)dη,
whereσy(x) = ayx(1 + byx)

0.5, σz(x) = azx(1 + bzx)
0.5,

anday = 0.008, by = 0.00001, az = 0.006, bz = 0.00015.
The boundary conditions are:

c(0, y, z) = 0, c(∞, y, z) = 0, c(x,±∞, z) = 0,

c(x, y,∞) = 0,Kz
∂c

∂z
(x, y, 0) = 0. (64)

The system is discretized using finite difference method, and
there are100× 100× 10 grids which are equally spaced. The
parameters are summarized in Table II. There are 10 point
sources which are shown in Fig. 6. We take the full field
measurements (except the nodes onx = 0,∞ andy = ±∞).
In Fig. 6, we show the actual concentration of the full field at
time t = 200s with Q as Gaussian white noise where sources
are the dotted points in the figure.

In this example, since the system dimension isN = 105,
constructing the ROM with the full field measurements us-
ing BPOD is computationally impossible, and thus, we only
compare the RPOD∗ algorithm with BPOD output projection
algorithm.

4.1191e-05 4.1191e-05

4.
11

91
e-

05

4.1191e-05

4.1191e-054.1191e-05

4.
11

91
e-

05

4.
11

91
e-

05

4.1191e-05

0.00041191 0.00041191

0.
00

04
11

91

0.00041191

0.000411910.00041191

0.
00

04
11

91

0.
00

04
11

91

0.0041191

0.
00

41
19

1

0.0041191

0.00411910.0041191

0.
00

41
19

1

0.
00

41
19

1

0.0041191 0.020595

0.
02

05
95

0.020595

0.020595
0.020595

0.
02

05
95

0.020595

0.020595 0.
04

11
91

0.
04

11
91

0.041191

0.041191

0.041191

0.
04

11
91

0.041191

0.041191

0.082381

0.
08

23
81

0.082381

0.082381

0.082381

0.082381

0.082381

0.082381

0.
20

59
50.
20

59
5

0.20595

0.20595

0.20595

0.
20

59
5

0.20595
0.20595

0.
41

19
1

0.41191

0.
41

19
1

0.41191

0.41191

Full Order Model

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-100

-50

0

50

100

150

200

250

300

350

400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 6. Concentration Field att = 200s

For RPOD∗ algorithm, we collect the snapshots sequentially.
The system is perturbed by white noise with distribution
N(0, I10×10). One primal simulation and one adjoint simu-
lation are needed. We collect 400 equispaced snapshots from
time t ∈ [0, 4000]s, where at timetss = 4000, ‖Atss‖ ≈ 0,
and extract 380 modes. For BPOD output projection algorithm,
we collect the impulse responses from the primal simulations,
and p = 10 realizations are needed. Same as the heat
example, we could not collect all the impulse responses from
t ∈ [0, 4000]s due to the memory limits on the platform.
Hence, for the best performance available in this example,
we collect 200 equispaced snapshots fromt ∈ [0, 200]s for
each primal simulation. The rank of the output projection is
80, and hence, 80 adjoint simulations are needed, and in the
adjoint simulations, we collect 50 equispaced snapshots from
t ∈ [0, 50]s. We can extract 200 modes. The parameters are
summarized in Table II.

In Fig. 7(a), we compare the Markov parameters of the ROM
constructed using RPOD∗ and BPOD output projection with
the full order system. Also, we perturb the system with random
Gaussian noise, and compare the output relative errors in Fig.
7(b). The comparison of the computational time is shown in
Section VI-C.

In Fig. 8(a), we compare the frequency responses of the
ROM constructed using RPOD∗ and BPOD output projection
with the full order system. We can see that the frequency
responses of the ROMs are almost the same as the frequency
responses of the full order system. In Fig. 8(b), we show the
errors between the frequency responses.

The comparison of the computational time is shown in Sec-



11

0 5 10 15 20 25 30 35 40
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

i

|| 
C

A
i B

 ||

 

 

True value
BPOD projection
RPOD

(a) Comparison of Markov Parameters

0 200 400 600 800 1000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

TIME (s)

‖Y
tr
u
e
−
Y
r
o
m
‖

‖Y
tr
u
e
‖

 

 

RPOD
BPOD projection

(b) Comparison of Output Relative
Errors

Fig. 7. Atmospheric Dispersion Problem

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

ω

σ
m
a
x
(H

(j
ω
))

 

 

True
RPOD
BPOD projection

(a) Comparison of Frequency Re-
sponses

ω
10 -4 10 -3 10 -2 10 -1 100 101

E
r
e
f
(j
ω
)

10 -10

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

RPOD
BPOD projection

(b) Comparison of Frequency Re-
sponses Errors

Fig. 8. Atmospheric Dispersion Problem

tion VI-C. It can be seen that for this example, the construction
of the snapshot ensembles using RPOD∗ is faster than the
BPOD output projection, and the dominant computation cost
is the construction ofZ ′X , where RPOD∗ algorithm is almost
16500 times faster than BPOD output projection.

From the examples above, we can see that for both examples
showed in this paper, the RPOD∗ algorithm is much faster than
BPOD/BPOD output projection algorithm, and is much more
accurate than BPOD output projection algorithm.

C. Comparison of Computational Time

Comparison of computational time is shown in Table III
for two examples. All of the experiments reported in this
paper were performed using Matlab 2013b on a Dell OptiPlex
9020, Intel(R) Core (TM) i7-4770CPU, 3.40GHz, 4GB RAM
machine.

VII. C ONCLUSION

In this paper, we have introduced a computationally optimal
randomized POD procedure for the extraction of ROMs for
large scale systems such as those governed by PDEs. The ROM
is constructed by perturbing the primal and adjoint system
with Gaussian white noise, where the computational cost to
construct the snapshot ensembles is saved when compared to
perturbing the primal and adjoint system with impulses in
BPOD/BPOD output projection algorithm. Also, it leads to
a much smaller SVD problem, and an orders of magnitude
reduction in the computation required for constructing ROMs
over the BPOD/ BPOD output projection procedure. The
computational results show that the accuracy of the RPOD∗

is much more accurate than the BPOD output projection
algorithm.

APPENDIX A
PROOF OFPROPOSITION3

Proof: The adjoint snapshot ensembleZr can be written
as:

Zr = Ucoβco + Ucōδβcō + Uc̄oβc̄o + Uc̄ōδβc̄ō, (65)

whereδβcō = ǫβcō, δβc̄ō = ǫβc̄ō, ǫ is defined in assumption
A4, βcō, βc̄ō are coefficient matrices. From (49) and (65),

Z ′

rXr = β′

coαco + δβ′

cōαcō + β′

c̄oδαc̄o + δβ′

c̄ōδαc̄ō

= β′

coαco + ǫ (β′

cōαcō + β′

c̄oαc̄o)
︸ ︷︷ ︸

E1

+O(ǫ2),

= β′

coαco + ǫE1 +O(ǫ2). (66)

And similarly,

Z ′

rAXr = β′

coΛcoαco + ǫ (β′

cōΛcōαcō + β′

c̄oΛc̄oαc̄o)
︸ ︷︷ ︸

E2

+O(ǫ2)

= β′

coΛcoαco + ǫE2 +O(ǫ2). (67)

There are “l” controllable and observable modes, then rank
(Z ′

rXr) ≥ l due to the small perturbations. Denote

H̄r = β′

coαco = L̄rΣ̄rR̄
′

r + L̄oΣ̄oR̄
′

o,

Hr = Z ′

rXr = β′

coαco + ǫE1 = LrΣrR
′

r + LoΣoRo, (68)

whereH̄r, Hr ∈ ℜn×m, and WLOG,n ≤ m.
Here, H̄r is the ideal Hankel matrix constructed with the

simplifying assumption (assumption A3 is satisfied), and it
can be seen that the true Hankel matrixHr (assumption A4
is satisfied) can be viewed as adding a small perturbation of
H̄r, i.e.,Hr = H̄r + ǫE1.
Σ̄r ∈ ℜl×l contains thel non-zero singular values of̄Hr and

(L̄r, R̄r) are the corresponding left and right singular vectors.
Σ̄o ∈ ℜ(n−l)×(n−l) = 0 are the rest singular values, and
(L̄o, R̄o) are the corresponding left and right singular vectors.
Similarly, Σr ∈ ℜl×l contains the firstl non-zeros singular
values ofHr, andΣo ∈ ℜ(n−l)×(n−l) contains the rest singular
values. The left and right singular vectors are partitionedin the
same way.

1). From the perturbation theory [18], [19], the perturbed
singular values and singular vectiors(Σr, Lr, Rr) are related
to the singular values and singular vectors(Σ̄r, L̄r, R̄r) as:

Σr = Σ̄r + ǫE3 +O(ǫ2),

Lr = L̄r +∆Lr, Rr = R̄r +∆Rr, (69)

where E3,∆Lr,∆Rr are some matrices, and‖∆Lr‖,
‖∆Rr‖ ∝ O(ǫ). The expression ofE3 is given by the follows
[18].

For σ̄i ∈ Σ̄r, (strictly positive singular values) with multi-
plicity t, L̄t, R̄t are the corresponding left and right singular
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TABLE III. C OMPARISON OFCOMPUTATIONAL T IME

Heat Atmospheric Dispersion
RPOD∗ output projection RPOD∗ output projection

GenerateX 0.0148s 0.0518s 55.59s 30.461s
GenerateZ 0.0340s 0.0864s + 0.1582s(projection) 56.23s 421.99s + 9.287s(projection)

ConstructZ ′X 0.0292s 0.0461s 0.321s 5311s
Solve SVD 0.1052s 2.5550s 0.4859s 9.118s
Total time 0.1832s 2.8975s 112.6269s 5781.856s

vectors, the perturbed singular valuesσi ∈ Σr, and

σi = σ̄i + ǫ
λi(R̄

′

tE
′

1L̄t + L̄′

tE1R̄t)

2
︸ ︷︷ ︸

ei

+O(ǫ2), i = 1, · · · , t (70)

whereλi(.) denotes theith eigenvalue of(.). Thus,

E3 =






e1
. . .

el




 , (71)

wheree1, · · · , el are the coefficients computed from (70).
2). The ROMÃ = SrATr can be proved to be a perturbation

of Ab in (23).
The POD basesTr, Sr are:

Tr = XrRrΣ
−1/2
r , Sr = Σ−1/2

r L′

rZ
′

r. (72)

Therefore,

Ã = SrATr = Σ−1/2
r L′

rZ
′

rAXrRrΣ
−1/2
r

= Σ−1/2
r L′

r(β
′

coΛcoαco + ǫE2)RrΣ
−1/2
r . (73)

From (70), it can be proved that:

Σ−1/2
r = Σ̄−1/2

r + ǫCr, (74)

whereCr is a diagonal coefficient matrix. Therefore,

Σ−1/2
r L′

r = (Σ̄−1/2
r + ǫCr)(L̄

′

r +∆L′

r) = Σ̄−1/2
r L̄′

r +∆1, (75)

where∆1 is some matrix, and‖∆1‖2 = k1ǫ, k1 is a constant.
Similarly,

RrΣ
−1/2
r = R̄rΣ̄

−1/2
r +∆2, (76)

where∆2 is some matrix, and‖∆2‖2 = k2ǫ, k2 is a constant.
Thus,

Ã = Σ̄−1/2
r L̄′

rβ
′

coΛcoαcoR̄rΣ̄
−1/2
r +∆3 +O(ǫ2), (77)

where∆3 is some matrix, and‖∆3‖2 = k3ǫ, k3 is a constant.
If we let

Ā = Σ̄−1/2
r L̄′

rβ
′

co
︸ ︷︷ ︸

P̄r

Λco αcoR̄rΣ̄
−1/2
r

︸ ︷︷ ︸

P̄−1

r

, (78)

then

Ã = Ā+∆3 +O(ǫ2) = PrΛrP
−1
r , (79)

Following the same proof in Section III-B ( (23)-(25)), it can

be proved thatΛco are the eigenvalues of̄A, and P̄r are the
corresponding eigenvectors.

3). From perturbation theory [22], since

Ã = Ā+∆3 +O(ǫ2) = PrΛrP
−1
r , (80)

it can be proved that‖Pr− P̄r‖ ≤ ‖∆3‖ = k3ǫ, ‖Λr−Λco‖ ≤
‖∆3‖ = k3ǫ. Thus,

Ψr = TrPr = XrR̄rΣ̄
−1/2
r P̄r +∆4,

Φr = P−1
r Sr = P̄−1

r Σ̄−1/2
r L̄′

rZ
′

r +∆5, (81)

where∆4,∆5 are some matrices and‖∆4‖, ‖∆5‖ ∝ O(ǫ).
Substitute (81) into the ROM Markov parameters, and collect
the small perturbation terms, we have:

CrA
i
rBr = CΨrΛ

i
rΦrB = CVcoΛ

i
coU

′

coB
′ +∆, (82)

where∆ is some matrix, and‖∆‖ ∝ O(ǫ).

APPENDIX B
PROOF OFCOROLLARY 2

For σ̄i ∈ Σ̄o (zero singular values) [18] with multiplicity
n − l, the corresponding left and right singular vectors are
L̄o, R̄o. The perturbed singular valuesσi ∈ Σo and

σi = ǫ
√

λi(R̄′

oE
′

1L̄oL̄′

oE1R̄o), i = 1, · · ·n− l. (83)

From (70) and (83), we can see that:

σl = σ̄l + elǫ+O(ǫ2), σl+1 = el+1ǫ, (84)

Hence,we have:

σl+1 ∝ O(ǫ), (85)

and

‖CrA
i
rBr − CAiB‖ ∝ O(ǫ) ∝ O(σl+1). (86)
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