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The Variational Attitude Estimator in the Presence of Bias in Angular
Velocity Measurements

Maziar Izadi1, Sasi Prabhakaran2, Amit Sanyal2,†, Carlos Silvestre3, and Paulo Oliveira4

Abstract— Estimation of rigid body attitude motion is a
long-standing problem of interest in several applications. This
problem is challenging primarily because rigid body motion is
described by nonlinear dynamics and the state space is nonlin-
ear. The extended Kalman filter and its several variants have
remained the standard and most commonly used schemes for
attitude estimation over the last several decades. These schemes
are obtained as approximate solutions to the nonlinear optimal
filtering problem. However, these approximate or near optimal
solutions may not give stable estimation schemes in general. The
variational attitude estimator was introduced recently tofill this
gap in stable estimation of arbitrary rigid body attitude motion
in the presence of uncertainties in initial state and unknown
measurement noise. This estimator is obtained by applying the
Lagrange-d’Alembert principle of variational mechanics to a
Lagrangian constructed from residuals between measurements
and state estimates with a dissipation term that is linear in
the angular velocity measurement residual. In this work, the
variational attitude estimator is generalized to include angular
velocity measurements that have a constant bias in additionto
measurement noise. The state estimates converge to true states
almost globally over the state space. Further, the bias estimates
converge to the true bias once the state estimates converge to
the true states.

1. INTRODUCTION

Estimation of attitude motion is essential in applicationsto
spacecraft, unmanned aerial and underwater vehicles as well
as formations and networks of such vehicles. In this work, we
consider estimation of attitude motion of a rigid body from
measurements of known inertial directions and angular ve-
locity measurements with a constant bias, where all measure-
ments are made with body-fixed sensors corrupted by sensor
noise. The number of direction vectors measured by the body
may vary over time. For the theoretical developments in this
paper, it is assumed that at least two directions are measured
at any given instant; this assumption ensures that the attitude
can be uniquely determined from the measured directions
at every instant. The attitude estimation scheme presented
here follows the variational framework of the estimation
scheme recently reported in [1], [2]. Like the estimation
scheme in [1], the scheme presented here has the following
important properties: (1) attitude is represented globally over
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the configuration space of rigid body attitude motion without
using local coordinates or quaternions; (2) no assumption
is made on the statistics of the measurement noise; (3)
unlike model-based estimation schemes (e.g., [3], [4], [5]),
no knowledge of the attitude dynamics model is assumed; (4)
the estimation scheme is obtained by applying the Lagrange-
d’Alembert principle from variational mechanics [6], [7] to a
Lagrangian constructed from the measurement residuals with
a dissipation term linear in the angular velocity measurement
residual; and (5) the estimation scheme is discretized for
computer implementation by applying the discrete Lagrange-
d’Alembert principle [8], [9]. It is assumed that measure-
ments of direction vectors and angular velocity are available
at sufficient frequency, such that a dynamics model is not
needed to propagate state estimates between measurements.

The earliest solution to the attitude determination prob-
lem from two inertial vector measurements is the so-called
“TRIAD algorithm” from the early 1960s [10]. This was
followed by developments in the problem of attitude deter-
mination from a set of vector measurements, which was set
up as an optimization problem called Wahba’s problem [11].
This problem of instantaneous attitude determination has
many different solutions in the prior literature, a sample
of which can be obtained in [12], [13], [14]. Much of
the published literature on estimation of attitude states use
local coordinates or unit quaternions to represent attitude.
Local coordinate representations, including commonly used
quaternion-derived parameters like the Rodrigues parameters
and the modified Rodrigues parameters (MRPs), cannot
describe arbitrary or tumbling attitude motion, while the
unit quaternion representation of attitude is known to be
ambiguous. Each physical attitude corresponds to an element
of the Lie group of rigid body rotationsSO(3), and can
be represented by a pair of antipodal quaternions on the
hypersphereS3, which is often represented as an embed-
ded submanifold ofR4 in attitude estimation. For dynamic
attitude estimation, this ambiguity in the representationcould
lead to instability of continuous state estimation schemesdue
to unwinding, as is described in [15], [16], [17].

Attitude observers and filtering schemes onSO(3) and
SE(3) have been reported in, e.g., [14], [18], [19], [20], [21],
[22], [23]. These estimators do not suffer from kinematic
singularities like estimators using coordinate descriptions of
attitude, and they do not suffer from the unstable unwinding
phenomenon which may be encountered by estimators using
unit quaternions. Many of these schemes are based on near
optimal filtering and do not have provable stability. Related
to Kalman filtering-type schemes is the maximum-likelihood
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(minimum energy) filtering method of Mortensen [24], which
was recently applied to attitude estimation, resulting in a
nonlinear attitude estimation scheme that seeks to minimize
the stored “energy” in measurement errors [25], [26]. This
scheme is obtained by applying Hamilton-Jacobi-Bellman
(HJB) theory [27] to the state space of attitude motion, as
shown in [26]. Since the HJB equation can be only approx-
imately solved with increasingly unwieldy expressions for
higher order approximations, the resulting filter is only “near
optimal” up to second order. Unlike the filtering schemes that
are based on Kalman filtering or “near optimal” solutions
of the HJB equation and do not have provable stability,
the estimation scheme obtained here is shown to be almost
globally asymptotically stable even in the case of biased
angular velocity measurements. The special case of unbiased
velocity measurements was dealt with in a prior version of
this estimator that appeared recently [1]. Moreover, unlike
filters based on Kalman filtering, the estimator proposed here
does not require any knowledge about the statistics of the
initial state estimate or the sensor noise.

This paper is structured as follows. Section 2 details
the measurement model for measurements of inertially-
known vectors and biased angular velocity measurements
using body-fixed sensors. The problem of variational attitude
estimation from these measurements in the presence of rate
gyro bias is formulated and solved onSO(3) in Section
3. A Lyapunov stability proof of this estimator is given in
Section 4, along with a proof of the almost global domain of
convergence of the estimates in the case of perfect measure-
ments. It is also shown that the bias estimate converges to the
true bias in this case. This continuous estimation scheme is
discretized in Section 5 in the form of a Lie group variational
integrator (LGVI) using the discrete Lagrange-d’Alembert
principle. Numerical simulations are carried out using this
LGVI as the discrete-time variational attitude estimator in
Section 5 with a fixed set of gains. Section 6 gives concluding
remarks, contributions and possible future extensions of the
work presented in this paper.

2. MEASUREMENTMODEL

For rigid body attitude estimation, assume that some
inertially-fixed vectors are measured in a body-fixed frame,
along with body angular velocity measurements having a
constant bias. Letk ∈ N known inertial vectors be measured
in a coordinate frame fixed to the rigid body. Denote these
measured vectors asum

j for j = 1, 2, . . . , k, in the body-fixed
frame. Denote the corresponding known vectors represented
in inertial frame asej ; thereforeuj = RTej, whereR is the
rotation matrix from the body frame to the inertial frame.
This rotation matrix provides a coordinate-free, global and
unique description of the attitude of the rigid body. Define
the matrix composed of allk measured vectors expressed in
the body-fixed frame as column vectors,

Um = [um
1 um

2 um
1 × um

2 ] when k = 2, and

Um = [um
1 um

2 ...um
k ] ∈ R

3×k whenk > 2, (1)

and the corresponding matrix of all these vectors expressed
in the inertial frame as

E = [e1 e2 e1 × e2] when k = 2, and

E = [e1 e2 ...ek] ∈ R
3×k whenk > 2. (2)

Note that the matrix of the actual body vectorsuj corre-
sponding to the inertial vectorsej , is given by

U = RTE = [u1 u2 u1 × u2] when k = 2, and

U = RTE = [u1 u2 ...uk] ∈ R
3×k whenk > 2.

The direction vector measurements are given by

um
j = RTej + νj or Um = RTE +N, (3)

whereνj ∈ R3 is an additive measurement noise vector and
N ∈ R3×k is the matrix withνj as itsjth column vector.

The attitude kinematics for a rigid body is given by
Poisson’s equation:

Ṙ = RΩ×, (4)

where Ω ∈ R3 is the angular velocity vector and(·)× :
R3 → so(3) ⊂ R3×3 is the skew-symmetric cross-product
operator that gives a vector space isomorphism betweenR3

andso(3). The measurement model for angular velocity is

Ωm = Ω + w + β, (5)

wherew ∈ R3 is the measurement error in angular velocity
andβ ∈ R3 is a vector of bias in angular velocity component
measurements, which we consider to be a constant vector.

3. ATTITUDE STATE AND BIAS ESTIMATION BASED ON

THE LAGRANGE-D’A LEMBERT PRINCIPLE

In order to obtain attitude state estimation schemes from
continuous-time vector and angular velocity measurements,
we apply the Lagrange-d’Alembert principle to an action
functional of a Lagrangian of the state estimate errors, with a
dissipation term linear in the angular velocity estimate error.
This section presents an estimation scheme obtained using
this approach. Let̂R ∈ SO(3) denote the estimated rotation
matrix. According to [1], the potential “energy” function
representing the attitude estimate error can be expressed as
a generalized Wahba’s cost function as

U(R̂, Um) = Φ
(1

2
〈E − R̂Um, (E − R̂Um)W 〉

)

, (6)

whereUm is given by equation (1),E is given by (2), and
W is the positive diagonal matrix of the weight factors for
the measured directions. Note thatW may be generalized
to be any positive definite matrix, not necessarily diagonal.
Furthermore,Φ : [0,∞) 7→ [0,∞) is a C2 function that
satisfiesΦ(0) = 0 and Φ′(x) > 0 for all x ∈ [0,∞).
Also Φ′(·) ≤ α(·) whereα(·) is a Class-K function. Let
Ω̂ ∈ R3 and β̂ ∈ R3 denote the estimated angular velocity
and bias vectors, respectively. The “energy” contained in the
vector error between the estimated and the measured angular
velocity is then given by

T (Ω̂,Ωm, β̂) =
m

2
(Ωm − Ω̂− β̂)T(Ωm − Ω̂− β̂), (7)



where m is a positive scalar. One can consider the La-
grangian composed of these “energy” quantities, as follows:

L(R̂, Um,Ω̂,Ωm, β̂) = T (Ω̂,Ωm, β̂)− U(R̂, Um)

=
m

2
(Ωm − Ω̂− β̂)T(Ωm − Ω̂− β̂)

− Φ
(1

2
〈E − R̂Um, (E − R̂Um)W 〉

)

. (8)

If the estimation process is started at timet0, then the action
functional of the Lagrangian (8) over the time duration[t0, T ]
is expressed as

S(L(R̂, Um, Ω̂,Ωm)) =

∫ T

t0

(

T (Ω̂,Ωm, β̂)− U(R̂, Um)
)

ds

=

∫ T

t0

{

m

2
(Ωm − Ω̂− β̂)T(Ωm − Ω̂− β̂)

− Φ
(1

2
〈E − R̂Um, (E − R̂Um)W 〉

)

}

ds. (9)

Define the angular velocity measurement residual and the
dissipation term:

ω := Ωm − Ω̂− β̂, τD = Dω, (10)

where D ∈ R3×3 is positive definite. Consider attitude
state estimation in continuous time in the presence of mea-
surement noise and initial state estimate errors. Applying
the Lagrange-d’Alembert principle to the action functional
S(L(R̂, Um, Ω̂,Ωm)) given by (9), in the presence of a
dissipation term linear inω, leads to the following attitude
and angular velocity filtering scheme.

Theorem 3.1: The filter equations for a rigid body with
the attitude kinematics (4) and with measurements of vectors
and angular velocity in a body-fixed frame, are of the form






















˙̂
R = R̂Ω̂× = R̂(Ωm − ω − β̂)×,

mω̇ = −mΩ̂× ω +Φ′
(

U0(R̂, Um)
)

SL(R̂)−Dω,

Ω̂ = Ωm − ω − β̂,

(11)

whereD is a positive definite filter gain matrix,̂R(t0) = R̂0,
ω(t0) = ω0 = Ωm

0 − Ω̂0, SL(R̂) = vex
(

LTR̂− R̂TL
)

∈ R3,
vex(·) : so(3) → R3 is the inverse of the(·)× map,L =
EW (Um)T and W is chosen to satisfy the conditions in
Lemma 2.1 of [1].
Proof: In order to find an estimation scheme that filters
the measurement noise in the estimated attitude, take the
first variation of the action functional (9) with respect tôR
and Ω̂ and apply the Lagrange-d’Alembert principle with
the dissipative term in (10). Consider the potential term
U0(R̂, Um) = 1

2 〈E − R̂Um, (E − R̂Um)W 〉. Taking the
first variation of this function with respect tôR gives

δU0 = 〈−δR̂Um, (E − R̂Um)W 〉

=
1

2
〈Σ×, UmWETR̂− R̂TEW (Um)T〉,

=
1

2
〈Σ×, LTR̂− R̂TL〉 = ST

L(R̂)Σ. (12)

Now considerU(R̂, Um) = Φ
(

U0(R̂, Um)
)

. Then,

δU = Φ′
(

U0(R̂, Um)
)

δU0 = Φ′
(

U0(R̂, Um)
)

ST
L(R̂)Σ.

(13)

Taking the first variation of the kinetic energy-like term (7)
with respect toΩ̂ yields

δT = −m(Ωm − Ω̂− β̂)TδΩ̂

= −m(Ωm − Ω̂− β̂)T(Σ̇ + Ω̂× Σ)

= −mωT(Σ̇ + Ω̂× Σ), (14)

where ω is as given by (10). Applying the Lagrange-
d’Alembert principle and integrating by parts leads to

δS +

∫ T

t0

τT
DΣdt = 0

⇒ −mωTΣ
∣

∣

T

t0
+

∫ T

t0

mω̇TΣdt (15)

=

∫ T

t0

{

mωTΩ̂× +Φ′
(

U0(R̂, Um)
)

ST
L(R̂)− τT

D

}

Σdt,

where the first term in the left hand side vanishes, since
Σ(t0) = Σ(T ) = 0. After substitutingτD = Dω, one obtains
the second equation in (11). �

4. STABILITY AND CONVERGENCE OFVARIATIONAL

ATTITUDE ESTIMATOR

The variational attitude estimator given by Theorem 3.1
can be used in the presence of bias in the angular velocity
measurements given by the measurement model (5). The fol-
lowing analysis gives the stability and convergence properties
of this estimator for the case thatβ in (5) is constant.

A. Stability of Variational Attitude Estimator

Prior to analyzing the stability of this attitude estimator, it
is useful and instructive to interpret the energy-like terms
used to define the Lagrangian in equation (8) in terms
of state estimation errors. The following result shows that
the measurement residuals, and therefore these energy-like
terms, can be expressed in terms of state estimation errors.

Proposition 4.1: Define the state estimation errors

Q = RR̂T and ω = Ω− Ω̂− β̃, (16)

where β̃ = β − β̂. (17)

In the absence of measurement noise, the energy-like terms
(6) and (7) can be expressed in terms of these state estimation
errors as follows:

U(Q) = Φ
(

〈I −Q,K〉
)

where K = EWET, (18)

andT (ω) =
m

2
ωTω. (19)

Proof: The proof of this statement is obtained by first sub-
stitutingN = 0 andw = 0 in (3) and (5), respectively. The
resulting expressions forUm and Ωm are then substituted
back into (6) and (7), respectively. Note that the same
variableω is used to represent the angular velocity estimation
error for both cases: with and without measurement noise.
Expression (18) is also derived in [1]. �



The stability of this estimator, for the case of constant rate
gyro bias vectorβ, is given by the following result.

Theorem 4.2: Let β in equation (5) be a constant vector.
Then the variational attitude estimator given by equations
(11), in addition to the following equation for update of the
bias estimate:

˙̂
β = Φ′

(

U0(R̂, Um)
)

P−1SL(R̂), (20)

is Lyapunov stable forP ∈ R3×3 positive definite.
Proof: To show Lyapunov stability, the following Lyapunov
function is used:

V (Um,Ωm, R̂, Ω̂, β̂) =
m

2
(Ωm − Ω̂− β̂)T(Ωm − Ω̂− β̂)

+ Φ
(

U0(R̂, Um)
)

+
1

2
(β − β̂)TP (β − β̂). (21)

Now consider the case that there is no measurement noise,
i.e.,N = 0 andw = 0 in equations (3) and (5), respectively.
In this case, the Lyapunov function (21) can be re-expressed
in terms of the errorsω, Q andβ̃ defined by equations (16)-
(17), as follows:

V (Q,ω, β̃) =
m

2
ωTω +Φ

(

〈I −Q,K〉
)

+
1

2
β̃TP β̃. (22)

The time derivative of the attitude estimation error,Q ∈
SO(3), is obtained as:

Q̇ = R(Ω− Ω̂)×R̂T = Q
(

R̂(ω − β̃)
)

×

, (23)

after substituting for̂Ω from the third of equations (11) in
the case of zero angular velocity measurement noise (when
Ωm = Ω+β). The time derivative of the Lyapunov function
expressed as in (22) can now be obtained as follows:

V̇ (Q,ω, β̃) = (24)

mωTω̇ − Φ′
(

〈I −Q,K〉
)

ST
L(R̂)(ω − β̃)− β̃TP

˙̂
β.

After substituting equation (20) and the second of equations
(11) in the above expression, one can simplify the time
derivative of this Lyapunov function along the dynamics of
the estimator as

V̇ (Q,ω, β̃) = −ωTDω ≤ 0. (25)

This time derivative is negative semi-definite in the estimate
errors(Q,ω, β̃) ∈ TSO(3)× R3. This proves the result.�

B. Domain of Convergence of Variational Attitude Estimator

The domain of convergence of this estimator is given by
the following result.

Theorem 4.3: The variational attitude estimator in the
case of biased velocity measurements, given by eqs. (11)
and (20), converges asymptotically to(Q,ω, β̃) = (I, 0, 0) ∈
TSO(3)×R3 with an almost global domain of convergence.

The proof of this result is similar to the proof of the
domain of convergence of the variational attitude estimator
for the bias-free case in [1]. The additional estimate error
stateβ̃ converges to zero asymptotically for almost all initial
(Q,ω) except those that lie on a set whose complement is
dense and open inTSO(3) ≃ SO(3)× R3.

5. DISCRETE-TIME ESTIMATOR

The “energy” in the measurement residual for attitude is
discretized as:

U(R̂i, U
m
i ) = Φ

(

U0(R̂i, U
m
i )

)

(26)

= Φ
(1

2
〈Ei − R̂iU

m
i , (Ei − R̂iU

m
i )Wi〉

)

,

whereWi is a positive diagonal matrix of weight factors for
the measured directions at timeti, andΦ : [0,∞) 7→ [0,∞)
is a C2 function that satisfiesΦ(0) = 0 and Φ′(x) > 0
for all x ∈ [0,∞). Furthermore,Φ′(·) ≤ α(·) whereα(·)
is a Class-K function. The “energy” in the angular velocity
measurement residual is discretized as

T (Ω̂i,Ω
m
i ) =

m

2
(Ωm

i − Ω̂i − β̂i)
T(Ωm

i − Ω̂i − β̂i), (27)

wherem is a positive scalar.
Similar to the continuous-time attitude estimator in [1],

one can express these “energy” terms for the case that perfect
measurements (with no measurement noise) are available. In
this case, these “energy” terms can be expressed in terms of
the state estimate errorsQi = RiR̂

T
i andωi = Ωi− Ω̂i− β̂i:

U(Qi) = Φ
(1

2
〈Ei −QT

i Ei, (Ei −QT
i Ei)Wi〉

)

=

Φ
(

〈I −Qi,Ki〉
)

where Ki = EiWiE
T
i ,

and T (ωi) =
m

2
ωT
i ωi wherem > 0.

(28)

The weights inWi can be chosen such thatKi is always
positive definite with distinct (perhaps constant) eigenvalues,
as in the continuous-time estimator of [1]. Using these
“energy” terms in the state estimate errors, the discrete-time
Lagrangian is expressed as:

L(Qi, ωi) = T (ωi)− U(Qi)

=
m

2
ωT
i ωi − Φ

(

〈I −Qi,Ki〉
)

. (29)

The following statement gives a first-order discretization,
in the form of a Lie group variational integrator, for the
continuous-time estimator of Theorem 3.1.

Proposition 5.1: Let discrete-time measurements for two
or more inertial vectors along with angular velocity be
available at a sampling period ofh. Further, let the weight
matrix Wi for the set of vector measurementsEi be chosen
such thatKi = EiWiE

T
i satisfies Lemma 2.1 in [1]. A

discrete-time estimator obtained by applying the discrete
Lagrange-d’Alembert principle to the Lagrangian (29) is:

R̂i+1 = R̂i exp
(

h(Ωm
i − ωi − β̂i)

×
)

, (30)

β̂i+1 = β̂i + hΦ′
(

U0(R̂i, U
m
i )

)

P−1SLi
(R̂i), (31)

Ω̂i = Ωm
i − ωi − β̂i, (32)

mωi+1 = exp(−hΩ̂×

i+1)
{

(mI3×3 − hD)ωi (33)

+ hΦ′
(

U0(R̂i+1, U
m
i+1)

)

SLi+1
(R̂i+1)

}

,

where SLi
(R̂i) = vex(LT

i R̂i − R̂T
i Li) ∈ R3, Li =

EiWi(U
m
i )T ∈ R3×3, U0(R̂i, U

m
i ) is defined in (26) and

(R̂0, Ω̂0) ∈ SO(3)× R3 are initial estimated states.



The proof is very similar to the proof of the discrete-time
variational attitude estimator presented in [1]. Note thatthe
discrete-time total energy corresponding to the discrete La-
grangian (29) is dissipated with time, as with the continuous
time estimator.

6. NUMERICAL SIMULATION

This section presents numerical simulation results of the
discrete estimator presented in Section 5, in the presence of
constant bias in angular velocity measurements. In order to
validate the performance of this estimator, “true” rigid body
attitude states are generated using the rotational kinematics
and dynamics equations. The rigid body moment of inertia is
selected asJv = diag([2.56 3.01 2.98]T) kg.m2. Moreover,
a sinusoidal external torque is applied to this body, expressed
in body fixed frame as

ϕ(t) = [0 0.028 sin(2.7t−
π

7
) 0]T N.m. (34)

The true initial attitude and angular velocity are given by,

R0 =expmSO(3)

(

(π

4
× [

3

7

6

7

2

7
]T
)

×

)

andΩ0 =
π

60
× [−2.1 1.2 − 1.1]T rad/s.

(35)

A set of at least two inertial sensors and three gyros
perpendicular to each other are assumed to be onboard the
rigid body. The true states generated from the kinematics
and dynamics of this rigid body are also used to generate
the observed directions in the body fixed frame. We assume
that there are at most nine inertially known directions which
are being measured by the sensors fixed to the rigid body
at a constant sample rate. Bounded zero mean noise is
added to the true direction vectors to generate each measured
direction. A summation of three sinusoidal matrix functions
is added to the matrixU , to generate a measuredUm with
measurement noise. The frequency of the noises are 1, 10
and 100 Hz, with different phases and different amplitudes,
which are up to2.4◦ based on coarse attitude sensors like sun
sensors and magnetometers. Similarly, two sinusoidal noises
of 10 Hz and 200 Hz frequencies are added toΩ to form
the measuredΩm. These signals also have different phases
and their magnitude is up to0.97◦/s, which corresponds to
a coarse rate gyro. Besides, the gyro readings are assumed
to contain a constant bias in three directions, as follows:

β = [−0.01 − 0.005 0.02]T rad/s. (36)

The estimator is simulated over a time interval ofT = 40s,
with a time stepsize ofh = 0.01s. The scalar inertia-like
gain ism = 5 and the dissipation matrix is selected as:

D = diag
(

[17.4 18.85 20.3]T
)

. (37)

As in [1], Φ(x) = x. The weight matrixW is also calculated
using the conditions in [1]. The positive definite matrix for
bias gain is selected asP = 2× 103I. The initial estimated
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Fig. 1. Principal angle of the attitude estimate error

states and bias are set to:

R̂0 = expmSO(3)

(

( π

2.5
× [

3

7

6

7

2

7
]T
)

×

)

,

Ω̂0 = [−0.26 0.1725 − 0.2446]T rad/s,

and β̂0 = [0 − 0.01 0.01]T rad/s.

(38)

In order to integrate the implicit set of equations in (30)-
(33) numerically, the first two equations are solved at each
sampling step. Using (32),̂Ωi+1 in (33) is written in terms
of ωi+1 next. The resulting implicit equation is solved with
respect toωi+1 iteratively to a set tolerance applying the
Newton-Raphson method. The root of this nonlinear equation
along with R̂i+1 and β̂i+1 are used for the next sampling
time instant. This process is repeated till the end of the
simulated duration.

Results from this numerical simulation are shown here.
The principal angle corresponding to the rigid body’s attitude
estimation error is depicted in Fig. 1, and estimation errors
in the angular velocity components are shown in Fig. 2.
Finally, Fig. 3 portrays estimate errors in bias components.
Estimation errors are seen to converge to a neighborhood of
(Q,ω, β̃) = (I, 0, 0), where the size of this neighborhood
depends on the bounds of the measurement noise.

7. CONCLUSION

The framework of variational attitude estimation is gener-
alized to include bias in angular velocity measurements and
estimate a constant bias vector. The continuous-time state
estimator is obtained by applying the Lagrange-d’Alembert
principle from variational mechanics to a Lagrangian consist-
ing of the energies in the measurement residuals, along with
a dissipation term linear in angular velocity measurement
residual. The update law for the bias estimate ensures that
the total energy content in the state and bias estimation
errors is dissipated as in a dissipative mechanical system.The
resulting generalization of the variational attitude estimator
is almost globally asymptotically stable, like the variational
attitude estimator for the bias-free case reported in [1].
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Fig. 3. Bias estimate error

A discretization of this estimator is obtained in the form
of an implicit first order Lie group variational integrator,
by applying the discrete Lagrange-d’Alembert principle to
the discrete Lagrangian with the dissipation term linear
in the angular velocity estimation error. This discretization
preserves the stability of the continuous estimation scheme.
Using a realistic set of data for rigid body rotational motion,
numerical simulations show that the estimated states and
estimated bias converge to a bounded neighborhood of the
true states and true bias when the measurement noise is
bounded. Future planned extensions of this work are to
develop an explicit discrete-time implementation of this
attitude estimator, and implement it in real-time with optical
and inertial sensors.
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