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The Variational Attitude Estimator in the Presence of Bias n Angular
Velocity Measurements

Maziar Izadl, Sasi PrabhakardnAmit Sanyaf, Carlos Silvestrg and Paulo Oliveira

Abstract— Estimation of rigid body attitude motion is a
long-standing problem of interest in several applications This
problem is challenging primarily because rigid body motionis
described by nonlinear dynamics and the state space is nonki
ear. The extended Kalman filter and its several variants have

remained the standard and most commonly used schemes for

attitude estimation over the last several decades. Thesehmmes
are obtained as approximate solutions to the nonlinear optnal
filtering problem. However, these approximate or near optinal
solutions may not give stable estimation schemes in generdhe
variational attitude estimator was introduced recently tofill this
gap in stable estimation of arbitrary rigid body attitude motion
in the presence of uncertainties in initial state and unknow
measurement noise. This estimator is obtained by applyinghe
Lagrange-d’Alembert principle of variational mechanics to a
Lagrangian constructed from residuals between measuremés
and state estimates with a dissipation term that is linear in
the angular velocity measurement residual. In this work, tte
variational attitude estimator is generalized to include agular
velocity measurements that have a constant bias in additioto
measurement noise. The state estimates converge to true tets
almost globally over the state space. Further, the bias estiates
converge to the true bias once the state estimates converge t
the true states.

1. INTRODUCTION

Estimation of attitude motion is essential in applicatitms
spacecraft, unmanned aerial and underwater vehicles &s

the configuration space of rigid body attitude motion withou
using local coordinates or quaternions; (2) no assumption
is made on the statistics of the measurement noise; (3)
unlike model-based estimation schemes (e.g., [3], [4], [5]
no knowledge of the attitude dynamics model is assumed; (4)
the estimation scheme is obtained by applying the Lagrange-
d’Alembert principle from variational mechanics [6], [{ &
Lagrangian constructed from the measurement residudts wit
a dissipation term linear in the angular velocity measurgme
residual; and (5) the estimation scheme is discretized for
computer implementation by applying the discrete Lagrange
d’Alembert principle [8], [9]. It is assumed that measure-
ments of direction vectors and angular velocity are avéglab
at sufficient frequency, such that a dynamics model is not
needed to propagate state estimates between measurements.
The earliest solution to the attitude determination prob-
lem from two inertial vector measurements is the so-called
“TRIAD algorithm” from the early 1960s [10]. This was
followed by developments in the problem of attitude deter-
mination from a set of vector measurements, which was set
up as an optimization problem called Wahba's problem [11].
This problem of instantaneous attitude determination has
many different solutions in the prior literature, a sample

wij which can be obtained in [12], [13], [14]. Much of

as formations and networks of such vehicles. In this work, wii€ Published literature on estimation of attitude states u

consider estimation of attitude motion of a rigid body fro

measurements of known inertial directions and angular v

rjocal coordinates or unit quaternions to represent atitud
Local coordinate representations, including commonlyduse

locity measurements with a constant bias, where all measuf@@ternion-derived parameters like the Rodrigues paemsiet

ments are made with body-fixed sensors corrupted by sen
noise. The number of direction vectors measured by the bo&l)‘?

the modified Rodrigues parameters (MRPs), cannot
scribe arbitrary or tumbling attitude motion, while the

may vary over time. For the theoretical developments in thidnit quaternion representation of attitude is known to be

paper, it is assumed that at least two directions are medsuf@"
at any given instant; this assumption ensures that the@tit
can be uniquely determined from the measured directiof$

biguous. Each physical attitude corresponds to an ekemen
of the Lie group of rigid body rotation§O(3), and can
represented by a pair of antipodal quaternions on the

PR
at every instant. The attitude estimation scheme present®4Perspheres”, which is often represented as an embed-

here follows the variational framework of the estimatio

fed submanifold oiR* in attitude estimation. For dynamic

scheme recently reported in [1], [2]. Like the estimatiorfittitude estimation, this ambiguity in the representatiounld

scheme in [1], the scheme presented here has the followi

important properties: (1) attitude is represented glghaler
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}€g’;\d to instability of continuous state estimation scheches
to unwinding, as is described in [15], [16], [17].

Attitude observers and filtering schemes 860 (3) and
SE(3) have been reported in, e.g., [14], [18], [19], [20], [21],
[22], [23]. These estimators do not suffer from kinematic
singularities like estimators using coordinate desarigiof
attitude, and they do not suffer from the unstable unwinding
phenomenon which may be encountered by estimators using
unit quaternions. Many of these schemes are based on near
optimal filtering and do not have provable stability. Rethte
to Kalman filtering-type schemes is the maximum-likelihood
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(minimum energy) filtering method of Mortensen [24], whichand the corresponding matrix of all these vectors expressed
was recently applied to attitude estimation, resulting in @& the inertial frame as

nonlinear attitude estimation scheme that seeks to mieimiz
the stored “energy” in measurement errors [25], [26]. This
scheme is obtained by applying Hamilton-Jacobi-Bellman E =[e1 ez ...ex] € R*" whenk > 2. (2)

(HJIB) theory [27] to the state space of attitude motion, 8jote that the matrix of the actual body vectars corre-

shown in [26]. Since the HIB equation can be only aPPro%ponding to the inertial vectors, is given by
imately solved with increasingly unwieldy expressions for

higher order approximations, the resulting filter is onlyé&n U=R'E= [u1 w2 uy X ug] when k =2, and

optimal” up to second orqier. .Unlike the filterin.g schemesl? tha [y _pTp— [y uz .up] € R¥F whenk > 2.

are based on Kalman filtering or “near optimal” solutions

of the HJB equation and do not have provable stabilityl he direction vector measurements are given by

the estimation scheme obtained here_ is shown to be glmost W — RTej +u or UM = RVE + N, 3)
globally asymptotically stable even in the case of biased /

angular velocity measurements. The special case of unbiaseherev; € R? is an additive measurement noise vector and
velocity measurements was dealt with in a prior version oV € R*** is the matrix withy; as itsjth column vector.

this estimator that appeared recently [1]. Moreover, wnlik The attitude kinematics for a rigid body is given by
filters based on Kalman filtering, the estimator proposed hePoisson’s equation:
does not require any knowledge about the statistics of the B = ROX 4)
initial state estimate or the sensor noise. ’

This paper is structured as follows. Sectibh 2 detailghere Q € R is the angular velocity vector anfl)* :
the measurement model for measurements of inertialllR® — s0(3) C R3*3 is the skew-symmetric cross-product
known vectors and biased angular velocity measuremerggerator that gives a vector space isomorphism beti#gen
using body-fixed sensors. The problem of variational atétu andso(3). The measurement model for angular velocity is
estimat_ion ]‘rom these measurements in the presence of rate 0" =Q+w+ B, )
gyro bias is formulated and solved &0D(3) in Section
B. A Lyapunov stability proof of this estimator is given inwherew € R? is the measurement error in angular velocity
Sectior %, along with a proof of the almost global domain ofind3 € R is a vector of bias in angular velocity component
convergence of the estimates in the case of perfect measumeasurements, which we consider to be a constant vector.
ments.. I i_s alsp shown th:_;\t the pias estima.te cqnvergeeto ”.‘3. ATTITUDE STATE AND BIAS ESTIMATION BASED ON
true bias in this case. This continuous estimation scheme is THE LAGRANGE-D'A LEMBERT PRINCIPLE
discretized in Sectidnl 5 in the form of a Lie group variatibna

integrator (LGVI) using the discrete Lagrange-d'Alembert In order to obtain attitude state estimation schemes from
principle. Numerical simulations are carried out usings thi continuous-time vector and angular velocity measurements

LGVI as the discrete-time variational attitude estimator i W& @PPly the Lagrange-d’Alembert principle to an action

Sectior® with a fixed set of gains. Sectidn 6 gives concludinfynctional of a Lagrangian of the state estimate errors) wit

remarks, contributions and possible future extensiongief t dissipation term linear in the angular velocity estimateer
work presented in this paper. This section presents an estimation scheme obtained using

this approach. Lefz € SO(3) denote the estimated rotation

matrix. According to [1], the potential “energy” function

representing the attitude estimate error can be expressed a
For rigid body attitude estimation, assume that soma generalized Wahba’s cost function as

inertially-fixed vectors are measured in a body-fixed frame, . 1 . A

along with body angular velocity measurements having a U(R,U™) = ¢(§<E - RU™,(E — RUm)W>), (6)

constant bias. Let € N known inertial vectors be measured herel™ is given by equatior(J1)E is given by [2), and
in a coordinate frame fixed to the rigid body. Denote thesyﬁ\l/ . 'S given by equation.t 'S given by 1),
is the positive diagonal matrix of the weight factors for

measured vectors ag for j = 1.’2’ .-, K, in the body-fixed th&: measured directions. Note th&t may be generalized
frame. Denote the corresponding known vectors represente - . . T
to be any positive definite matrix, not necessarily diagonal

in mgrtlal frame as;; thereforeu; = R'e;, Wh_ereR is the Furthermore,® : [0,00) r [0,00) is a C function that
rotation matrix from the body frame to the inertial frame. ~ .. ,

: . : . : satisfies®(0) = 0 and ®'(x) > 0 for all z € [0,00).
This rotation matrix provides a coordinate-free, globadl an Iso &/(.) < here is a Classk function. Let
unique description of the attitude of the rigid body. Definé?2 R (é)nd_éa(.])Rgvdeno(t);(.t)h:a estimated al:1 Ilar velocit
the matrix composed of ak measured vectors expressed inan§ bias ectores respectively. The !‘ener N cgata'n\éwmlty
the body-fixed frame as column vectors, 1as v » FESPECUVELY. gy :

vector error between the estimated and the measured angular
U™ = [uf u u x u'] when k = 2, and velocity is then given by

U™ = [u u .up'] € R¥* whenk > 2, (1) T(Q, 9™, B) = %(Qm —Q-pTOQ™-0-5), (@)

FE = [61 €9 €1 X 62] when k = 2, and

2. MEASUREMENTMODEL



where m is a positive scalar. One can consider the LaNow considei/(R,U™)
grangian composed of these “energy” quantities, as follows

L(R,U™Q,Q™, B) =T(Q,Q™,3) —UR,U™)
—Z@-0-ple"-0-4)

- @(%(E —RU™(E — RU’”)W}). @)

If the estimation process is started at timgethen the action
functional of the Lagrangiai8) over the time duratjan 7]
is expressed as

S(L(R, U™, 0, Q™)) =

/T (T(Q,Q™,3) —U(R,U™))ds

Q-pl@em-a-p)

- @(%(E —RU™(E — RUm)W>) }ds. 9)

Define the angular velocity measurement residual and the

dissipation term:
wi=0"-0-3, p = Duw, (20)

where D € R3%3 is positive definite. Consider attitude

®(U°(R,U™)). Then,
SU = &' (U (R, U™))sU’ = &' (U (R, U™)) ST (R)S.
(13)
Taking the first variation of the kinetic energy-like terl) (7
with respect to2 yields
5T = —m(Q™ — Q — B)T60)

=—mQ" - Q- (E+axY)

—mwT(i] +Qx ),

(14)

where w is as given by [(10). Applying the Lagrange-
d’Alembert principle and integrating by parts leads to

T
58+/ 8dt =0

to

T
= —mwTE’:) +/ mo T 2dt
t

0

(15)

T

_/ {maT0% + o' U0 (R,U™)ST(R) - 7 }2at,
to

where the first term in the left hand side vanishes, since

X(to) = X(T') = 0. After substitutingrp = Dw, one obtains

state estimation in continuous time in the presence of megle second equation ig.{11). -

surement noise and initial state estimate errors. Applying 4. STABILITY AND CONVERGENCE OFVARIATIONAL
the Lagrange-d’Alembert principle to the action functibna ATTITUDE ESTIMATOR

S(L(R,U™,Q,Q™)) given by [9), in the presence of a The yariational attitude estimator given by Theorem 3.1
dissipation term linear i, leads to the following attitude 5 phe ysed in the presence of bias in the angular velocity
and angular velocity filtering scheme. . _measurements given by the measurement mgtlel (5). The fol-

Theorem 3.1: The filter equations for a rigid body with |5ing analysis gives the stability and convergence priiger
the attitude kinematic§4) and with measurements of VBCIOL¢ this estimator for the case thatin (§) is constant.
and angular velocity in a body-fixed frame, are of the form

. A. Sability of Variational Attitude Estimator

Prior to analyzing the stability of this attitude estimatibr
is useful and instructive to interpret the energy-like term
used to define the Lagrangian in equatidh (8) in terms
of state estimation errors. The following result shows that

R = RO = R(Q™ —w — B)%,

me = —mS x w+ @ (U (R, U™))SL(R) — Dw,

Q=0m—-w-4, X )
w=F (11) the measurement residuals, and therefore these enemgy-lik
R K terms, can be expressed in terms of state estimation errors.
whereD is a positive definite filter gain %ngtriﬁgrto) = Ry, Proposition 4.1: Define the state estimation errors
w(to) = wo = Q" —Qo, SL(R) =vex(L'R—R'L) € R?, T C0.d 7
vex(-) : s0(3) — R? is the inverse of the-)* map, L = @= R}? and “= 2-0-5, (16)
EW(U™)T and W is chosen to satisfy the conditions in where § = § — §. 17)

Lemma 2.1 of [1].

Proof: In order to find an estimation scheme that filter
the measurement noise in the estimated attitude, take t
first variation of the action functionall(9) with respect fo
and 2 and apply the Lagrange-d’Alembert principle with
the dissipative term in[{10). Consider the potential term
U(R,U™) = 3(E — RU™,(E — RU™)W). Taking the
first variation of this function with respect t& gives

SU° = (=6RU™, (E — RU™)W)

In the absence of measurement noise, the energy-like terms
and [[7) can be expressed in terms of these state estimatio
frors as follows:

UQ) = c1>(<1 —Q, K>) where K — EWET,

m
= —WT(U.

(18)

and 7 (w) (19)
Proof: The proof of this statement is obtained by first sub-
stituting N = 0 andw = 0 in @) and [®), respectively. The
resulting expressions fay™ and Q" are then substituted
back into [6) and[{7), respectively. Note that the same
variablew is used to represent the angular velocity estimation
error for both cases: with and without measurement noise.
Expression[(18) is also derived in [1]. O

(S, UWE'R—-RTEWU™T),

(>, LTR—R'L) = S} (R)x. (12)

N =N =



The stability of this estimator, for the case of constars rat 5. DISCRETETIME ESTIMATOR

gyro bias vector, is given by the following result. The “energy” in the measurement residual for attitude is
Theorem 4.2: Let § in equation[(b) be a constant vector.giscretized as:

Then the variational attitude estimator given by equations

(TI), in addition to the following equation for update of the ~U(Ri, Ul") = @(UO(RZ-, Uim)) (26)
bias estimate: 1 . .

: R R = ‘I’(—<Ez' - RU™, (Ei — RiUzm)Wi>)7

B =@ (U(R,U™) P SL(R), (20) _ 2 _ _
. N o whereW; is a positive diagonal matrix of weight factors for
is Lyapunov stable fo” € R*** positive definite. the measured directions at timg and® : [0, 00) - [0, o0)
Proof: To show Lyapunov stability, the following Lyapunovis a C? function that satisfiesb(0) = 0 and ®'(z) > 0
function is used: for all z € [0,00). Furthermore®'(-) < a(-) wherea(-)

mom A A _ Piam_ 6 mTrom 6 A is a Classk function. The “energy” in the angular velocity
voman, kO, p) = 2 (@ -8« 2-p) measurement residual is discretized as

+ U (R.U™) + %(ﬂ “BTP(B =B @D (@) = T - Q- BT @ - Q- B, (@)

Now consider the case that there is no measurement noiseherem is a positive scalar.

i.e., N =0 andw = 0 in equations[(8) and15), respectively. Similar to the continuous-time attitude estimator in [1],

In this case, the Lyapunov function {21) can be re-expressede can express these “energy” terms for the case that perfec
in terms of the errors,, @ and 3 defined by equation§{]L6)- measurements (with no measurement noise) are available. In
(I2), as follows: this case, these “energy” terms can be expressed in terms of
the state estimate errofy = R, R andw; = €, —Q; — 3;:

- 11 =
V(Quw,B) = ulw+ (- Q.K)) + 55 PB. (22) : i .
2 | 2 U@Q:) = (5B — QT Es, (E: - QT EYW:) ) =
The time derivative of the attitude estimation err@}, € 2
SO(3), is obtained as: ®((I - Qi, K;)) where K; = EW,ET, (28)
. N ~ ~ ~ m
Q=R(Q— Q)XRT = Q(R(w — 5))X’ (23) and 7 (w;) = 5wlTwi wherem > 0.

after substituting fox) from the third of equationg(11) in The weights in¥; can be chosen such théf; is always
the case of zero angular velocity measurement noise (wheasitive definite with distinct (perhaps constant) eigénes,
Q™ = Q-+ B). The time derivative of the Lyapunov function @S in the continuous-time estimator of [1]. Using these

expressed as ifi{22) can now be obtained as follows: “energy” terms in the state estimate errors, the discigte-t
) N Lagrangian is expressed as:
V(Qw,B) = (24)
T. ’ T, A ~ =T X ‘C(Q’La Wz) = T(wl) - M(QZ)
mwla — &' ((I - Q,K))S](R)(w — ) — BT Pp. m 1

=T W; wi—Q)((I—Qi,Ki)). (29)
After substituting equatio (20) and the second of equation . 2 ) ) ) o
@) in the above expression, one can simplify the tima@ he following statement gives a first-order discretization
derivative of this Lyapunov function along the dynamics of? the form of a Lie group variational integrator, for the

the estimator as continuous-time estimator of Theorém3.1.
] ~ T Proposition 5.1: Let discrete-time measurements for two
V(Q,w,B) = ~w Dw < 0. (25)  or more inertial vectors along with angular velocity be

available at a sampling period &f Further, let the weight
matrix W; for the set of vector measuremerifs be chosen
such thatK; = ElWlEZT satisfies Lemma 2.1 in [1]. A
B. Domain of Convergence of Variational Attitude Estimator ~ discrete-time estimator obtained by applying the discrete
The domain of convergence of this estimator is given byadrange-d’Alembert principle to the Lagrangianl(29) is:

the following result. Rit1 = R, exp (R — w; — Bi)X), (30)
Theorem 4.3: The variational attitude estimator in the -

This time derivative is negative semi-definite in the estama
errors(Q, w, B) € TSO(3) x R3. This proves the result[]

A 1(740(D m -1 >
case of biased velocity measurements, given by égs. (1&5’“1 = fi + he (u (Ri, U") P~ S, (Ra), (31)
and [20), converges asymptotically(i@, w, 3) = (1,0,0) € Qi = Q" —w; — 3, (32)
TSO(3) x R? with an almost _glopal_domain of convergence,, eXp(—thﬂ){(mI:am — hD)w; (33)
The proof of this result is similar to the proof of the
domain of convergence of the variational attitude estimato + hcp’(uo(fziﬂ, Uﬁl))SLiH(RiJrl)}a
for the bias-free case in [1]. The additional estimate error . R R
state/3 converges to zero asymptotically for almost all initialwhere Sy, grRl-) = VeX(L;-rRi — Rl.TLl-) € RS L, =

(Q,w) except those that lie on a set whose complement &;W;(U")T € R**3, 4°(R;,U™) is defined in [(Z6) and
dense and open iir'SO(3) ~ SO(3) x R3. (Ro, ) € SO(3) x R? are initial estimated states.



The proof is very similar to the proof of the discrete-time
variational attitude estimator presented in [1]. Note ttiat

discrete-time total energy corresponding to the discrete L
grangian[(ZP) is dissipated with time, as with the contirsiou
time estimator. 0.35

(rad)

6. NUMERICAL SIMULATION 0.25

This section presents numerical simulation results of the S oz

discrete estimator presented in Secfidn 5, in the preseihce ¢ 015,
constant bias in angular velocity measurements. In order tc 0.1f

validate the performance of this estimator, “true” rigiddgo 005k
attitude states are generated using the rotational kinesnat . ‘ : / ‘

and dynamics equations. The rigid body moment of inertia is 0 5 1015 ; 20 25 30 3% 40
selected ag, = diag([2.56 3.01 2.98]T) kg.n?. Moreover, (s)
a sinusoidal external torque is applied to this body, exqaes Fig. 1. Principal angle of the attitude estimate error

in body fixed frame as

. s T
t)=[0 0.028sin(2.7t — =) 0] N.m. 34
o) =1 ( 7) ] (34) states and bias are set to:

The true initial attitude and angular velocity are given by, . T 3 6 21\~
Ry = expmgq s (2—5 X [; - ;] ) )
Ry =expm ﬁx[§ g g]T : 9 T (38)
0 PMgo(3) 4 7 7 7 (35) Qp=[-0.26 0.1725 —0.2446]" rad/s
andQy = — x [-2.1 1.2 —1.1]7 rad/s andfo = [0 001 0.0 rad/s

60
In order to integrate the implicit set of equations[inl(30)-

A set of at least two inertial sensors and three gyrogs3) numerically, the first two equations are solved at each
perpendicular to each other are assumed to be onboard pling step. Usind (32}, in (33) is written in terms
rigid body. The true states generated from the kinematiGsy ., | next. The resulting implicit equation is solved with
and dynamics of this rigid body are also used to generafgspect tow,,; iteratively to a set tolerance applying the
the observed directions in the body fixed frame. We assumgwton-Raphson method. The root of this nonlinear equation
that there are at most nine inertially known directions ““h'calong with RiH and BHI are used for the next sampling

are being measured by the sensors fixed to the rigid bogye instant. This process is repeated till the end of the
at a constant sample rate. Bounded zero mean noise gigyylated duration.

added to the true direction vectors to generate each mehsure Raguits from this numerical simulation are shown here.

direction. A summation of three sinusoidal matrix funcgon 1 principal angle corresponding to the rigid body’s ad

is added to the matri¥/, to generate a measuréd™ with  estimation error is depicted in Figl 1, and estimation error
measurement noise. The frequency of the noises are 1, i0the angular velocity components are shown in Fi. 2.
and 100 Hz, with different phases and different amplitudessinaly, Fig.[3 portrays estimate errors in bias components

which are up t@.4° based on coarse attitude sensors like SUBgtimation errors are seen to converge to a neighborhood of
sensors and magnetometers. Similarly, two smusmdabams(Q w B) = (1,0,0), where the size of this neighborhood
of 10 Hz and 200 Hz frequencies are addedXdo form  gepends on the bounds of the measurement noise.

the measured™. These signals also have different phases
and their magnitude is up t®.97°/s, which corresponds to 7. CONCLUSION

a coarse rate gyro. Besides, the gyro readings are assumeghe framework of variational attitude estimation is gener-

to contain a constant bias in three directions, as follows: gjized to include bias in angular velocity measurements and

estimate a constant bias vector. The continuous-time state

estimator is obtained by applying the Lagrange-d’Alembert

principle from variational mechanics to a Lagrangian csiasi

ing of the energies in the measurement residuals, along with

a dissipation term linear in angular velocity measurement

residual. The update law for the bias estimate ensures that
D = diag([17.4 18.85 20_3]T)_ (37) the total energy content in the state and bias estimation

errors is dissipated as in a dissipative mechanical systam.

As in [1], ®(z) = x. The weight matriX1” is also calculated resulting generalization of the variational attitude rastior

using the conditions in [1]. The positive definite matrix foris almost globally asymptotically stable, like the vaauil

bias gain is selected @ = 2 x 10%1. The initial estimated attitude estimator for the bias-free case reported in [1].

B=[-0.01 —0.005 0.02] rad/s (36)

The estimator is simulated over a time intervallof= 40s,
with a time stepsize ofi = 0.01s. The scalar inertia-like
gain ism = 5 and the dissipation matrix is selected as:
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[17]
Fig. 3. Bias estimate error

(18]

A discretization of this estimator is obtained in the form
of an implicit first order Lie group variational integrator,
by applying the discrete Lagrange-d’Alembert principle tcglg]
the discrete Lagrangian with the dissipation term linear
in the angular velocity estimation error. This discretizat [20]
preserves the stability of the continuous estimation sehemy,y;
Using a realistic set of data for rigid body rotational matio
numerical simulations show that the estimated states aﬂz%]
estimated bias converge to a bounded neighborhood of the
true states and true bias when the measurement noise is
bounded. Future planned extensions of this work are 8
develop an explicit discrete-time implementation of this
attitude estimator, and implement it in real-time with cpti  [24]
and inertial sensors.
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