Loading [a11y]/accessibility-menu.js
Improved computation of dwell time using the real Jordan form | IEEE Conference Publication | IEEE Xplore

Improved computation of dwell time using the real Jordan form


Abstract:

This paper addresses stability guarantees for a switching system. For this work, a switching system consists of a collection of subsystems with known LTI models and a swi...Show More

Abstract:

This paper addresses stability guarantees for a switching system. For this work, a switching system consists of a collection of subsystems with known LTI models and a switching signal that determines which subsystem model governs the system's dynamics at any given time. The switching signal may be the result of an operator's choice or a reaction to external events. Previous work has shown that the switching system will be stable if the switching signal is piecewise constant and dwells on each chosen value for some minimum period of time. Morse and Geromel have proposed methods for estimating an upper bound on the minimum dwell time from the realizations of the LTI subsystems. In recent work, the authors introduced a method that utilizes the real Jordan form. In this paper, the real Jordan form approach is optimized to achieve the accuracy of Geromel's algorithm at a significantly lower computation cost. Numerical simulation of a switched system derived from an adaptive H vibration attenuation controller illustrates the accuracy and computational efficiency of the proposed algorithm.
Date of Conference: 06-08 July 2016
Date Added to IEEE Xplore: 01 August 2016
ISBN Information:
Electronic ISSN: 2378-5861
Conference Location: Boston, MA, USA

References

References is not available for this document.